
IONA Technologies PLC
August 2001

IONA Orbix 2000
Programmer’s Guide
C++ Edition

Orbix is a Registered Trademark of IONA Technologies PLC. Orbix is a Registered Trademark of IONA Technologies PLC. Orbix is a Registered Trademark of IONA Technologies PLC. Orbix is a Registered Trademark of IONA Technologies PLC.
Orbix 2000 is a Trademark of IONA Technologies PLC.Orbix 2000 is a Trademark of IONA Technologies PLC.Orbix 2000 is a Trademark of IONA Technologies PLC.Orbix 2000 is a Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

M 2 6 7 1

Contents
Preface ix
Audience ix
Document Conventions x

Chapter 1 Introduction to Orbix 2000 1
Why CORBA? 1
CORBA Application Basics 4
Servers and the Portable Object Adapter 5
Orbix Plug-In Design 6
Development Tools 8
Orbix Application Deployment 9
CORBA Features and Services 11

Chapter 2 Getting Started with Orbix 2000 15
Prerequisites 15
Setting the Orbix Environment 15
Hello World Example 16
Development Using the Client/Server Wizard 17
Development from the Command Line 28

Chapter 3 First Application 35
Overview of the Development Process 35
Development Steps 41
Step 1—Define the IDL Interfaces 42
Step 2—Generate Starting Point Code 43
Step 3—Compile the IDL Definitions 45
Step 4—Develop the Server Program 48
Step 5—Develop the Client Program 55
Step 6—Build and Run the Application 59
Learning More About the Server 61
Complete Source Code for server.cxx 72

Chapter 4 Defining Interfaces 77
iii

Table of Contents
Modules and Name Scoping 77
Interfaces 79
Valuetypes 90
Abstract Interfaces 91
IDL Data Types 92
Defining Data Types 102
Constants 103
Constant Expressions 106

Chapter 5 Developing Applications with Genies 109
Starting Development Projects 109
Generating Signatures of Individual Operations 126
Configuration Settings 127

Chapter 6 ORB Intialization and Shutdown 129
Initializing the ORB Runtime 129
Shutting Down the ORB 130

Chapter 7 Using Policies 133
Creating Policy and PolicyList Objects 134
Setting Orb and Thread Policies 135
Setting Server-Side Policies 137
Setting Client Policies 138
Getting Policies 141

Chapter 8 Developing a Client 145
Interfaces and Proxies 145
Using Object References 147
Initializing and Shutting Down the ORB 163
Invoking Operations and Attributes 163
Passing Parameters in Client Invocations 164
Setting Client Policies 182
Implementing Callback Objects 193

Chapter 9 Developing a Server 195
POAs, Skeletons, and Servants 195
Mapping Interfaces to Skeleton Classes 197
 iv

Table of Contents
Creating a Servant Class 200
Implementing Operations 201
Activating CORBA Objects 202
Handling Output Parameters 203
Counting Servant References 213
Delegating Servant Implementations 214
Implementation Inheritance 216
Interface Inheritance 216
Multiple Inheritance 217
Explicit Event Handling 218
Termination Handler 219
Compiling and Linking 220

Chapter 10 Managing Server Objects 221
Mapping Objects to Servants 221
Creating a POA 223
Using POA Policies 228
Explicit and Implicit Object Activation 236
Managing Request Flow 241
Creating a Work Queue 242

Chapter 11 Managing Servants 249
Using Servant Managers 250
Using a Default Servant 261
Creating Inactive Objects 264

Chapter 12 Asynchronous Method Invocations 267
Implied IDL 268
Calling Back to Reply Handlers 270

Chapter 13 Exceptions 277
Exception Code Mapping 278
User-Defined Exceptions 279
Handling Exceptions 281
Throwing Exceptions 287
Exception Safety 288
Throwing System Exceptions 291
v

Table of Contents
Chapter 14 Using Type Codes 293
Type Code Components 293
Type Code Operations 296
Type Code Constants 301

Chapter 15 Using the Any Data Type 303
Inserting Typed Values Into Any 304
Extracting Typed Values From Any 306
Inserting and Extracting Booleans, Octets, Chars and WChars 309
Inserting and Extracting Array Data 310
Inserting and Extracting String Data 311
Inserting and Extracting Alias Types 313
Querying a CORBA::Any’s Type Code 315
Using DynAny Objects 316

Chapter 16 Generating Interfaces at Runtime 339
Using the DII 340
Using the DSI 347

Chapter 17 Using the Interface Repository 351
Interface Repository Data 352
Containment in the Interface Repository 359
Repository Object Descriptions 365
Retrieving Repository Information 367
Sample Usage 370
Repository IDs and Formats 372
Controlling Repository IDs with Pragma Directives 373

Chapter 18 Naming Service 377
Overview 377
Defining Names 379
Obtaining the Initial Naming Context 382
Building a Naming Graph 383
Using Names to Access Objects 388
Listing Naming Context Bindings 391
Maintaining the Naming Service 395
Federating Naming Graphs 396
 vi

Table of Contents
Sample Code 402
Object Groups and Load Balancing 404
Load Balancing Example 410

Chapter 19 Persistent State Service 419
Defining Persistent Data 419
Accessing Storage Objects 432
PSDL Language Mappings 454

Chapter 20 Event Service 465
Event Service Basics 465
Programming Interface for Untyped Events 472
Programming with the Untyped Push Model 483
Compiling and Running an Event Service Application 490

Chapter 21 Portable Interceptors 493
Interceptor Components 493
Writing IOR Interceptors 502
Using RequestInfo Objects 504
Writing Client Interceptors 506
Writing Server Interceptors 518
Registering Portable Interceptors 529
Setting Up Orbix to Use Portable Interceptors 534

Appendix A Orbix IDL Compiler Options 537
Command Line Switches 537
Plug-in Switch Modifiers 539
IDL Configuration File 544

Appendix B IONA Foundation Classes Library 549
Installed IFC Directories 549
Selecting an IFC Library 550

Index 551
vii

Table of Contents
 viii

Preface
Orbix 2000 is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group. Orbix 2000 complies with the following specifications:

• CORBA 2.3
• GIOP 1.2 (default), 1.1, and 1.0

Read Chapter 1 for an overview of Orbix. Chapter 2 shows how you can use
code-generation genies to build a distributed application quickly and easily.
Chapter 3 describes in detail the basic steps in building client and server
programs. Subsequent chapters expand on those steps by focusing on topics
that are related to application development.

Orbix 2000 documentation is periodically updated. New versions between
releases are available at this site:

http://www.iona.com/docs/orbix2000.html

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
doc-feedback@iona.com.

Audience
The Orbix 2000 Programmer’s Guide is intended to help you become
familiar with Orbix 2000, and show how to develop distributed applications
using Orbix components. This guide assumes that you are familiar with
programming in C++.

This guide does not discuss every API in great detail, but gives a general
overview of the capabilities of the Orbix development kit and how various
components fit together.
ix

Chapter | Preface
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Fixed-width Fixed-width font in normal text represents portions of
code and literal names of items such as classes,
functions, variables, and data structures. For example,
text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent new terms.

italic Italicized fixed-width font in syntax and in text denotes
variables that you supply, such as arguments to
commands, or path names. For example:

% cd /users/your-name

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

> The notation > represents the DOS, Windows NT,
Windows95, or Windows98 command prompt.

... Ellipses in sample code and syntax descriptions indicate
that material has been eliminated to simplify a
discussion.

[] Italicized brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must choose an item
in format and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed
in { } (braces) in format and syntax descriptions.
 x

Introduction to Orbix 2000
With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in C++ and Java. Orbix
has an advanced modular architecture that lets you
configure and change functionality without modifying your
application code, and a rich deployment architecture that
lets you configure and manage a complex distributed
system.

Today’s enterprises need flexible, open information systems. Most enterprises
must cope with a wide range of technologies, operating systems, hardware
platforms, and programming languages. Each of these is good at some
important business task; all of them must work together for the business to
function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet’s
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

Orbix is a CORBA development platform for building high-performance
systems. Orbix’s modular architecture supports the most demanding
requirements for scalability, performance, and deployment flexibility. The
Orbix architecture is also language-independent and can be implemented in
Java and C++. Orbix applications can interoperate via the standard IIOP
protocol with applications built on any CORBA-compliant technology.

Why CORBA?
CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different
1

Chapter 1 | Introduction to Orbix 2000
parts. CORBA objects communicate directly across a network using standard
protocols, regardless of the programming languages used to create objects or
the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, and
COBOL, running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through OrbixCOMet, IONA’s dynamic bridge between CORBA and COM,
they can also interoperate with COM objects.

CORBA is widely available and offers an extensive infrastructure that
supports all the features required by distributed business objects. This
infrastructure includes important distributed services, such as transactions,
security, and messaging.

CORBA Objects

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as C++ or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions are
available to a client, without making any assumptions about an object’s
implementation.

With a few calls to an ORB’s application programming interface (API),
servers can make CORBA objects available to client programs in your
network.
 2

Why CORBA?
To call member functions on a CORBA object, a client programmer needs
only to refer to the object’s interface definition. Clients can call the member
functions of a CORBA object using the normal syntax of the chosen
programming language. The client does not need to know which
programming language implements the object, the object’s location on the
network, or the operating system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients that
access the object. You can also make existing objects available across a
network.

Object Request Broker

CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.

Figure 1: The nature of abstract CORBA objects

A server implements
a CORBA object

IDL interface definitions
specify CORBA objects

Clients access
CORBA
objects via
object
3

Chapter 1 | Introduction to Orbix 2000
An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on other
server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

CORBA Application Basics
You start developing a CORBA application by defining interfaces to objects in
your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler generates C++ or Java code from IDL definitions.
This code includes client stub code with which you develop client programs,
and object skeleton code, which you use to implement CORBA objects.

Figure 2: The object request broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Server
 4

Servers and the Portable Object Adapter
When a client calls a member function on a CORBA object, the call is
transferred through the client stub code to the ORB. Because the
implemented object is not located in the client’s address space, CORBA
objects are represented in client code by proxy objects.

A client invokes on object references that it obtains from the server process.
The ORB then passes the function call through the object skeleton code to
the target object.

Servers and the Portable Object Adapter
Server processes act as containers for one or more portable object adapters. A
portable object adapter, or POA, maps abstract CORBA objects to their actual
implementations, or servants, as shown in Figure 4. Because the POA
assumes responsibility for mapping servants to abstract CORBA objects, the
way that you define or change an object’s implementation is transparent to
the rest of the application. By abstracting an object’s identity from its
implementation, a POA enables a server to be portable among different
implementations.

Figure 3: Invoking on a CORBA object

Object

Function
Call

Object Request Broker

Client H ost Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

Server
5

Chapter 1 | Introduction to Orbix 2000
Depending on the policies that you set on a POA, object-servant mappings
can be static or dynamic. POA policies also determine whether object
references are persistent or transient, and the threading model that it uses. In
all cases, the policies that a POA uses to manage its objects are invisible to
clients.

A server can have one or more nested POAs. Because each POA has its own
set of policies, you can group objects logically or functionally among multiple
POAs, where each POA is defined in a way that best accommodates the
needs of the objects that it processes.

Orbix Plug-In Design
Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB
based on runtime configuration settings.

Figure 4: The portable object adapter

Client Host Server Host

Portable object
adapter

Client
stub code

Server
skeleton

Client

object request broker

Servant
 6

Orbix Plug-In Design
Plug-Ins

A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains objects
that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured into
the application rather than compiled in, you can change your choices as your
needs change without rewriting or recompiling applications.

For example, an application that uses the standard IIOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. No one transport is inherent to the ORB core; you simply
load the transport set that suits your application best. This architecture
makes it easy for IONA to support additional transports in the future such as
multicast or special purpose network protocols.

ORB Core

The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local C++ or Java object within the process. In fact it might be a local
object, or a remote object reached by some network protocol. It is the ORB’s
job to get application requests to the right objects no matter where they live.

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed
by the application. For remote objects, the ORB intercepts local function calls
and turns them into CORBA requests that can be dispatched to a remote
object.

In order to send a request on its way, the ORB core sets up a chain of
interceptors to handle requests for each object. The ORB core neither knows
nor cares what these interceptors do, it simply passes the request along the
interceptor chain. The chain might be a single interceptor which sends the
request with the standard IIOP protocol, or a collection of interceptors that
add transaction information, encrypt the message and send it on a secure
7

Chapter 1 | Introduction to Orbix 2000
protocol such as SSL. All of this is transparent to the application, so you can
change the protocol or services used by your application simply by
configuring a different set of interceptors.

Development Tools
The Orbix 2000 developer’s kit contains a number of facilities and features
that help you and your development team be more productive.

Code Generation Toolkit

IONA provides a code generation toolkit that simplifies and streamlines the
development effort. You only need to define your IDL interfaces; out-of-the
box scripts generate a complete client/server application automatically from
an IDL file.

The toolkit also can be useful for debugging: you can use an auto-generated
server to debug your client, and vice versa. Advanced users can write code
generation scripts to automate repetitive coding in a large application.

For more information about the code generation toolkit, refer to the Orbix
2000 Code Generation Guide.

Multi-threading Support

Orbix provides excellent support for multi-threaded applications. Orbix
libraries are multi-threaded and thread-safe. Orbix servers use standard POA
policies to enable multi-threading. The ORB creates a thread pool that
automatically grows or shrinks depending on demand load. Thread pool size,
growth and request queuing can be controlled by configuration settings
without any coding.

Of course, multi-threaded applications must themselves be thread-safe. This
usually means they need to use thread-synchronization objects such as
mutexes or semaphores. Although most platforms provide similar thread
synchronization facilities, the interfaces vary widely. Orbix includes an
object-oriented thread synchronization portability library which allows you to
write portable multi-threaded code.
 8

Orbix Application Deployment
Configuration and Logging Interfaces

Applications can store their own configuration information in Orbix
configuration domains, taking advantage of the infrastructure for ORB
configuration. CORBA interfaces provide access to configuration information
in application code.

Applications can also take advantage of the Orbix logging subsystem, again
using CORBA interfaces to log diagnostic messages. These messages are
logged to log-stream objects that are registered with the ORB. Log streams
for local output, file logging and system logging (Unix syslogd or Windows
Event Service) are provided with Orbix. You can also implement your own log
streams, which capture ORB and application diagnostics and send them to
any destination you desire.

Portable Interceptors

Portable interceptors allow an application to intervene in request handling.
They can be used to log per-request information, or to add extra “hidden”
data to requests in the form of GIOP service contexts for example,
transaction information or security credentials.

Orbix Application Deployment
Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain provides
the central control of configuration for an entire distributed application.

Orbix offers a rich deployment environment that lets you structure and control
enterprise-wide distributed applications. Orbix provides central control of all
applications within a common domain.
9

Chapter 1 | Introduction to Orbix 2000
Location Domains

A location domain is a collection of servers under the control of a single
locator daemon. The locator daemon can manage servers on any number of
hosts across a network. The locator daemon automatically activates remote
servers through a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is a
database of available servers. The implementation repository keeps track of
the servers available in a system and the hosts they run on. It also provides a
central forwarding point for client requests. By combining these two
functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests to
the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

Configuration Domains

A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains.

Orbix supports two mechanisms to administer a configuration domain:

• During development, or for small-scale deployment, configuration can be
stored in an ASCII text file, which is edited directly.

• For larger deployments, Orbix provides a distributed configuration server
that enables centralized configuration for all applications spread across a
network.

The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.
 10

CORBA Features and Services
CORBA Features and Services
Orbix fully supports the latest CORBA specification, and in some cases
anticipates features to be included in upcoming specifications.

Full CORBA 2.3 Support and Interoperability

All CORBA 2.3 IDL data types are fully supported, including:

• Extended precision numeric types for 64 bit integer and extended
floating point calculations.

• Fixed point decimals for financial calculations.
• International character sets, including support for code-set negotiation

where multiple character sets are available.
• Objects by value: you can define objects that are passed by value as well

as the traditional pass-by-reference semantics of normal CORBA objects.
This is particularly relevant in Java based systems, but also supported
for C++ using object factories.

Orbix supports the most recent 1.2 revision of the CORBA standard General
Inter-ORB Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP), and also
supports previous 1.1 and 1.0 revisions for backwards compatibility with
applications based on other ORBs. Orbix is interoperable with any
CORBA-compliant application that uses the standard IIOP protocol.

Asynchronous Messaging and Quality of Service

Orbix implements two key parts of the CORBA messaging specification that
are included in CORBA 3.0.

• Asynchronous messaging interfaces allow easy, type-safe asynchronous
calls to normal CORBA operations. This means that clients can make a
request on a remote service, and then carry on with other work until the
reply is ready.

• ORB quality-of-service policies provide finer standardized control over
how the ORB processes requests. For example, you can specify how
quickly a client resumes processing after sending one-way requests.
11

Chapter 1 | Introduction to Orbix 2000
Interoperable Naming Service and Load Balancing Extensions

Orbix supports the interoperable naming service specification. This is a
superset of the original CORBA naming service which adds some ease-of-use
features and provides a standard URL format for CORBA object references to
simplify configuration and administration of CORBA services.

The Orbix naming service also supports IONA-specific load-balancing
extensions of OrbixNames 3. A group of objects can be registered against a
single name; the naming service hands out references to clients so that the
client load is spread across the group.

Object Transaction Service

Orbix includes the object transaction service (OTS) which is optimized for the
common case where only a single resource (database) is involved in a
transaction. Applications built against the single resource OTS can easily be
reconfigured to use a full-blown OTS when it is available, since the interfaces
are identical. With Orbix plug-in architecture, applications will not even need
to be recompiled. For the many applications where transactions do not span
multiple databases, the single-resource OTS will continue to be a highly
efficient solution, compared to a full OTS that performs extensive logging to
guarantee transaction integrity.

Event Service

Orbix 2000 supports the CORBA event service specification, which defines a
model for indirect communications between ORB applications. A client does
not directly invoke an operation on an object in a server. Instead, the client
sends an event that can be received by any number of objects. The sender of
an event is called a supplier; the receivers are called consumers. An
intermediary event channel takes care of forwarding events from suppliers to
consumers.

Orbix supports both the push and pull model of event transfer, as defined in
the CORBA event specification. Orbix performs event transfer using the
untyped format, whereby events are based on a standard operation call that
takes a generic parameter of type any.
 12

CORBA Features and Services
SSL/TLS

Orbix 2000 SSL/TLS provides data security for applications that
communicate across networks by ensuring authentication, privacy, and
integrity features for communications across TCP/IP connections.

TLS is a transport layer security protocol layered between application
protocols and TCP/IP, and can be used for communication by all Orbix 2000
SSL/TLS components and applications.

COMet

OrbixCOMet 2000 provides a high performance dynamic bridge that enables
transparent communication between COM/Automation clients and CORBA
servers.

OrbixCOMet 2000 is designed to give COM programmers—who use tools
such as Visual C++, Visual Basic, PowerBuilder, Delphi, or Active Server
Pages on the Windows desktop—easy access to CORBA applications running
on Windows, UNIX, or OS/390 environments. COM programmers can use the
tools familiar to them to build heterogeneous systems that use both COM and
CORBA components within a COM environment.

Persistent State Service

Orbix includes the first implementation of the persistent state service (PSS).
PSS interposes a CORBA-based abstraction layer between a server and its
persistent storage. Orbix’s implementation of PSS is based on Berkeley DB,
an efficient embedded database that is included with Orbix. By adding new
PSS driver plug-ins, applications that use PSS can be reconfigured to store
their data in any database without code changes or recompilation.

Dynamic Type Support: Interface Repository and DynAny

Orbix has full support for handling data values that are not known at compile
time. The interface repository stores information about all CORBA types
known to the system and can be queried at runtime. Clients can construct
requests based on runtime type information using the dynamic invocation
13

Chapter 1 | Introduction to Orbix 2000
interface (DII), and servers can implement “universal” objects that can
implement any interface at run time with the dynamic skeleton interface
(DSI).

Although all of these features have been available since early releases of the
CORBA specification, they are incomplete without the addition of the DynAny
interface. This interface allows clients and servers to interpret or construct
values based purely on runtime information, without any compiled-in data
types.

These features are ideal for building generic object browsers, type
repositories, or protocol gateways that map CORBA requests into another
object protocol.
 14

Getting Started with
Orbix 2000
You can use the Orbix Code Generation Toolkit to develop
an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the client
and server application code, including makefiles. You then complete the
distributed application by filling in the missing business logic.

Prerequisites
Before proceeding with the demonstration in this chapter you need to ensure:

• The Orbix developer’s kit is installed on your host.
• Orbix is configured to run on your host platform.

The Orbix 2000 Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Setting the Orbix Environment
The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. Consult the Orbix
2000 Installation Guide, and the Orbix 2000 Administrator’s Guide for
further details on configuring Orbix.

To set the Orbix environment associated with the DomainName domain,
enter:

Windows

> OrbixInstallDir\bin\DomainName_env.bat
15

Chapter 2 | Getting Started with Orbix 2000
UNIX

% . OrbixInstallDir/bin/DomainName_env.sh

OrbixInstallDir is the root directory where Orbix is installed and
DomainName is the name of an Orbix configuration domain
(usually Orbix2000).

Hello World Example
This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the Orbix Code Generation Toolkit. The
architecture of this example system is shown in Figure 5.

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a client
invokes a remote operation, a request message is sent from the client to the
server. When the operation returns, a reply message containing its return
values is sent back to the client. This completes a single remote CORBA
invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

//IDL
interface Hello {

string getGreeting();
};

Figure 5: Client makes a single operation call on a server

Client Machine

Client Application

IDL Interface

Server Application

Server Machine

ORB ORB

Code Code

Operation Call

Result

CORBA
Object
 16

Development Using the Client/Server Wizard
The IDL declares a single Hello interface, which exposes a single operation
getGreeting(). This declaration provides a language neutral interface to
CORBA objects of type Hello.

The concrete implementation of the Hello CORBA object is written in C++
and is provided by the server application. The server could create multiple
instances of Hello objects if required. However, the generated code
generates only one Hello object.

The client application has to locate the Hello object—it does this by reading
a stringified object reference from the file Hello.ref. There is one operation
getGreeting() defined on the Hello interface. The client invokes this
operation and exits.

Development Using the Client/Server Wizard
On the Windows NT platform, Orbix provides a wizard add-on to the
Microsoft Visual Studio integrated development environment (IDE) that
enables you to generate starting point code for Orbix applications.

If you are not working on a Windows platform or if you prefer to use a
command line approach to development, see “Development from the
Command Line” on page 28.

Ordinarily, the client/server wizard is installed at the same time as Orbix. If
the wizard is not on your system, however, consult the Orbix Install Guide for
instructions on how to install it.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate the server.

3. Complete and build the server program.

Implement the single IDL getGreeting() operation.

4. Generate the client.

5. Complete and build the client program.

Insert a line of code to invoke the getGreeting() operation.
17

Chapter 2 | Getting Started with Orbix 2000
6. Run the demonstration.

Step 1—Define the IDL Interface

Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

> mkdir C:\OCGT\HelloExample

Create an IDL file C:\OCGT\HelloExample\hello.idl using a text editor.

Enter the following text into the hello.idl file:

//IDL
interface Hello {

string getGreeting();
};

This interface mediates the interaction between the client and the server
halves of the distributed application.

Step 2—Generate the Server

Generate files for the server application using the Orbix Code Generation
Toolkit.

To create a server project using the IONA Orbix 2000 client/server wizard:

1. Open the Microsoft Visual C++ 6.0 integrated development
environment (IDE).

2. Select File→New from the Visual C++ menus. A New dialog box
appears, as shown in Figure 6. Click on the Projects tab.

3. Under the New→Projects tab, select the IONA Orbix 2000 Client/
Server Wizard. In the Project name text box enter server, and under
the Location text box enter C:\OCGT\HelloExample\server.
 18

Development Using the Client/Server Wizard
4. When you have finished filling in the text boxes, click OK to continue.

5. The client/server wizard appears on your screen, as shown in Figure 7.
In answer to the question What CORBA IDL file would you like to use
for this project? enter the location of hello.idl in the text box or use
the Browse button.

6. In answer to the question Would you like to generate a working client or
server? click on the Server radiobutton.

7. Click Next to advance to the next screen.

8. The second screen of the server wizard is shown in Figure 8. You can
accept the default settings on this screen. Click Finish to proceed with
generating the server project

.

Figure 6: Starting up the IONA Orbix 2000 client/server wizard
19

Chapter 2 | Getting Started with Orbix 2000
9. A scrollbox entitled New Project Information appears that informs you
about the files that were generated. Select OK to continue after you have
browsed the information.

10. The server workspace has now been generated. Figure 9 shows a list of
the source files that have been generated for the server project.

11. Double-click on the ReadmeOrbix2000Server.txt file and read the notes
contained in it.

Step 3—Complete and Build the Server Program

Complete the implementation class, HelloImpl, by providing the definition of
the getGreeting() function. This C++ function provides the concrete
realization of the IDL Hello::getGreeting() operation.

Figure 7: Step 1 of the wizard for generating an Orbix server
 20

Development Using the Client/Server Wizard
Figure 8: Step 2 of the wizard for generating an Orbix server

Figure 9: Workspace for the generated server project
21

Chapter 2 | Getting Started with Orbix 2000
Edit HelloImpl.cxx
Delete the generated boilerplate code that occupies the body of the
HelloImpl::getGreeting() function and replace it with the line of code
highlighted in bold font below:

//C++
...
char*
HelloImpl::getGreeting()
{

char* _result;

_result = CORBA::string_dup("Hello World!");

return _result;
}
...

The function CORBA::string_dup() allocates a copy of the string on the free
store. This is needed to be consistent with the style of memory management
used in CORBA programming.

Build the Server
From within the Visual C++ IDE select Build→Build server.exe to compile
and link the server.

By default, the project builds with debug settings and the server executable is
stored in C:\OCGT\HelloExample\server\Debug\server.exe.

Close the server workspace by selecting File→Close Workspace.

Step 4—Generate the Client

Generate files for the client application using the Orbix Code Generation
Toolkit.

Windows
To create a client project using the IONA Orbix 2000 client/server wizard:

1. Open the Microsoft Visual C++ 6.0 IDE.
 22

Development Using the Client/Server Wizard
2. Select File→New from the Visual C++ menus. A New dialog box
appears, as shown in Figure 10.

3. Under the New→Projects tab, select the IONA Orbix 2000 Client/
Server Wizard. In the Project name text box enter client, and under
the Location text box enter C:\OCGT\HelloExample\client.

4. When you have finished filling in the text boxes, click OK to continue.

5. The client/server wizard appears on your screen, as shown in Figure 11.
In answer to the question What CORBA IDL file would you like to use
for this project? enter the location of hello.idl in the text box or use
the Browse button.

6. In answer to the question Would you like to generate a working client or
server? click on the Client radiobutton.

7. Click Finish to proceed with generating the client project.

Figure 10: Starting up the IONA Orbix 2000 client/server wizard
23

Chapter 2 | Getting Started with Orbix 2000
8. A scrollbox entitled New Project Information appears, informing you
about the files that were generated. Click OK to continue after you have
browsed the information.

9. The client workspace has now been generated. Figure 12 shows a list of
the source files that have been generated for the client project.

10. Double-click on the file ReadmeOrbix2000Client.txt and read the
contents of the file.

Step 5—Complete and Build the Client Program

Complete the implementation of the client main() function in the client.cxx
file. You must add a couple of lines of code to make a remote invocation of
the operation getGreeting() on the Hello object.

Figure 11: Step 1 of the wizard for generating an Orbix client
 24

Development Using the Client/Server Wizard
Edit client.cxx
Search for the line where the call_Hello_getGreeting() function is called.
Delete this line and replace it with the two lines of code highlighted in bold
font below:

//C++
//File: ‘client.cxx’
...

if (CORBA::is_nil(Hello1))
{

cerr << "Could not narrow reference to interface "
<< "Hello" << endl;

}
else
{

CORBA::String_var strV = Hello1->getGreeting();
cout << "Greeting is: " << strV << endl;

}
...

The object reference Hello1 refers to an instance of a Hello object in the
server application. It is already initialized for you.

Figure 12: Workspace for the generated client project
25

Chapter 2 | Getting Started with Orbix 2000
A remote invocation is made by invoking getGreeting() on the Hello1
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the HelloImpl::
getGreeting() function in the server application.

The returned string is put into a C++ object, strV, of the type CORBA::

String_var. The destructor of this object will delete the returned string so
that there is no memory leak in the above code.

Build the Client
From within the Visual C++ IDE select Build→Build client.exe to compile
and link the client.

By default, the project will build with debug settings and the client
executable will be stored in C:
\OCGT\HelloExample\client\Debug\client.exe.

Close the client workspace by selecting File→Close Workspace.

Step 6—Run the Demonstration

Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new MS-DOS prompt.
> start_DomainName_services.bat

Where DomainName is the name of the default configuration domain
(usually orbix2000).

2. Run the server program.

Open a new MS-DOS prompt.
> cd C:\OCGT\HelloExample\server\Debug
> server.exe

The server outputs the following lines to the screen:
Initializing the ORB
 26

Development Using the Client/Server Wizard
Writing stringified object reference to Hello.ref
Waiting for requests...

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to the
file C:\temp\Hello.ref.

♦ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

3. Run the client program.

Open a new MS-DOS prompt.
> cd C:\OCGT\HelloExample\client\Debug
> client.exe

The client outputs the following lines to the screen:
Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from the
C:\temp\Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking on
the object reference. This causes a connection to be established
with the server and the remote invocation to be performed.

4. When you are finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is
running.

5. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:
stop_DomainName_services

Where DomainName is the name of the default configuration domain
(usually orbix2000).
27

Chapter 2 | Getting Started with Orbix 2000
Development from the Command Line
Starting point code for Orbix client and server applications can also be
generated using the idlgen command line utility, which offers equivalent
functionality to the client/server wizard presented in the previous section.

The idlgen utility can be used on Windows and UNIX platforms.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate starting point code.

3. Complete the server program.

Implement the single IDL getGreeting() operation.

4. Complete the client program.

Insert a line of code to invoke the getGreeting() operation.

5. Build and run the demonstration.

Step 1—Define the IDL Interface

Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Windows

> mkdir C:\OCGT\HelloExample

UNIX

% mkdir -p OCGT/HelloExample

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or OCGT/
HelloExample/hello.idl (UNIX) using a text editor.

Enter the following text into the file hello.idl:

//IDL
interface Hello {

string getGreeting();
 28

Development from the Command Line
};

This interface mediates the interaction between the client and the server
halves of the distributed application.

Step 2—Generate Starting Point Code.

Generate files for the server and client application using the Orbix Code
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample
(UNIX) enter the following command:

idlgen cpp_poa_genie.tcl -all hello.idl

This command logs the following output to the screen while it is generating
the files:

hello.idl:
cpp_poa_genie.tcl: creating it_servant_base_overrides.h
cpp_poa_genie.tcl: creating it_servant_base_overrides.cxx
cpp_poa_genie.tcl: creating HelloImpl.h
cpp_poa_genie.tcl: creating HelloImpl.cxx
cpp_poa_genie.tcl: creating server.cxx
cpp_poa_genie.tcl: creating client.cxx
cpp_poa_genie.tcl: creating call_funcs.h
cpp_poa_genie.tcl: creating call_funcs.cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs.cxx
cpp_poa_genie.tcl: creating it_random_funcs.h
cpp_poa_genie.tcl: creating it_random_funcs.cxx
cpp_poa_genie.tcl: creating Makefile

The files you can edit to customize the client and server applications are:

Table 1: Main C++ source files for the Hello World! application

Client Files Server Files

client.cxx server.cxx
HelloImpl.h
HelloImpl.cxx
29

Chapter 2 | Getting Started with Orbix 2000
Step 3—Complete the Server Program

Complete the implementation class, HelloImpl, by providing the definition of
the HelloImpl::getGreeting() member function . This C++ function
provides the concrete realization of the Hello::getGreeting() IDL
operation.

Edit the HelloImpl.cxx file, and delete most of the generated boilerplate
code occupying the body of the HelloImpl::getGreeting() function.
Replace it with the line of code highlighted in bold font below:

//C++
//File ’HelloImpl.cxx’
...
char *
HelloImpl::getGreeting() throw(

CORBA::SystemException
)
{

char * _result;

_result = CORBA::string_dup("Hello World!");

return _result;
}
...

The function CORBA::string_dup() allocates a copy of the "Hello World!"
string on the free store. It would be an error to return a string literal directly
from the CORBA operation because the ORB automatically deletes the return
value after the function has completed. It would also be an error to create a
copy of the string using the C++ new operator.

Step 4—Complete the Client Program

Complete the implementation of the client main() function in the client.cxx
file. You must add a couple of lines of code to make a remote invocation of
the getGreeting() operation on the Hello object.

Edit the client.cxx file and search for the line where the
call_Hello_getGreeting() function is called. Delete this line and replace it
with the two lines of code highlighted in bold font below:
 30

Development from the Command Line
//C++
//File: ‘client.cxx’
...

if (CORBA::is_nil(Hello1))
{

cerr << "Could not narrow reference to interface "
<< "Hello" << endl;

}
else
{

CORBA::String_var strV = Hello1->getGreeting();
cout << "Greeting is: " << strV << endl;

}
...

The object reference Hello1 refers to an instance of a Hello object in the
server application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the Hello1
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the HelloImpl::
getGreeting() function in the server application.

The returned string is put into a C++ object, strV, of the type CORBA::
String_var. The destructor of this object will delete the returned string so
that there is no memory leak in the above code.

Step 5—Build and Run the Demonstration

The Makefile generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server:

Windows

At a command-line prompt, from the C:\OCGT\HelloExample directory enter:

> nmake

UNIX

At a command-line prompt, from the OCGT/HelloExample directory enter:
31

Chapter 2 | Getting Started with Orbix 2000
% make -e

Run the Demonstration
Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter:
start_DomainName_services

Where DomainName is the name of the default configuration domain
(usually orbix2000).

2. Run the server program.

Open a new MS-DOS prompt, or xterm window (UNIX). From the C:
\OCGT\HelloExample directory enter the name of the executable file—
server.exe (Windows) or server (UNIX).The server outputs the
following lines to the screen:

Initializing the ORB
Writing stringified object reference to Hello.ref
Waiting for requests...

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to the
local Hello.ref file.

♦ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

3. Run the client program.

Open a new MS-DOS prompt, or xterm window (UNIX). From the C:

\OCGT\HelloExample directory enter the name of the executable file—
client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:
 32

Development from the Command Line
Client using random seed 0
Reading stringified object reference from Hello.ref
Greeting is: Hello World!

The client performs the following steps when it is run:

♦ It reads the stringified object reference for the Hello object from the
Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking on
the object reference. This causes a connection to be established
with the server and the remote invocation to be performed.

4. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is running.

5. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:
stop_DomainName_services

Where DomainName is the name of the default configuration domain
(usually orbix2000).

The passing of the object reference from the server to the client in this way is
suitable only for simple demonstrations. Realistic server applications use the
CORBA naming service to export their object references instead (see
Chapter 18).
33

Chapter 2 | Getting Started with Orbix 2000
 34

First Application
This chapter uses sample code to show how to develop an
enterprise application with Orbix.

Orbix enterprise applications consist of CORBA objects with clearly defined
interfaces that can be accessed across a network.

This chapter uses a simple application to describe the basic programming
steps required to define CORBA objects, write server programs that
implement those objects, and write client programs that access them. The
programming steps are the same whether the client and server run on a
single host or are distributed across a network.

The application described here performs these tasks:

• A server program creates a single object that represents a building such
as a warehouse.

• A client program uses the object’s interface to get the building’s address,
check its availability, and reserve it for specific dates.

To recreate this program, you must have installed and configured Orbix for
your particular platform.

This chapter covers the following topics:

• Overview of the development process.
• Development steps.
• Learning more about the server.

Overview of the Development Process
The Orbix Code Generation Toolkit can ease the process of application
development for Orbix programmers, but its use is not compulsory. This
section outlines the responsibilities of client developers and server developers
in cases where the code generation toolkit is not used and in cases where it is
used.
35

Chapter 3 | First Application
Development Without Using Code Generation

The first step in the development process is to define a set of interfaces
written in the OMG interface definition language (IDL). The IDL file forms the
basis of development for both the client and the server.

The development process on the client side is illustrated on the left of
Figure 13. The steps are:

• An IDL compiler takes the IDL file as input and generates client stub
code.

The client stub code is a set of files that enable clients to make remote
invocations on the interfaces defined in the IDL file.

• The client developer writes the rest of the client application from
scratch.

Figure 13: Development overview without using code generation
 36

Overview of the Development Process
• The client developer builds the application.

Typically, the developer has to write a customized makefile to build the
client program.

The development process on the server side is illustrated on the right of
Figure 13. The steps are:

• An IDL compiler takes the IDL file as input and generates server skeleton
code.

The server skeleton code is a set of files that enables the server to service
requests on the interfaces in the IDL file.

• The server developer writes the rest of the server application from
scratch.

An implementation class must be written by the server developer for
each interface appearing in the IDL file.

• The server developer builds the application.

Typically, the developer has to write a customized makefile to build the
server program.
37

Chapter 3 | First Application
Development Using Code Generation

Using the code generation toolkit, a large proportion of the code required for
the client and server programs is generated automatically. The toolkit takes
the IDL file as input and, based on the declarations in the IDL file, generates
a complete, working Orbix application.

Developers can then modify the generated code to add business logic to the
application.

Figure 14: Development overview using code generation
 38

Overview of the Development Process
The development process on the client side, using code generation, is
illustrated on the left of Figure 14. The steps are:

1. An IDL compiler takes the IDL file as input and generates client stub
code.

2. The code generation toolkit takes the IDL file as input and generates a
complete client application.

The generated client is a dummy implementation that invokes every
operation on each interface in the IDL file exactly once. The dummy
client is a working application that can be built and run right away.

3. The client developer can modify the dummy client to complete the
application.

The client developer does not have to write boilerplate CORBA code.

4. The client developer builds the application.

A makefile is generated by the code generation toolkit.

The development process on the server side, using code generation, is
illustrated on the right of Figure 14. The steps are:

1. An IDL compiler takes the IDL file as input and generates server skeleton
code.

2. The code generation toolkit takes the IDL file as input and generates a
complete server application.

Dummy implementation classes are generated for each interface
appearing in the IDL file. The dummy server is a working application
that can be built and run right away.

3. The server developer can modify the dummy server to complete the
application logic.

The server developer does not have to write boilerplate CORBA code.

The implementations of IDL interfaces can be modified by adding
business logic to the class definitions.

4. The server developer builds the application.

A makefile is generated by the code generation toolkit.
39

Chapter 3 | First Application
Locating CORBA Objects

Before developing an Orbix application, you must choose a strategy for
locating CORBA objects.

To find a CORBA object, a client needs to know both the identity of the object
and the location of the server process that provides a home for that object. In
general, CORBA encapsulates both the identity and location of a CORBA
object inside an entity known as an object reference.

In this chapter, a simple strategy is adopted to pass the object reference from
the server to the client. The strategy, illustrated in Figure 15, has three steps:

1. The server converts the object reference into a string (stringified object
reference) and writes this stringified object reference to a file.

2. The client reads the stringified object reference from the file and converts
it to a real object reference.

3. The client can now make remote invocations by invoking on the object
reference.

Figure 15: Simple strategy for passing object references to clients
 40

Development Steps
This approach is convenient for simple demonstrations but is not
recommended for use in realistic applications. The CORBA naming service,
described in Chapter 18 on page 377, provides a more sophisticated and
scalable approach to distributing object references.

Development Steps
To develop an Orbix application:

1. Define the IDL interfaces.

Identify the objects required by the application and define their public
interfaces in IDL.

2. Generate starting point code.

Use the code generation toolkit to generate starting point code for the
application. You can then edit the generated files to add business logic.

3. Compile the IDL definitions.

The compiler generates the C++ header and source files that you need
to implement client and server programs.

4. Develop the server program.

The server acts as a container for a variety of CORBA objects, each of
which supports one IDL interface. The server developer must add code
to provide the business logic for each type of CORBA object.

The server makes its CORBA objects available to clients by exporting
object references to a well-known location.

5. Develop the client program.

The client uses the IDL compiler-generated mappings to invoke
operations on the object references that it obtains from the server.

6. Build and run the application.
41

Chapter 3 | First Application
Step 1—Define the IDL Interfaces
Begin developing an Orbix enterprise application by defining the IDL
interfaces to the application’s objects. These interfaces implement CORBA
distributed objects on a server application. They also define how clients
access objects regardless of the object’s location on the network.

An interface definition contains operations and attributes:

• Operations correspond to methods that clients can call on an object.
• Attributes give you access to a single data value.

Each attribute corresponds either to a single accessor method (readonly
attribute) or an accessor method and a modifier method (plain attribute).

For example, the following IDL code defines an interface for an object that
represents a building. This building object could be the beginning of a
facilities management application such as a warehouse allocation system:

//IDL
//File: ’building.idl’
interface Building {

1 readonly attribute string address;

2 boolean available(in long date);
boolean reserveDate(in long date, out long confirmation);

};

The code can be explained as follows:

1. The address attribute is preceded by the IDL keyword readonly, so
clients can read but can not set its value.

2. The Building interface contains two operations: available() and
reserveDate(). Operation parameters can be labeled in, out, or inout:

♦ in parameters are passed from the client to the object.

♦ out parameters are passed from the object to the client.

♦ inout parameters are passed in both directions.

available() lets a client test whether the building is available on a
given date. This operation returns a boolean (true/false) value.

reserveDate() takes the date as input, returns a confirmation number
as an out parameter, and has a boolean (true/false) return value.
 42

Step 2—Generate Starting Point Code
All attributes and operations in an IDL interface are implicitly public. IDL
interfaces have no concept of private or protected members.

Step 2—Generate Starting Point Code
The recommended way to begin a CORBA application is to use the code
generation toolkit to generate starting point code. The toolkit contains two
key components:

• The idlgen interpreter.

This is an executable file that processes IDL files based on the
instructions contained in predefined code generation scripts.

• A set of code generation scripts, or genies.

A number of genies are supplied with the toolkit. Most important of
these is the cpp_poa_genie.tcl genie that is used to generate starting
point code for a C++ application.

Taking the building.idl IDL file as input, the cpp_poa_genie.tcl genie can
produce complete source code for a distributed application that includes a
client and a server program.

To generate starting point code, execute the following command:

idlgen cpp_poa_genie.tcl -all building.idl

This command generates all of the files you need for this application. The
-all flag selects a default set of genie options that are appropriate for simple
demonstration applications.

The main client file generated by the cpp_poa_genie.tcl genie is:

The main server files generated by the cpp_poa_genie.tcl genie are:

client.cxx Implementation of the client.

server.cxx Server main() containing the server
initialization code.

BuildingImpl.h Header file that declares the BuildingImpl
servant class.
43

Chapter 3 | First Application
A makefile is generated for building the application:

The following files are also generated and support a dummy implementation
of the client and server programs:

call_funcs.h
call_funcs.cxx
it_print_funcs.h
it_print_funcs.cxx
it_random_funcs.h
it_random_funcs.cxx

Dummy Implementation of Client and Server Programs

The generated starting point code provides a complete dummy
implementation of the client and the server programs. The dummy
implementation provides:

• A server program that implements every IDL interface.

Every IDL operation is implemented with default code that prints the in
and inout parameters to the screen when it is invoked. Return values,
inout and out parameters are populated with randomly generated
values. At random intervals a CORBA user exception might be thrown
instead.

• A client program that calls every operation on every IDL interface once.

The dummy client and server programs can be built and run as they are.

BuildingImpl.cxx Implementation of the BuildingImpl
servant class.

it_servant_base_overrides.h Header file that declares a base class for all
servant classes. See page 239.

it_servant_base_overrides.cx
x

Implementation of the base class for all
servant classes. See page 239.

Makefile The generated makefile defines rules to
build both the client and the server.
 44

Step 3—Compile the IDL Definitions
Modifying Dummy Client and Server Programs

Later steps describe in detail how to modify the generated code to implement
the business logic of the Building application.

In the code listings that follow, modifications are indicated as follows:

• Additions to the generated code are highlighted in bold font. You can
manually add this code to the generated files using a text editor.

• In some cases the highlighted additions replace existing generated code,
requiring you to manually delete the old code.

Step 3—Compile the IDL Definitions

Note: This step is optional when developing an application using the code
generation toolkit. The Makefile generated by the toolkit has a rule to run the
IDL compiler automatically.

After defining your IDL, compile it using the Orbix IDL compiler. The IDL
compiler checks the validity of the specification and generates code in C++
that you use to write the client and server programs.

Compile the Building interface by running the IDL compiler as follows:

idl -base -poa building.idl

The -base option generates client stub and header code in C++. The -poa
option generates server-side code for the portable object adapter (POA).

Run the IDL compiler with the -flags option to get a complete description of
the supported options.

Output from IDL Compilation

The IDL compiler produces several C++ files when it compiles the
building.idl file. These files contain C++ definitions that correspond to
your IDL definitions. You should never modify this code.

The generated files can be divided into two categories:
45

Chapter 3 | First Application
• Client stub code.

This code is compiled and linked with client programs to enable them to
make remote invocations on Building CORBA objects.

• Server skeleton code.
This code is compiled and linked with server programs to enable

them to service invocations on Building CORBA objects.

Client Stub Code
The stub code is used by clients and consists of the following files:

Any clients that want to invoke on CORBA objects that support the Building
interface must include the header file building.hh and link with the stub
code buildingC.cxx.

Server Skeleton Code
The skeleton code is used by servers and consists of the following files:

building.hh A header file containing definitions that correspond to
the various IDL type definitions. Client source code
must include this file using a #include preprocessor
directive.

buildingC.cxx A file containing code that enables remote access to
Building objects. This file must be compiled and
linked with the client executable.

buildingS.hh A header file containing type definitions for implement-
ing servant classes. Server source code must include
this file using a #include preprocessor directive.

buildingS.cxx A file containing skeleton code that enables servers to
accept calls to Building objects. This file must be
compiled and linked with the server executable.

building.hh A header file common to client stub code and server
skeleton code. This file is included by buildingS.hh,
so server files do not need to explicitly include it.
 46

Step 3—Compile the IDL Definitions
The skeleton code is a superset of the stub code. The additional files contain
code that allows you to implement servants for the Building interface.

Server files include the buildingS.hh header file, which recursively includes
the file building.hh. The server must be linked with both buildingC.cxx
and buildingS.cxx.

IDL to C++ Mapping

The IDL compiler translates IDL into stub and skeleton code for a given
language—in this case, C++. As long as the client and server programs
comply with the definitions in the generated header files, building.hh and
buildingS.hh, the runtime ORB enables type-safe interaction between the
client and the server.

Both the client and the server source files include the generated header file
building.hh, which contains the C++ mappings for the Building interface
(see “Step 1—Define the IDL Interfaces” on page 42):

//C++
1 class Building : public virtual CORBA::Object

{
public:
...

2 virtual char* address() = 0;
...

3 virtual CORBA::Boolean available(CORBA::Long date) = 0;

4 virtual CORBA::Boolean reserveDate(
CORBA::Long date,
CORBA::Long_out confirmation

) = 0;
...

};

The code can be explained as follows:

buildingC.cxx Source file common to client stub code and server skel-
eton code. This file must be compiled and linked with
the server executable.
47

Chapter 3 | First Application
1. The Building class defines proxy objects for the Building interface.
This class includes member methods that correspond to the attributes
and operations of the IDL interface. When a client program calls
methods on an object of type Building, Orbix forwards the method calls
to a server object that supports the Building interface.

2. The C++ pure virtual member method address() maps to the readonly
IDL string attribute address. Clients call this method to get the
attribute’s current value, which returns the C++ type char*.

3. The pure virtual C++ member method available() maps to the IDL
operation of the same name. It returns type CORBA::Boolean, which
maps to the equivalent IDL type boolean. Its single parameter is of
CORBA::Long type, which is a typedef of a basic C++ integer type. This
maps to the operation parameter of IDL type long.

4. The operation reserveDate() has one input parameter, date, and one
output parameter, confirmation, both of IDL type long. The return type
is CORBA::Boolean. Input parameters (specified as IDL in parameters)
are passed by value in C++.

Output parameters are passed by reference. Every CORBA data type has
a corresponding _out type that is used to declare output parameters. For
basic types, such as short and long, the _out type is a typedef of a
reference to the corresponding C++ type. For example, the CORBA::
Long_out type is defined in the CORBA namespace as:
typedef CORBA::Long& CORBA::Long_out;

Other helper data types and methods generated in this file are described
when they are used in this chapter.

Step 4—Develop the Server Program
The main programming task on the server side is the implementation of
servant classes. In this demonstration there is one interface, Building, and
one corresponding servant class, BuildingImpl.

For each servant class:

• Declare the servant class.
 48

Step 4—Develop the Server Program
The code generation toolkit generates an outline servant header file for
every interface. The BuildingImpl servant class is declared in the
header file BuildingImpl.h.

• Define the servant class.

The code generation toolkit generates a dummy definition of every
servant class. The BuildingImpl servant class is defined in the file
BuildingImpl.cxx.

The other programming task on the server side is the implementation of the
server main(). For this simple demonstration, the generated server main()
does not require any modification. It is discussed in detail in “Learning More
About the Server” on page 61.

Declare the BuildingImpl Servant Class

The code generation toolkit generates a header file, BuildingImpl.h, that
declares the BuildingImpl servant class. You can use this starting point code
to implement the Building interface.

Note: The name of the BuildingImpl servant class is not significant but
simply conforms to a naming convention that helps distinguish servant code
from other application code.

You can modify the generated code in BuildingImpl.h to add member
variables needed for the implementation. The code shown here provides a
simple implementation of BuildingImpl.

Manual additions to the generated code are shown in bold font.

//C++
// File: ’BuildingImpl.h’
...

1 #include "buildingS.hh"
#include "it_servant_base_overrides.h"

2 class BuildingImpl :
public virtual IT_ServantBaseOverrides,
public virtual POA_Building

{

49

Chapter 3 | First Application
public:
BuildingImpl(PortableServer::POA_ptr);
virtual ~BuildingImpl();

// _create() -- create a new servant.
static POA_Building* _create(PortableServer::POA_ptr);

// IDL operations
//

3 virtual CORBA::Boolean available(
CORBA::Long date

) IT_THROW_DECL((CORBA::SystemException));

virtual CORBA::Boolean reserveDate(
CORBA::Long date,
CORBA::Long_out confirmation

) IT_THROW_DECL((CORBA::SystemException));

// IDL attributes
//

4 virtual char* address()
IT_THROW_DECL((CORBA::SystemException));

private:
5 //-----------------------

// Private Member Variables
//-----------------------
CORBA::Long m_confirmation_counter;
CORBA::Long m_reservation[366];

// Instance variables for attributes.
6 CORBA::String_var m_address;

...
};

This code can be described as follows:

1. Servers include the buildingS.hh skeleton file, which declares the C++
POA_Building class.

The POA_Building class is a class generated by the IDL compiler that
allows you to implement the Building interface using the inheritance
 50

Step 4—Develop the Server Program
approach. In general, for any interface, InterfaceName, a corresponding
class, POA_InterfaceName, is generated by the IDL compiler.

2. The BuildingImpl servant class inherits from POA_Building and
IT_ServantBaseOverrides.

The POA_Building class is a standard name for the base class generated
for the Building interface. By inheriting from POA_Building, you are
indicating to the ORB that BuildingImpl is the servant class that
implements Building. This approach to associating a servant class with
an interface is called the inheritance approach.

The IT_ServantBaseOverrides class is used to override the definition of
some standard virtual methods. For a discussion of this class, see
page 239.

3. A member method declaration is generated for each of the operations in
the Building interface.

The IT_THROW_DECL((ExceptionList)) macro is used by Orbix to insulate
generated code from variations between C++ compilers. The macro
maps to throw(ExceptionList) for compilers that support exceptions, or
to an empty string, "", for compilers that do not.

4. Member method declarations are generated for each of the attributes in
the Building interface.

Read-only attributes require a single method that returns the current
value of the attribute. Read/write attributes require two methods: one
that returns the current value, and another that takes an input parameter
to set the value.

5. The lines of code shown in bold font are added to the generated code to
complete the application. Two additional private member variables are
declared to store the state of a BuildingImpl object.

♦ The m_confirmation_counter index counter is incremented each
time a reservation is confirmed.

♦ The m_reservation array has 366 elements (representing the 365
or 366 days in a year). The elements are equal to zero when
unreserved or a positive integer (the confirmation number) when
reserved.

6. The m_address is a CORBA string that stores the address of the building.

The declared type of m_address, CORBA::String_var, is a smart pointer
type that functions as a memory management aid. String pointers
51

Chapter 3 | First Application
declared as CORBA::String_var are used in a similar way to plain
char * pointers, except that it is never necessary to delete the string
explicitly.

Note: The code generation toolkit automatically generates a private member
m_address to represent the state of the IDL address attribute. However, this
generated class member is not part of the standard IDL-to-C++ mapping. It
is generated solely for your convenience and you are free to remove this line
from the generated code if you so choose.

Define the BuildingImpl Servant Class

The code generation toolkit also generates the BuildingImpl.cxx file, which
contains an outline of the method definitions for the BuildingImpl servant
class. You should edit this file to fill in the bodies of methods that correspond
to the operations and attributes of the Building interface. It is usually
necessary to edit the constructor and destructor of the servant class as well.

Manual additions made to the generated code are shown in bold font. In
some cases, the additions replace existing generated code requiring you to
manually delete the old code.

// C++
// File: ’BuildingImpl.cxx’
...
#include "BuildingImpl.h"
// _create() -- create a new servant.
POA_Building*

1 BuildingImpl::_create(PortableServer::POA_ptr the_poa)
{

return new BuildingImpl(the_poa);
}

// BuildingImpl constructor
//
// Note: since we use virtual inheritance, we must include an
// initialiser for all the virtual base class constructors that
// require arguments, even those that we inherit indirectly.
//
 52

Step 4—Develop the Server Program
BuildingImpl::BuildingImpl(
PortableServer::POA_ptr the_poa

) :
IT_ServantBaseOverrides(the_poa),

2 m_address("200 West Street, Waltham, MA."),
m_confirmation_counter(1)

{
for (int i=0; i<366; i++) { m_reservation[i] = 0; }

}

// ~BuildingImpl destructor.
//

3 BuildingImpl::~BuildingImpl()
{

// Intentionally empty.
}

// available() -- Implements IDL
// operation "Building::available()".
//
CORBA::Boolean
BuildingImpl::available(

CORBA::Long date
) IT_THROW_DECL((CORBA::SystemException))
{

4 if (1<=date && date<=366) {
return (m_reservation[date-1]==0);

}

return 0;
}

// reserveDate() -- Implements IDL
// operation "Building::reserveDate()".
//
CORBA::Boolean
BuildingImpl::reserveDate(

CORBA::Long date,
CORBA::Long_out confirmation

) IT_THROW_DECL((CORBA::SystemException))
{

5 confirmation = 0;
53

Chapter 3 | First Application
if (1<=date && date<=366) {
if (m_reservation[date-1]==0) {

m_reservation[date-1]=m_confirmation_counter;
confirmation = m_confirmation_counter;
m_confirmation_counter++;
return 1;

}
}
return 0;

}

// address() -- Accessor for IDL attribute "Building::address".
//
char *
BuildingImpl::address() IT_THROW_DECL((CORBA::SystemException))
{

6 return CORBA::string_dup(m_address);
}

The code can be explained as follows:

1. _create() is a static member method of BuildingImpl that creates
BuildingImpl instances.

Note that _create() is not a standard part of CORBA. It is generated by
the code generation toolkit for convenience. You are free to call the
constructor directly, or remove the _create() method entirely.

2. The BuildingImpl constructor is an appropriate place to initialize any
member variables. The three private member variables—m_address,
m_confirmation_counter and m_reservation—are initialized here.

3. The BuildingImpl destructor is an appropriate place to free any member
variables that were allocated on the heap. In this example it is empty.

4. A few lines of code are added here to implement the available()
operation. If an element of the array m_reservation is zero, that means
the date is available. Otherwise the array element holds the confirmation
number (a positive integer).

5. A few lines of code are added here to implement the reserveDate()
operation. Because confirmation is declared as an out parameter in
IDL, it is passed by reference in C++. The value assigned to it is
therefore readable by the code that called reserveDate().
 54

Step 5—Develop the Client Program
6. CORBA::string_dup() is used to allocate a copy of the string m_address
on the free store.

It would be an error to return the private string pointer directly from the
operation because the ORB automatically deletes the return value after
the operation has completed.

It would also be an error to allocate the string copy using the C++ new
operator.

Step 5—Develop the Client Program
The generated code in the client.cxx file takes care of initializing the ORB
and getting a Building object reference. This allows the client programmer to
focus on the business logic of the client application.

You modify the generated client code by implementing the logic of the client
program. Use the Bulding object reference to access an object’s attributes
and invoke its operations.

Client main()

The code in the client main() initializes the ORB, reads a Building object
reference from the file Building.ref and hands over control to
run_warehouse_menu(), which is described in the next section. When
run_warehouse_menu() returns, the generated code shuts down the ORB.

Changes or additions to the code are shown in bold font.

//C++
//File: ’client.cxx’
...
#include "building.hh"
...
// global_orb -- make ORB global so all code can find it.
//
CORBA::ORB_var

1 global_orb = CORBA::ORB::_nil();

// read_reference() -- read an object reference from file.
//
55

Chapter 3 | First Application
static CORBA::Object_ptr
2 read_reference(

const char* file
)
{

cout << "Reading stringified object reference from "
<< file << endl;

ifstream ifs(file);
CORBA::String_var str;
ifs >> str;
if (!ifs) {

cerr << "Error reading object reference from "
<< file << endl;

return CORBA::Object::_nil();
}
return global_orb->string_to_object(str);

}
...

// main() -- the main client program.
int
main(int argc, char **argv)
{

int exit_status = 0;
try
{

// For temporary object references.
CORBA::Object_var tmp_ref;

// Initialise the ORB.
//

3 global_orb = CORBA::ORB_init(argc, argv);

// Exercise the Building interface.
//

4 tmp_ref = read_reference("Building.ref");

5 Building_var Building1 = Building::_narrow(tmp_ref);
if (CORBA::is_nil(Building1))
{

cerr << "Could not narrow reference to interface "
<< "Building" << endl;

}

 56

Step 5—Develop the Client Program
else
{

6 run_warehouse_menu(Building1);
}

}
catch(CORBA::Exception &ex)
{

cerr << "Unexpected CORBA exception: " << ex << endl;
exit_status = 1;

}

// Ensure that the ORB is properly shutdown and cleaned up.
//
try
{

7 global_orb->shutdown(1);
global_orb->destroy();

}
catch (...)
{

// Do nothing.
}
return exit_status;

}

The code can be explained as follows:

1. Declare the variable global_orb in the global scope so that all parts of
the program can easily access the ORB object.

The global_orb is temporarily set equal to the value CORBA::ORB::
_nil(), which represents a blank object reference of type CORBA::
ORB_ptr.

2. Define read_reference() to read an object reference from a file. This
method reads a stringified object reference from a file and converts the
stringified object reference to an object reference using CORBA::ORB::
string_to_object(). The return type of read_reference() is CORBA::
Object_ptr—the base type for object references.

If there is an error, read_reference() returns CORBA::Object::_nil(),
which represents a blank object reference of type CORBA::Object_ptr.

3. Call CORBA::ORB_init() to get an object reference to the initialized
ORB.
57

Chapter 3 | First Application
A client must associate itself with the ORB in order to get object
references to CORBA services such as the naming service or trader
service.

4. Get a reference to a CORBA object by calling read_reference(),
passing the name of a file that contains its stringified object reference.

The tmp_ref variable is of CORBA::Object_var type. This is a smart
pointer type that automatically manages the memory it references.

5. Narrow the CORBA object to a Building object, to yield the Building1
object reference.

The mapping for every interface defines a static member method
_narrow() that lets you narrow an object reference from a base type to a
derived type. It is similar to a C++ dynamic cast operation, but is used
specifically for types related via IDL inheritance.

6. Replace the lines of generated code in the else clause with a single call
to run_warehouse_menu().

run_warehouse_menu() uses the Building1 object reference to make
remote invocations on the server.

7. The ORB must be explicitly shut down before the client exits.

CORBA::ORB::shutdown() stops all server processing, deactivates all
POA managers, destroys all POAs, and causes the run() loop to
terminate. The boolean argument, 1, indicates that shutdown() blocks
until shutdown is complete.

CORBA::ORB::destroy() destroys the ORB object and reclaims all
resources associated with it.

When an object reference enters a client’s address space, Orbix creates a
proxy object that acts as a stand-in for the remote servant object. Orbix
forwards method calls on the proxy object to corresponding servant object
methods.

Client Business Logic

You access an object’s attributes and operations by calling the appropriate
the Building class method using the proxy object. The proxy object redirects
the C++ calls across the network to the appropriate servant method.
 58

Step 6—Build and Run the Application
The following code uses the C++ arrow operator (->) on the Building_ptr
object warehouse to access Building class methods.

Additions to the code are shown in bold font.

//C++
//File: ’client.cxx’
void
run_warehouse_menu(Building_ptr warehouseP)
{

CORBA::String_var addressV = warehouseP->address();
cout << "The warehouse address is:" << endl

<< addressV.in() << endl;

CORBA::Long date;
CORBA::Long confirmation;
char quit = 'n';
do {

cout << "Enter day to reserve warehouse (1,2,...): ";
cin >> date;
if(warehouseP->available(date)) {

if (warehouseP->reserveDate(date, confirmation))
cout << "Confirmation number: "

<< confirmation << endl;
else

cout << "Reservation attempt failed!" << endl;
}
else {

cout << "That date is unavailable." << endl;
}
cout << "Quit? (y,n)";
cin >> quit;

}
while (quit == 'n');

}

Step 6—Build and Run the Application
The prerequisites for running this application are:

• The Orbix runtime is installed on the machine where the demonstration
is run.
59

Chapter 3 | First Application
• Orbix has been correctly configured. See the Orbix 2000 Administrator’s
Guide for details.

This demonstration assumes that both the client and the server run in the
same directory.

Build the Application

The makefile generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server, go to the example directory and at a command
line prompt enter:

Windows

> nmake

UNIX

% make -e

Run the Application

Perform the following steps to run the application:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xterm in UNIX. Enter:
start_DomainName_services

Where DomainName is the name of the default configuration domain
(usually orbix2000).

2. Run the server program.

Open a new DOS prompt in Windows, or xterm in UNIX. The executable
file is called server.exe (Windows) or server (UNIX).

The server outputs the following lines to the screen:
 60

Learning More About the Server
Initializing the ORB
Writing stringified object reference to Building.ref
Waiting for requests...

At this point the server is blocked while executing CORBA::ORB::run().

3. Run the client program.

4. Open a new DOS prompt in Windows, or xterm in UNIX. The executable
file is called client.exe (Windows) or client (UNIX).When you are
finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is
running.

5. Stop the Orbix services (if they are running).

From a DOS prompt in Windows, or xterm in UNIX, enter:
stop_DomainName_services

Where DomainName is the name of the default configuration domain
(usually orbix2000).

Learning More About the Server
In this demonstration, the default implementation of main() suffices so there
is no need to edit the server.cxx file.

However, for realistic applications, you need to customize the server main()
to specify what kind of POAs are created. You also need to select which
CORBA objects get activated as the server boots up.

The default server main() contains code to:

1. Create a termination handler object.

2. Initialize the ORB.

3. Create a POA for transient objects.

4. Create servant objects.

5. Activate CORBA objects.

The default server code activates one CORBA object for each of the
interfaces defined in the IDL file.

6. Export object references.
61

Chapter 3 | First Application
An object reference is exported for each of the activated CORBA objects.

7. Put the ORB into an active state.

Put the ORB into a state where it is ready to receive and process
invocations on CORBA objects.

8. Shut down the ORB.

The ORB should be shut down cleanly before exiting and any
heap-allocated memory should be deleted.

In this demonstration, there is only one interface, Building, and a single
CORBA object of this type is activated.

The following subsections discuss the code in the server.cxx file piece by
piece. For a complete source listing of server.cxx, see page 72.

Create a Termination Handler Object

Orbix provides its own IT_TerminationHandler class, which handles server
shutdown in a portable manner.

On UNIX, the termination handler handles the following signals:

SIGINT
SIGTERM
SIGQUIT

On Windows, the termination handler is just a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following control
events:

CTRL_C_EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOWN_EVENT
CTRL_LOGOFF_EVENT
CTRL_CLOSE_EVENT

The main routine can create a termination handler object on the stack. On
POSIX platforms, it is critical to create this object in the main thread before
creation of any other thread, especially before calling ORBinit(), as follows:

int
main(int argc, char** argv)
{

IT_TerminationHandler
 62

Learning More About the Server
termination_handler(termination_handler_callback);
// ...

}

You can create only one termination handler object in a program. The server
shutdown mechanism and termination_handler_callback() are discussed
in detail in “Shut Down the ORB” on page 70.

Initialize the ORB

Before a server can make its objects available to the rest of an enterprise
application, it must initialize the ORB:

//C++
...
// global_orb -- make ORB global so all code can find it.
CORBA::ORB_var

1 global_orb = CORBA::ORB::_nil();
...

int
main(int argc, char **argv)
{

...
cout << "Initializing the ORB" << endl;

2 global_orb = CORBA::ORB_init(argc, argv);
...

The code can be explained as follows:

1. The type CORBA::ORB_var is a smart pointer class that can be used to
refer to objects of type CORBA::ORB. Syntactically, a CORBA::ORB_var is
similar to the pointer type CORBA::ORB*. The advantage of using a smart
pointer is that it automatically deletes the memory pointed at as soon as
it goes out of scope. This helps to prevent memory leaks.

The value CORBA::ORB::_nil() is an example of a nil object reference. A
nil object reference is a blank value that can legally be passed as a
CORBA parameter or return value.
63

Chapter 3 | First Application
2. CORBA::ORB_init() is used to create an instance of an ORB.
Command-line arguments can be passed to the ORB via argc and argv.
ORB_init() searches argv for arguments of the general form -ORBsuffix,
parses these arguments, and removes them from the argument list.

Create a POA for Transient Objects

A simple POA object is created using the following lines of code:

//C++
try {

// For temporary object references.
CORBA::Object_var tmp_ref;
...

1 tmp_ref = global_orb->resolve_initial_references("RootPOA");

2 PortableServer::POA_var root_poa =
PortableServer::POA::_narrow(tmp_ref);

assert(!CORBA::is_nil(root_poa));

3 PortableServer::POAManager_var root_poa_manager
= root_poa->the_POAManager();

assert(!CORBA::is_nil(root_poa_manager));

// Now create our own POA.
4 PortableServer::POA_var my_poa =

create_simple_poa("my_poa", root_poa, root_poa_manager);
...

}
...

The code can be explained as follows:

1. Get a reference to the root POA object by calling
resolve_initial_references() on the ORB with the argument
"RootPOA".

resolve_initial_references() provides a bootstrap mechanism for
obtaining access to key Orbix objects. It contains a mapping of
well-known names to important objects such as the root POA
"RootPOA", the naming service "NameService", and other objects and
services.
 64

Learning More About the Server
2. Narrow the root POA reference, tmp_ref, to the type PortableServer::
POA_ptr using PortableServer::POA::_narrow().

Because tmp_ref is of CORBA::Object type, which is the generic base
class for object references, methods specific to the PortableServer::

POA class are not directly accessible. It is therefore necessary to
down-cast the tmp_ref pointer to the actual type of the object reference
using _narrow().

3. Obtain a reference to the root POA manager object.

A POA manager controls the flow of messages to a set of POAs. CORBA
invocations cannot be processed unless the POA manager is in an active
state (see page 69).

4. Create the my_poa POA as a child of root_poa. The my_poa POA
becomes associated with the root_poa_manager POA manager. This
means that the root_poa_manager object controls the flow of messages
into my_poa.

create_simple_poa() is defined as follows:

//C++
PortableServer::POA_ptr
create_simple_poa(

const char* poa_name,
PortableServer::POA_ptr parent_poa,
PortableServer::POAManager_ptr poa_manager

)
{

// Create a policy list.
// Policies not set in the list get default values.
//
CORBA::PolicyList policies;
policies.length(1);
int i = 0;
// Make the POA single threaded.
//
policies[i++] = parent_poa->create_thread_policy(

PortableServer::SINGLE_THREAD_MODEL
);
assert(i==1);

return parent_poa->create_POA(
poa_name,
65

Chapter 3 | First Application
poa_manager,
policies);

}

A POA is created by invoking PortableServer::POA::create_POA() on an
existing POA object. The POA on which this method is invoked is known as
the parent POA and the newly created POA is known as the child POA.

create_POA() takes the following arguments:

• poa_name is the adapter name. This name is used within the ORB to
identify the POA instance relative to its parent.

• poa_manager is a reference to a POA manager object with which the
newly created POA becomes associated.

• policies is a list of policies that configure the new POA. For more
information, see “Using POA Policies” on page 228.

The POA instance returned by create_simple_poa() accepts default values
for most of its policies. The resulting POA is suitable for activating transient
CORBA objects. A transient CORBA object is an object that exists only as long
as the server process that created it. When the server is restarted, old
transient objects are no longer accessible.

Create Servant Objects

A number of servant objects must be created. A servant is an object that does
the work for a CORBA object. For example, the BuildingImpl servant class
contains the code that implements the Building IDL interface.

A single BuildingImpl servant object is created as follows:

// C++
#include <BuildingImpl.h>
...
// Note: PortableServer::Servant is a pointer type - it's
// actually a typedef for PortableServer::ServantBase*.
//
PortableServer::Servant the_Building = 0;
...
the_Building = BuildingImpl::_create(my_poa);
 66

Learning More About the Server
In this example, _create() creates an instance of a BuildingImpl servant.
The POA reference my_poa that is passed to _create() must be the same
POA that is used to activate the object in the next section “Activate CORBA
Objects”.

_create() is not a standard CORBA method. It is a convenient pattern
implemented by the code generation toolkit. You can use the BuildingImpl
constructor instead, if you prefer.

Activate CORBA Objects

A CORBA object must be activated before it can accept client invocations.
Activation is the step that establishes the link between an ORB, which
receives invocations from clients, and a servant object, which processes
these invocations.

In this step, two fundamental entities are created that are closely associated
with a CORBA object:

• An object ID.

This is a CORBA object identifier that is unique with respect to a
particular POA instance. In the case of a persistent CORBA object, the
object ID is often a database key that is used to retrieve the state of the
CORBA object from the database.

• An object reference.

This is a handle on a CORBA object that exposes a set of methods
mapped from the operations of its corresponding IDL interface. It can be
stringified and exported to client programs. Once a client gets hold of an
object reference, the client can use it to make remote invocations on the
CORBA object.

A single Building object is activated using the following code:

// C++
#include <BuildingImpl.h>
...
CORBA::Object_var tmp_ref;
...
PortableServer::ObjectId_var oid;
...

1 oid = my_poa->activate_object(the_Building);
67

Chapter 3 | First Application
2 tmp_ref = my_poa->id_to_reference(oid);

The code can be explained as follows:

1. Activate the CORBA object.

A number of things happen when activate_object() is called:

♦ An unique object ID, oid, is automatically generated by my_poa to
represent the CORBA object’s identity. Automatically generated
object IDs are convenient for use with transient objects.

♦ The CORBA object becomes associated with the POA, my_poa.

♦ The POA records the fact that the the_Building servant provides
the implementation for the CORBA object identified by oid.

2. Use PortableServer::POA::id_to_reference() to generate an object
reference, tmp_ref, from the given object ID.

You can activate a CORBA object in various ways, depending on the policies
used to create the POA. For information about activating objects in the POA,
see “Activating CORBA Objects” on page 202; for information about
activating objects on demand, see Chapter 11 on page 249.

Export Object References

A server must advertise its objects so that clients can find them. In this
demonstration, the Building object reference is exported to clients using
write_reference():

//C++
...
write_reference(tmp_ref,"Building.ref");

This call writes the tmp_ref object reference to the Building.ref file.

write_reference() writes an object reference to a file in stringified form. It is
defined as follows:

//C++
void
write_reference(

CORBA::Object_ptr ref, const char* objref_file
)
{

CORBA::String_var stringified_ref =
 68

Learning More About the Server
global_orb->object_to_string(ref);
cout << "Writing stringified object reference to "

<< objref_file << endl;

ofstream os(objref_file);
os << stringified_ref;
if (!os.good())
{

cerr << "Failed to write to " << objref_file << endl;
}

}

The ref object reference is converted to a string, of type char * by passing
ref as an argument to CORBA::ORB::object_to_string() . The string is then
written to the objref_file file.

Note that a smart pointer of CORBA::String_var type is used to reference the
stringified object reference. The smart pointer automatically deletes the string
when it goes out of scope, thereby avoiding a memory leak.

CORBA clients can read the objref_file file to obtain the object reference.

This approach to exporting object references is convenient to use for this
simple demonstration. Realistic applications, however, are more likely to use
the CORBA naming service instead.

Put the ORB into an Active State

After a server has set up the objects and associations it requires during
initialization, it must tell the ORB to start listening for requests:

//C++
...
// Activate the POA Manager and let the ORB process requests.
//

1 root_poa_manager->activate();

2 global_orb->run();

The code can be explained as follows:

1. A POA manager can be in four different states: active, holding, discarding,
and inactive. A POA can accept object requests only after its manager is
activated by calling PortableServer::POAManager::activate().
69

Chapter 3 | First Application
2. CORBA::ORB::run() puts the ORB into a state where it listens for client
connection attempts and accepts request messages from existing client
connections.

CORBA::ORB::run() is a blocking method that returns only when CORBA:
:ORB::shutdown() is invoked.

Shut Down the ORB

The shutdown mechanism for the demonstration application uses Orbix’s
own IT_TerminationHandler class, which enables server applications to
handle delivery of CTRL-C and similar events in a portable manner (see
page 62 and “Termination Handler” on page 219).

Before shutdown is initiated, the server is blocked in the execution of CORBA:
:ORB::run().

Shutdown is initiated when a Ctrl-C or similar event is sent to the server from
any source. You can shut down the server application as follows:

• On Windows platforms, switch focus to the MS-DOS box where the
server is running and type Ctrl-C.

• On UNIX platforms, switch focus to the xterm window where the server
is running and type Ctrl-C.

• On UNIX, send a signal to a background server process using the kill
system command.

The Orbix termination handler can handle a number of signals or events (see
“Create a Termination Handler Object” on page 62). As soon as the server
receives one of these signals or events, a thread started by Orbix executes the
registered termination handler callback, termination_handler_callback().

The termination handler function is defined as follows:

//C++
static void
termination_handler_callback(

long signal
)
{

1 if (!CORBA::is_nil(orb))
{

2 global_orb->shutdown(IT_FALSE);
 70

Learning More About the Server
}
}

The code executes as follows:

1. A check is made to ensure that the global_orb variable is initialized.

2. CORBA::ORB::shutdown() is invoked. It takes a single boolean
argument, the wait_for_completion flag.

When shutdown() is called with its wait_for_completion flag set to
false, a background thread is created to handle shutdown and the call
returns immediately. See “Explicit Event Handling” on page 218.

As soon as termination_handler() returns, the operating system returns to
the prior execution point and the server resumes processing in CORBA::ORB::
run().

Server execution now reverts to main():

//C++
...

1 global_orb->run();
// Delete the servants.

2 delete the_Building;

// Destroy the ORB and reclaim resources.
try
{

3 global_orb->destroy();
}
catch (...)
{

// Do nothing.
}
return exit_status;

The code executes as follows:

1. After the termination handler completes shutdown, CORBA::ORB::run()
unblocks and returns.

2. The BuildingImpl servant must be explicitly deleted because it is not
referenced by a smart pointer.

3. CORBA::ORB::destroy() destroys the ORB object.
71

Chapter 3 | First Application
Note: The shutdown() function is not called after CORBA::ORB::run()
returns, because shutdown() is already called in the signal handler. It is
illegal to call shutdown() more than once on the same ORB object.

Complete Source Code for server.cxx
//C++
//---
// Edit idlgen config file to get your own copyright notice
// placed here.
//---

// Automatically generated server for the following IDL
// interfaces:
// Building
//

#include "it_random_funcs.h"
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <it_ts/termination_handler.h>
#include <omg/PortableServer.hh>
#include "BuildingImpl.h"

// global_orb -- make ORB global so all code can find it.
//
CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

// termination handler callback handles Ctrl-C-like signals/events
// by shutting down the ORB. This causes ORB::run() to return,
// and allows the server to shut down gracefully.

static void
termination_handler_callback(

long signal
)

 72

Complete Source Code for server.cxx
{

cout << "Processing shutdown signal " << signal << endl;
if (!CORBA::is_nil(orb))
{

cout << "ORB shutdown ... " << flush;
orb->shutdown(IT_FALSE);
cout << "done." << endl;

}
}

// write_reference() -- export object reference to file.
// This is a useful way to advertise objects for simple tests and

demos.
// The CORBA naming service is a more scalable way to advertise

references.
//
void
write_reference(

CORBA::Object_ptr ref,
const char* objref_file

)
{

CORBA::String_var stringified_ref =
global_orb->object_to_string(ref);

cout << "Writing stringified object reference to "
<< objref_file << endl;

ofstream os(objref_file);
os << stringified_ref;
if (!os.good())
{

cerr << "Failed to write to " << objref_file << endl;
}

}

// create_simple_poa() -- Create a POA for simple servant
management.

//
PortableServer::POA_ptr
create_simple_poa(

const char* poa_name,
PortableServer::POA_ptr parent_poa,
73

Chapter 3 | First Application
PortableServer::POAManager_ptr poa_manager
)
{

// Create a policy list.
// Policies not set in the list get default values.
//
CORBA::PolicyList policies;
policies.length(1);
int i = 0;
// Make the POA single threaded.
//
policies[i++] = parent_poa->create_thread_policy(

PortableServer::SINGLE_THREAD_MODEL
);
assert(i==1);

return parent_poa->create_POA(poa_name,
poa_manager,
policies);

}

// main() -- set up a POA, create and export object references.
//
int
main(int argc, char **argv)
{

int exit_status = 0; // Return code from main().

// Instantiate termination handler
IT_TerminationHandler
termination_handler(termination_handler_callback);

// Variables to hold our servants.
// Note: PortableServer::Servant is a pointer type - it's
// actually a typedef for PortableServer::ServantBase*.
//
PortableServer::Servant the_Building = 0;

try
{

// For temporary object references.
CORBA::Object_var tmp_ref;
 74

Complete Source Code for server.cxx
// Initialise the ORB and Root POA.
//
cout << "Initializing the ORB" << endl;
global_orb = CORBA::ORB_init(argc, argv);
tmp_ref =

global_orb->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =

PortableServer::POA::_narrow(tmp_ref);
assert(!CORBA::is_nil(root_poa));
PortableServer::POAManager_var root_poa_manager

= root_poa->the_POAManager();
assert(!CORBA::is_nil(root_poa_manager));

// Now create our own POA.
//
PortableServer::POA_var my_poa =

create_simple_poa("my_poa", root_poa, root_poa_manager);

// Create servants and export object references.
//
// Note: _create is a useful convenience function
// created by the genie; it is not a standard CORBA
// function.
//
PortableServer::ObjectId_var oid;

// Create a servant for interface Building.
//
the_Building = BuildingImpl::_create(my_poa);
oid = my_poa->activate_object(the_Building);
tmp_ref = my_poa->id_to_reference(oid);
write_reference(tmp_ref,"Building.ref");

// Activate the POA Manager and let the ORB process
// requests.
//
root_poa_manager->activate();
cout << "Waiting for requests..." << endl;
global_orb->run();

}
catch (CORBA::Exception& e)
{

cout << "Unexpected CORBA exception: " << e << endl;
75

Chapter 3 | First Application
exit_status = 1;
}
// Delete the servants.
//
delete the_Building;

// Destroy the ORB and reclaim resources.
//
try
{

global_orb->destroy();
}
catch (...)
{

// Do nothing.
}
return exit_status;

}

 76

Defining Interfaces
The CORBA Interface Definition Language (IDL) is used to
describe interfaces of objects in an enterprise application.
An object’s interface describes that object to potential
clients—its attributes and operations, and their signatures.

An IDL-defined object can be implemented in any language that IDL maps to,
such as C++, Java, and COBOL. By encapsulating object interfaces within a
common language, IDL facilitates interaction between objects regardless of
their actual implementation. Writing object interfaces in IDL is therefore
central to achieving the CORBA goal of interoperability between different
languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, and Smalltalk. Each IDL mapping specifies
how an IDL interface corresponds to a language-specific implementation.
Orbix’s IDL compiler uses these mappings to convert IDL definitions to
language-specific definitions that conform to the semantics of that language.

This chapter describes IDL semantics and uses. For mapping information,
refer to language-specific mappings in the Object Management Group’s latest
CORBA specification.

Modules and Name Scoping
You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.

Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface. To resolve a name, the
IDL compiler conducts its search among the following scopes, in this order:

1. The current interface

2. Base interfaces of the current interface (if any)
77

Chapter 4 | Defining Interfaces
3. The scopes that enclose the current interface

In the following example, two interfaces, Bank and Account, are defined
within module BankDemo:

module BankDemo
{
interface Bank {

//...
};

interface Account {
//...

};
};

Within the same module, interfaces can reference each other by name alone.
If an interface is referenced from outside its module, its name must be fully
scoped with the following syntax:

module-name::interface-name

For example, the fully scoped names of interfaces Bank and Account are
BankDemo::Bank and BankDemo::Account, respectively.

Nesting Restrictions

A module cannot be nested inside a module of the same name. Likewise, you
cannot directly nest an interface inside a module of the same name. To avoid
name ambiguity, you can provide an intervening name scope as follows:

module A
{

module B
{

interface A {
//...

};
};

};
 78

Interfaces
Interfaces
Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that the object
supports in a distributed enterprise application.

An IDL interface generally describes an object’s behavior through operations
and attributes:

• Operations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another address
space on the same machine, or in an address space on a remote
machine.

• An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

For example, the Account interface in module BankDemo describes the objects
that implement bank accounts:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account ids
//...
interface Account {

readonly attribute AccountId account_id;
readonly attribute CashAmount balance;

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit(in CashAmount amount);

};
};

This interface declares two readonly attributes, AccountId and balance,
which are defined as typedefs of string and float, respectively. The
interface also defines two operations that a client can invoke on this object,
withdraw() and deposit().
79

Chapter 4 | Defining Interfaces
Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementations only through an interface’s operations or attributes.

While every CORBA object has exactly one interface, the same interface can
be shared by many CORBA objects in a system. CORBA object references
specify CORBA objects—that is, interface instances. Each reference denotes
exactly one object, which provides the only means by which that object can
be accessed for operation invocations.

Interface Contents

An IDL interface definition typically has the following components:

• Operation definitions
• Attribute definitions
• Exception definitions
• Type definitions
• Constant definitions

Of these, operations and attributes must be defined within the scope of an
interface; all other components can be defined at a higher scope.

Operations

IDL operations define the signatures of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

• Return value data type
• Parameters and their direction
• Exception clause

A operation’s return value and parameters can use any data types that IDL
supports (see “Abstract Interfaces” on page 91).

For example, the Account interface defines two operations, withdraw() and
deposit(); it also defines the exception InsufficientFunds:

module BankDemo
{

 80

Interfaces
typedef float CashAmount; // Type for representing cash
//...
interface Account {

exception InsufficientFunds {};

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit(in CashAmount amount);

};
};

On each invocation, both operations expect the client to supply an argument
for parameter amount, and return void. Invocations on withdraw() can also
raise the exception InsufficientFunds, if necessary.

Parameter Direction
Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter passing modes clarify operation
definitions and allow the IDL compiler to map operations accurately to a
target programming language. At runtime, Orbix uses parameter passing
modes to determine in which direction or directions it must marshal a
parameter.

A parameter can take one of three passing mode qualifiers:

in: The parameter is initialized only by the client and is passed to the object.

out: The parameter is initialized only by the object and returned to the client.

inout: The parameter is initialized by the client and passed to the server; the
server can modify the value before returning it to the client.

In general, you should avoid using inout parameters. Because an inout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using two parameters, in and out, the caller can decide for itself
when to discard the parameter.
81

Chapter 4 | Defining Interfaces
One-way Operations
By default, IDL operations calls are synchronous—that is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

Three constraints apply to a one-way operation:

• The return value must be set to void.
• Directions of all parameters must be set to in.
• No raises clause is allowed.

For example, interface Account might contain a one-way operation that sends
a notice to an Account object:

module BankDemo {
//...
interface Account {

oneway void notice(in string text);
//...

};
};

Orbix cannot guarantee the success of a one-way operation call. Because
one-way operations do not support return data to the client, the client cannot
ascertain the outcome of its invocation. Orbix only indicates failure of a
one-way operation if the call fails before it exits the client’s address space; in
this case, Orbix raises a system exception.

A client can also issue non-blocking, or asynchronous, invocations. For more
information, see Chapter 12 on page 267.

Attributes

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible to
clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which let client applications read and write
attribute values. An attribute that is qualified with the keyword readonly
maps only to a get function.
 82

Interfaces
For example, the Account interface defines two readonly attributes,
AccountId and balance. These attributes represent information about the
account that only the object implementation can set; clients are limited to
read-only access.

Exceptions

IDL operations can raise one or more CORBA-defined system exceptions. You
can also define your own exceptions and explicitly specify these in an IDL
operation. An IDL exception is a data structure that can contain one or more
member fields, formatted as follows:

exception exception-name {
[member;]...

};

After you define an exception, you can specify it through a raises clause in
any operation that is defined within the same scope. A raises clause can
contain multiple comma-delimited exceptions:

return-val operation-name([params-list])
raises(exception-name[, exception-name]);

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible only to operations within that interface.

For example, interface Account defines the exception InsufficientFunds
with a single member of data type string. This exception is available to any
operation within the interface. The following IDL defines the withdraw()
operation to raise this exception when the withdrawal fails:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//...
interface Account {

exception InsufficientFunds {};

void
withdraw(in CashAmount amount)
raises (InsufficientFunds);
//...
83

Chapter 4 | Defining Interfaces
};
};

For more information about exception handling, see Chapter 13 on
page 277.

Empty Interfaces

IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces. For example, the CORBA PortableServer module defines
the abstract ServantManager interface, which serves to join the interfaces for
two servant manager types, servant activator and servant locator:

module PortableServer
{

interface ServantManager {};

interface ServantActivator : ServantManager {
//...

};

interface ServantLocator : ServantManager {
//...

};
};

Inheritance of IDL Interfaces

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An interface
specifies the base interfaces from which it inherits as follows:

interface new-interface : base-interface[, base-interface]...
{...};

For example, the following interfaces, CheckingAccount and
SavingsAccount, inherit from interface Account and implicitly include all of
its elements:

module BankDemo{
typedef float CashAmount; // Type for representing cash
 84

Interfaces
interface Account {
//...

};

interface CheckingAccount : Account {
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook ();

};

interface SavingsAccount : Account {
float calculateInterest ();

};
};

An object that implements CheckingAccount can accept invocations on any
of its own attributes and operations and on any of the elements of interface
Account. However, the actual implementation of elements in a
CheckingAccount object can differ from the implementation of corresponding
elements in an Account object. IDL inheritance only ensures
type-compatibility of operations and attributes between base and derived
interfaces.

Multiple Inheritance
The following IDL definition expands module BankDemo to include interface
PremiumAccount, which inherits from two interfaces, CheckingAccount and
SavingsAccount:

module BankDemo {
interface Account {

//...
};

interface CheckingAccount : Account {
//...

};

interface SavingsAccount : Account {
//...

};

interface PremiumAccount :
CheckingAccount, SavingsAccount {
85

Chapter 4 | Defining Interfaces
//...
};

};

Figure 16 shows the inheritance hierarchy for this interface.

Multiple inheritance can lead to name ambiguity among elements in the base
interfaces. The following constraints apply:

• Names of operations and attributes must be unique across all base
interfaces.

• If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance of the Object Interface
All user-defined interfaces implicitly inherit the predefined interface Object.
Thus, all Object operations can be invoked on any user-defined interface.
You can also use Object as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter. For example, the
following operation getAnyObject() serves as an all-purpose object locator:

Figure 16: Multiple inheritance of IDL interfaces

Account

SavingsAccountCheckingAccount

PremiumAccount
 86

Interfaces
interface ObjectLocator {
void getAnyObject (out Object obj);

};

Note: It is illegal IDL syntax to inherit interface Object explicitly.

Inheritance Redefinition
A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed. In the following
example, interface CheckingAccount modifies the definition of exception
InsufficientFunds, which it inherits from Account:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
//...
interface Account {

exception InsufficientFunds {};
//...

};
interface CheckingAccount : Account {

exception InsufficientFunds {
CashAmount overdraftLimit;

};
};
//...

};

Note: While a derived interface definition cannot override base operations or
attributes, operation overloading is permitted in interface implementations for
those languages such as C++ that support it.
87

Chapter 4 | Defining Interfaces
Forward Declaration of IDL Interfaces

An IDL interface must be declared before another interface can reference it. If
two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

For example, IDL interface Bank defines two operations that return references
to Account objects—create_account() and find_account(). Because
interface Bank precedes the definition of interface Account, Account is
forward-declared as follows:

module BankDemo
{

typedef float CashAmount; // Type for representing cash
typedef string AccountId; // Type for representing account ids

// Forward declaration of Account
interface Account;

// Bank interface...used to create Accounts
interface Bank {

exception AccountAlreadyExists { AccountId account_id; };
exception AccountNotFound { AccountId account_id; };

Account
find_account(in AccountId account_id)
raises(AccountNotFound);

Account
create_account(

in AccountId account_id,
in CashAmount initial_balance

) raises (AccountAlreadyExists);
};

// Account interface...used to deposit, withdraw, and query
// available funds.
interface Account {

//...
};

};
 88

Interfaces
Local Interfaces

An interface declaration that contains the keyword local defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An object
that implements a local interface is a local object.

Local interfaces differ from unconstrained interfaces in the following ways:

• A local interface can inherit from any interface, whether local or
unconstrained. However, an unconstrained interface cannot inherit from
a local interface.

• Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

• Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.

• Local types cannot be marshaled, and references to local objects cannot
be converted to strings through ORB::object_to_string(). Attempts to
do so throw a CORBA::MARSHAL exception.

• Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DII
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such as is_a() or
validate_connection(). Attempts to do so throw a CORBA::
NO_IMPLEMENT exception.

• The ORB does not mediate any invocation on a local object. Thus, local
interface implementations are responsible for providing the parameter
copy semantics that a client expects.

• Instances of local objects that the OMG defines as supplied by ORB
products are exposed either directly or indirectly through ORB::
resolve_initial_references().

Local interfaces are implemented by CORBA::LocalObject to provide
implementations of Object pseudo operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the LocalObject type is only defined by each language
mapping.
89

Chapter 4 | Defining Interfaces
The LocalObject type implements the following Object pseudo-operations to
throw an exception of NO_IMPLEMENT:

is_a()
get_interface()
get_domain_managers()
get_policy()
get_client_policy()
set_policy_overrides()
get_policy_overrides()
validate_connection()

CORBA::LocalObject also implements the pseudo-operations shown in
Table 2:

Valuetypes
Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data such
as linked lists, graphs, and dates.

Valuetypes can be seen as a cross between data types such as long and
string that can be passed by value over the wire as arguments to remote
invocations, and objects, which can only be passed by reference. When a
program supplies an object reference, the object remains in its original
location; subsequent invocations on that object from other address spaces
move across the network, rather than the object moving to the site of each
request.

Table 2: CORBA::LocalObject pseudo-operation returns

Operation Always returns:

non_existent() False

hash() A hash value that is consistent with the object’s
lifetime

is_equivalent() True if the references refer to the same LocalObject
implementation.
 90

Abstract Interfaces
Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is passed
as an argument to a remote operation, the receiving address space creates a
copy it of it. The copied valuetype exists independently of the original;
operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype’s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.

Abstract Interfaces
An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value. For example, the following IDL
definitions specify that operation Example::display() accepts any derivation
of abstract interface Describable:

abstract interface Describable {
string get_description();

};

interface Example {
void display(in Describable someObject);

};

Given these definitions, you can define two derivations of abstract interface
Describable, valuetype Currency and interface Account:

interface Account : Describable {
// body of Account definition not shown

};
91

Chapter 4 | Defining Interfaces
valuetype Currency supports Describable {
// body of Currency definition not shown

};

Because the parameter for display() is defined as a Describable type,
invocations on this operation can supply either Account objects or Currency
valuetypes.

All abstract interfaces implicitly inherit from native type CORBA::
AbstractBase, and map to C++ abstract base classes. Abstract interfaces
have several characteristics that differentiate them from interfaces:

• The GIOP encoding of an abstract interface contains a boolean
discriminator to indicate whether the adjoining data is an IOR (TRUE) or
a value (FALSE). The demarshalling code can thus determine whether
the argument passed to it is an object reference or a value.

• Unlike interfaces, abstract interfaces do not inherit from CORBA::Object,
in order to allow support for valuetypes. If the runtime argument
supplied to an abstract interface type can be narrowed to an object
reference type, then CORBA::Object operations can be invoked on it.

• Because abstract interfaces can be derived by object references or by
value types, copy semantics cannot be guaranteed for value types that
are supplied as arguments to its operations.

• Abstract interfaces can only inherit from other abstract interfaces.

IDL Data Types
In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

• Built-in types such as short, long, and float
• Extended built-in types such as long long and wstring
• Complex types such as enum and struct, and string
• Pseudo objects
 92

IDL Data Types
Built-in Types

Table 3 lists built-in IDL types.

Integer Types
IDL supports short and long integer types, both signed and unsigned. IDL
guarantees the range of these types. For example, an unsigned short can hold
values between 0-65535. Thus, an unsigned short value always maps to a
native type that has at least 16 bits. If the platform does not provide a native
16-bit type, the next larger integer type is used.

Table 3: Built-in IDL types

Data type Size Range of values

short ≥ 16 bits -215...215-1

unsigned short ≥ 16 bits 0...216-1

long ≥ 32 bits –231...231-1

unsigned long ≥ 32 bits 0...232-1

float ≥ 32 bits IEEE single-precision floating point numbers

double ≥ 64 bits IEEE double-precision floating point numbers

char ≥ 8 bits ISO Latin-1

string variable length ISO Latin-1, except NUL

string<bound> variable length ISO Latin-1, except NUL

boolean unspecified TRUE or FALSE

octet ≥ 8 bits 0x0 to 0xff

any variable length Universal container type
93

Chapter 4 | Defining Interfaces
Floating Point Types
Types float and double follow IEEE specifications for single- and
double-precision floating point values, and on most platforms map to native
IEEE floating point types.

char
Type char can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are reserved
for special characters in various European languages, such as accented
vowels.

String Types
Type string can hold any character from the ISO Latin-1 character set
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as string<10>, can hold only the number of characters
specified by the bounds, excluding the terminating NUL character. Thus, a
string<6> can contain the six-character string cheese.

The declaration statement can optionally specify the string’s maximum
length, thereby determining whether the string is bounded or unbounded:

string[<length>] name

For example, the following code declares data type ShortString, which is a
bounded string whose maximum length is 10 characters:

typedef string<10> ShortString;
attribute ShortString shortName; // max length is 10 chars

octet
Octet types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using type char for binary data, inasmuch as characters might be subject to
translation during transmission. For example, if client that uses ASCII sends a
string to a server that uses EBCDIC, the sender and receiver are liable to have
different binary values for the string’s characters.
 94

IDL Data Types
any
Type any allows specification of values that express any IDL type, which is
determined at runtime. An any logically contains a TypeCode and a value that
is described by the TypeCode. For more information about the any data type,
see Chapter 15 on page 303.

Extended Built-in Types

Table 4 lists extended built-in IDL types.

long long
The 64-bit integer types long long and unsigned long long support
numbers that are too large for 32-bit integers. Platform support varies. If you
compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

long double
Like 64-bit integer types, platform support varies for long double, so usage
can yield IDL compiler errors.

Table 4: Extended built-in IDL types

Data type Size Range of values

long long ≥ 64 bits –263...263-1

unsigned long long ≥ 64 bits 0...-264-1

long double ≥ 79 bits IEEE double-extended floating point number, with
an exponent of at least 15 bits in length and
signed fraction of at least 64 bits. long double
type is currently not supported on Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable length Arbitrary codesets

fixed Unspecified ≥ 31 significant digits
95

Chapter 4 | Defining Interfaces
wchar
Type wchar encodes wide characters from any character set. The size of a
wchar is platform-dependent. Because Orbix currently does not support
character set negotiation, use this type only for applications that are
distributed across the same platform.

wstring
Type wstring is the wide-character equivalent of type string (see page 94).
Like string-types, wstring types can be unbounded or bounded. Wide
strings can contain any character except NUL.

fixed
Type fixed provides fixed-point arithmetic values with up to 31 significant
digits. You specify a fixed type with the following format:

typedef fixed< digit-size, scale > name

digit-size specifies the number’s length in digits. The maximum value for
digit-size is 31 and must be greater than scale. A fixed type can hold any
value up to the maximum value of a double.

If scale is a positive integer, it specifies where to place the decimal point
relative to the rightmost digit. For example the following code declares fixed
data type CashAmount to have a digit size of 8 and a scale of 2:

typedef fixed<10.2> CashAmount;

Given this typedef, any variable of type CashAmount can contain values of up
to (+/-)99999999.99.

If scale is negative, the decimal point moves to the right scale digits,
thereby adding trailing zeros to the fixed data type’s value. For example, the
following code declares fixed data type bigNum to have a digit size of 3 and a
scale of -4:

typedef fixed <3,-4> bigNum;
bigNum myBigNum;

If myBigNum has a value of 123, its numeric value resolves to 1230000.
Definitions of this sort let you store numbers with trailing zeros efficiently.
 96

IDL Data Types
Constant fixed types can also be declared in IDL, where digit-size and
scale are automatically calculated from the constant value. For example:

module Circle {
const fixed pi = 3.142857;

};

This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEEE floating-point values, type fixed is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

Type fixed is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

Complex Data Types

IDL provides the following complex data types:

• enum

• struct

• union

• multi-dimensional fixed-size arrays
• sequence

enum
An enum (enumerated) type lets you assign identifiers to the members of a
set of values. For example, you can modify the BankDemo IDL with enum type
balanceCurrency:

module BankDemo {
enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;
//...

};
97

Chapter 4 | Defining Interfaces
};

In this example, attribute balanceCurrency in interface Account can take any
one of the values pound, dollar, yen, or franc.

The actual ordinal values of a enum type vary according to the actual language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus, in
the previous example, dollar is greater than pound, yen is greater than
dollar, and so on. All enumerators are mapped to a 32-bit type.

struct
A struct data type lets you package a set of named members of various
types. In the following example, struct CustomerDetails has several
members. Operation getCustomerDetails() returns a struct of type
CustomerDetails that contains customer data:

module BankDemo{
struct CustomerDetails {

string custID;
string lname;
string fname;
short age;
//...

};

interface Bank {
CustomerDetails getCustomerDetails

(in string custID);
//...

};
};

A struct must include at least one member. Because a struct provides a
naming scope, member names must be unique only within the enclosing
structure.
 98

IDL Data Types
union
A union data type lets you define a structure that can contain only one of
several alternative members at any given time. A union saves space in
memory, as the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

union name switch (discriminator) {
case label1 : element-spec;
case label2 : element-spec;
[...]
case labeln : element-spec;
[default : element-spec;]

};

All IDL unions are discriminated. A discriminated union associates a constant
expression (label1..labeln) with each member. The discriminator’s value
determines which of the members is active and stores the union’s value.

For example, the following code defines the IDL union Date, which is
discriminated by an enum value:

enum dateStorage
{ numeric, strMMDDYY, strDDMMYY };

struct DateStructure {
short Day;
short Month;
short Year;

};

union Date switch (dateStorage) {
case numeric: long digitalFormat;
case strMMDDYY:
case strDDMMYY: string stringFormat;
default: DateStructure structFormat;

};

Given this definition, if Date’s discriminator value is numeric, then
digitalFormat member is active; if the discriminator’s value is strMMDDYY
or strDDMMYY, then member stringFormat is active; otherwise, the default
member structFormat is active.
99

Chapter 4 | Defining Interfaces
The following rules apply to union types:

• A union’s discriminator can be integer, char, boolean or enum, or an
alias of one of these types; all case label expressions must be
compatible with this type.

• Because a union provides a naming scope, member names must be
unique only within the enclosing union.

• Each union contains a pair of values: the discriminator value and the
active member.

• IDL unions allow multiple case labels for a single member. In the
previous example, member stringFormat is active when the
discriminator is either strMMDDYY or strDDMMYY.

• IDL unions can optionally contain a default case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

Arrays
IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax:

[typedef] element-type array-name [dimension-spec]...

dimension-spec must be a non-zero positive constant integer expression. IDL
does not allow open arrays. However, you can achieve equivalent
functionality with sequence types (see page 101).

For example, the following code fragment defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfolio[MAX_ACCT_TYPES][MAX_ACCTS]

An array must be named by a typedef declaration (see “Defining Data
Types” on page 102) in order to be used as a parameter, an attribute, or a
return value. You can omit a typedef declaration only for an array that is
declared within a structure definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example C and C++ array
indexes always start at 0, while Pascal uses an origin of 1. Consequently,
clients and servers cannot portably exchange array indexes unless they both
 100

IDL Data Types
agree on the origin of array indexes and make adjustments as appropriate for
their respective implementation languages. Usually, it is easier to exchange
the array element itself instead of its index.

sequence
IDL supports sequences of any IDL data type with the following syntax:

[typedef] sequence < element-type[, max-elements] > sequence-name

An IDL sequence is similar to a one-dimensional array of elements; however,
its length varies according to its actual number of elements, so it uses
memory more efficiently.

A sequence must be named by a typedef declaration (see “Defining Data
Types” on page 102) in order to be used as a parameter, an attribute, or a
return value. You can omit a typedef declaration only for a sequence that is
declared within a structure definition.

A sequence’s element type can be of any type, including another sequence
type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

• Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

• Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimitedAccounts {
string bankSortCode<10>;
sequence<Account, 50> accounts; // max sequence length is 50

};

struct UnlimitedAccounts {
string bankSortCode<10>;
sequence<Account> accounts; // no max sequence length

};
101

Chapter 4 | Defining Interfaces
Pseudo Object Types

CORBA defines a set of pseudo object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping
for interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

CORBA::NamedValue
CORBA::TypeCode

To use these types in an IDL specification, include the file orb.idl in the IDL
file as follows:

#include <orb.idl>
//...

This statement tells the IDL compiler to allow types NamedValue and
TypeCode.

Defining Data Types
With typedef, you can define more meaningful or simpler names for existing
data types, whether IDL-defined or user-defined. The following code defines
typedef identifier StandardAccount, so it can act as an alias for type
Account in later IDL definitions:

module BankDemo {
interface Account {

//...
};

typedef Account StandardAccount;
};
 102

Constants
Constants
IDL lets you define constants of all built-in types except type any. To define a
constant’s value, you can either use another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

Integer Constants

IDL accepts integer literals in decimal, octal, or hexadecimal:

const short I1 = -99;
const long I2 = 0123; // Octal 123, decimal 83
const long long I3 = 0x123; // Hexadecimal 123, decimal 291
const long long I4 = +0xaB; // Hexadecimal ab, decimal 171

Both unary plus and unary minus are legal.

Floating-Point Constants

Floating-point literals use the same syntax as C++:

const float f1 = 3.1e-9; // Integer part, fraction part,
// exponent

const double f2 = -3.14; // Integer part and fraction part
const long double f3 = .1 // Fraction part only
const double f4 = 1. // Integer part only
const double f5 = .1E12 // Fraction part and exponent
const double f6 = 2E12 // Integer part and exponent

Character and String Constants

Character constants use the same escape sequences as C++:

const char C1 = 'c'; // the character c
const char C2 = '\007'; // ASCII BEL, octal escape
const char C3 = '\x41'; // ASCII A, hex escape
const char C4 = '\n'; // newline
const char C5 = '\t'; // tab
const char C6 = '\v'; // vertical tab
const char C7 = '\b'; // backspace
103

Chapter 4 | Defining Interfaces
const char C8 = '\r'; // carriage return
const char C9 = '\f'; // form feed
const char C10 = '\a'; // alert
const char C11 = '\\'; // backslash
const char C12 = '\?'; // question mark
const char C13 = '\''; // single quote
// String constants support the same escape sequences as C++
const string S1 = "Quote: \""; // string with double quote
const string S2 = "hello world"; // simple string
const string S3 = "hello" " world"; // concatenate
const string S4 = "\xA" "B"; // two characters

// ('\xA' and 'B'),
// not the single character '\xAB'

Wide Character and String Constants

Wide character and string constants use C++ syntax. Use Universal
character codes to represent arbitrary characters. For example:

const wchar C = L'X';
const wstring GREETING = L"Hello";
const wchar OMEGA = L'\u03a9';
const wstring OMEGA_STR = L"Omega: \u3A9";

Note: IDL files themselves always use the ISO Latin-1 code set, they cannot
use Unicode or other extended character sets.

Boolean Constants

Boolean constants use the keywords FALSE and TRUE. Their use is
unnecessary, inasmuch as they create needless aliases:

// There is no need to define boolean constants:
const CONTRADICTION = FALSE; // Pointless and confusing
const TAUTOLOGY = TRUE; // Pointless and confusing

Octet Constants

Octet constants are positive integers in the range 0-255.
 104

Constants
const octet O1 = 23;
const octet O2 = 0xf0;

Note: Octet constants were added with CORBA 2.3, so ORBs that are not
compliant with this specification might not support them.

Fixed-Point Constants

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

// Fixed point constants take digits and scale from the
// initialiser:
const fixed val1 = 3D; // fixed<1,0>
const fixed val2 = 03.14d; // fixed<3,2>
const fixed val3 = -03000.00D; // fixed<4,0>
const fixed val4 = 0.03D; // fixed<3,2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Note: Currently, there is no way to control the scale of a constant if it ends
in trailing zeros.

Enumeration Constants

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { small, medium, large }

const Size DFL_SIZE = medium;
const Size MAX_SIZE = ::large;
105

Chapter 4 | Defining Interfaces
Note: Enumeration constants were added with CORBA 2.3, so ORBs that
are not compliant with this specification might not support them.

Constant Expressions
IDL provides a number of arithmetic and bitwise operators.

Arithmetic Operators

The arithmetic operators have the usual meaning and apply to integral,
floating-point, and fixed-point types (except for %, which requires integral
operands). However, these operators do not support mixed-mode arithmetic;
you cannot, for example, add an integral value to a floating-point value. The
following code contains several examples:

// You can use arithmetic expressions to define constants.
const long MIN = -10;
const long MAX = 30;
const long DFLT = (MIN + MAX) / 2;

// Can't use 2 here
const double TWICE_PI = 3.1415926 * 2.0;

// 5% discount
const fixed DISCOUNT = 0.05D;
const fixed PRICE = 99.99D;

// Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DISCOUNT);

Expressions are evaluated using the type promotion rules of C++. The result
is coerced back into the target type. The behavior for overflow is undefined,
so do not rely on it. Fixed-point expressions are evaluated internally with 62
bits of precision, and results are truncated to 31 digits.
 106

Constant Expressions
Bitwise Operators

The bitwise operators only apply to integral types. The right-hand operand
must be in the range 0–63. Note that the right-shift operator >> is
guaranteed to inject zeros on the left, whether the left-hand operand is signed
or unsigned:

// You can use bitwise operators to define constants.
const long ALL_ONES = -1; // 0xffffffff
const long LHW_MASK = ALL_ONES << 16; // 0xffff0000
const long RHW_MASK = ALL_ONES >> 16; // 0x0000ffff

IDL guarantees two’s complement binary representation of values.

Precedence

The precedence for operators follows the rules for C++. You can override the
default precedence by adding parentheses.
107

Chapter 4 | Defining Interfaces
 108

Developing Applications with
Genies
The code generation toolkit is packaged with several genies
that can help your development effort get off to a fast start.

Two genies generate code that you can use immediately for application
development:

• cpp_poa_genie.tcl reads IDL code and generates C++ source files
that you can compile into a working application.

• cpp_poa_op.tcl generates the C++ signatures of specified operations
and attributes and writes them to a file. You can use this genie on new
or changed interfaces, then update existing source code with the
generated signatures.

Starting Development Projects
The C++ genie cpp_poa_genie.tcl creates a complete, working client and
server directly from your IDL interfaces. You can then add application logic to
the generated code. This can improve productivity in two ways:

• The outlines of your application—class declarations and operation
signatures—are generated for you.

• A working system is available immediately, which you can incrementally
modify and test. With the generated makefile, you can build and test
modifications right away, thereby eliminating much of the overhead that
is usually associated with getting a new project underway.

In a genie-generated application, the client invokes every operation and each
attribute’s get and set methods, and directs all display to standard output.
The server also writes all called operations to standard output.
109

Chapter 5 | Developing Applications with Genies
This client/server application achieves these goals:

• Demonstrates or tests an Orbix client/server application for a particular
interface or interfaces.

• Provides a starting point for your application.
• Shows the right way to initialize and pass parameters, and to manage

memory for various IDL data types.

Genie Syntax

cpp_poa_genie.tcl uses the following syntax:

idlgen cpp_poa_genie.tcl component-spec [options] idl-file

You must specify an IDL file. You must also specify the application
components to generate, either all components at once, or individual
components, with one of the arguments in Table 5:

Each component specifier can take its own arguments. For more information
on these, refer to the discussion on each component later in this chapter.

Table 5: Component specifier arguments to cpp_poa_genie.tcl

Component specifier Output

-all All components: server, servant, client,
and makefile (see page 111).

-servant Servant classes to implement the
selected interfaces (see page 114).

-server Server main program (see page 118)

-client Client main program (see page 121).

-makefile A makefile to compile server and client
applications (see page 122).
 110

Starting Development Projects
You can also supply one or more of the optional switches shown in Table 6:

Specifying Application Components

The -all argument generates the files that implement all application
components: server, servant, client, and makefile. For example, the following
command generates all the files required for an application that is based on
bankdemo.idl:

> idlgen cpp_poa_genie.tcl -all bankdemo.idl

bankdemo.idl:
idlgen: creating BankDemo_BankImpl.h
idlgen: creating BankDemo_BankImpl.cxx
idlgen: creating BankDemo_AccountImpl.h
idlgen: creating BankDemo_AccountImpl.cxx
idlgen: creating server.cxx
idlgen: creating client.cxx
idlgen: creating call_funcs.h
idlgen: creating call_funcs.cxx
idlgen: creating it_print_funcs.h
idlgen: creating it_print_funcs.cxx

Table 6: Optional switches to cpp_poa_genie.tcl

Option Description

-complete/-incomplete Controls the completeness of the code
that is generated for the specified
components (see page 122).

-dir Specifies where to generate file output
(see page 126).

-include Specifies to generate code for included
files (see page 113).

-interface-spec Specifies to generate code only for the
specified interfaces (see page 112).

-v/-s Controls the level of verbosity (see
page 126).
111

Chapter 5 | Developing Applications with Genies
idlgen: creating it_random_funcs.h
idlgen: creating it_random_funcs.cxx
idlgen: creating Makefile

Alternatively, you can use cpp_poa_genie.tcl to generate one or more
application components. For example, the following command specifies to
generate only those files that are required to implement a servant:

> idlgen cpp_poa_genie.tcl -servant bankdemo.idl

bankdemo.idl:
idlgen: creating BankDemo_BankImpl.h
idlgen: creating BankDemo_BankImpl.cxx
idlgen: creating BankDemo_AccountImpl.h
idlgen: creating BankDemo_AccountImpl.cxx
idlgen: creating it_print_funcs.h
idlgen: creating it_print_funcs.cxx
idlgen: creating it_random_funcs.h
idlgen: creating it_random_funcs.cxx

By generating output for application components selectively, you can control
genie processing for each one. For example, the following commands specify
different -dir options, so that server and servant files are output to one
directory, and client files are output to another:

> idlgen cpp_poa_genie.tcl -servant - server bankdemo.idl
-dir c:\app\server

> idlgen cpp_poa_genie.tcl -client bankdemo.idl -dir c:
\app\client

Selecting Interfaces

By default, cpp_poa_genie.tcl generates code for all interfaces in the
specified IDL file. You can specify to generate code for specific interfaces
within the file by supplying their fully scoped names. For example, the
following command specifies to generate code for the Bank interface in
bankdemo.idl:

> idlgen cpp_poa_genie.tcl -all BankDemo::Bank bankdemo.idl

You can also use wildcard patterns to specify the interfaces to process. For
example, the following command generates code for all interfaces in module
BankDemo:
 112

Starting Development Projects
> idlgen cpp_poa_genie.tcl BankDemo::* bankdemo.idl

The following command generates code for all interfaces in foo.idl with
names that begin with Foo or end with Bar.

> idlgen cpp_poa_genie.tcl foo.idl "Foo*" "*Bar"

Note: For interfaces defined inside modules, the wildcard is matched
against the fully scoped interface name, so Foo* matches FooModule::Y but
not BarModule::Foo.

Pattern matching is performed according to the rules of the TCL string
match command, which is similar to Unix or Windows filename matching.
Table 7 contains some common wildcard patterns:

Including Files

By default, java_poa_genie.tcl generates code only for the specified IDL
files. You can specify also to generate code for all #include files by supplying
the -include option. For example, the following command specifies to
generate code from bankdemo.idl and any IDL files that are included in it:

> idlgen cpp_poa_genie.tcl -all -include bankdemo.idl

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_include.

Table 7: Wildcard pattern matching to interface names

Wildcard pattern Matches...

* Any string

? Any single character

[xyz] x, y, or z.
113

Chapter 5 | Developing Applications with Genies
Implementing Servants

The -servant option generates POA servant classes that implement IDL
interfaces. For example, this command generates a class header and
implementation code for each interface that appears in IDL file
bankdemo.idl:

idlgen cpp_poa_genie.tcl -servant bankdemo.idl

The genie constructs the implementation class name from the scoped name
of the interface, replacing double colons (::) with an underscore (_) and
adding a suffix—by default, Impl.. The default suffix is set in the
configuration file through default.cpp.impl_class_suffix.

For example, BankDemo::Account is implemented by class
BankDemo_AccountImpl. The generated implementation class contains these
components:

• A static _create() member method to create a servant.
• A member method to implement each IDL operation for the interface.

The -servant option can take one or more arguments, shown in Table 8,
that let you control how servant classes are generated:

Table 8: Arguments that control servant generation

Argument Purpose

-tie
-notie

Choose the inheritance or tie (delegation) method
for implementing servants.

-inherit
-noinherit

Choose whether implementation classes follow the
same inheritance hierarchy as the IDL interfaces
they implement.
 114

Starting Development Projects
The actual content and behavior of member methods is determined by the
-complete or -incomplete flag. For more information, see “Controlling Code
Completeness” on page 122.

-tie/-notie

A POA servant is either an instance of a class that inherits from a POA
skeleton, or an instance of a tie template class that delegates to a separate
implementation class. You can choose the desired approach by supplying
-tie or -notie options. The default for this option is set in the configuration
file through default.cpp_poa_genie.want_tie.

With -notie, the genie generates servants that inherit directly from POA
skeletons. For example:

class BankDemo_AccountImpl : public virtual POA_BankDemo::Account

The _create() method constructs a servant as follows:

// C++
POA_BankDemo::Account*
BankDemo_AccountImpl::_create(PortableServer::POA_ptr the_poa)
{

return new BankDemo_AccountImpl(the_poa);
}

-default_poa arg Determines the behavior of implicit activation,
which uses the default POA associated with a
given servant. default_poa can take one of these
arguments:

• per_servant: Set the correct default POA for
each servant.

• exception: Throw an exception on all
attempts at implicit activation.

For more information, see page 237.

-refcount
-norefcount

Choose whether or not servants are reference
counted.

Table 8: Arguments that control servant generation

Argument Purpose
115

Chapter 5 | Developing Applications with Genies
With -tie, the genie generates implementation classes that do not inherit
from POA skeletons. The following example uses a _create method to create
an implementation object (1), and a tie (2) that delegates to it:

// C++
POA_BankDemo::Account*
BankDemo_AccountImpl::_create(PortableServer::POA_ptr the_poa)
{

1 BankDemo_AccountImpl* tied_object =
new BankDemo_AccountImpl();

2 POA_BankDemo::Account* the_tie =
new POA_BankDemo_Account_tie<BankDemo_AccountImpl>(

tied_object,
the_poa

);
return the_tie;

}

Note: _create() is a useful genie convention that provides a consistent way
to create servants whether you use the tie approach or not. This helps
minimize the impact on your code if you change approaches during
development. You can also create servants and tie objects by calling the
constructors directly in your own code.

-inherit/-noinherit

IDL servant implementation classes typically have the same inheritance
hierarchy as the interfaces that they implement, but this is not required.

• -inherit generates implementation classes with the same inheritance
as the corresponding interfaces.

• -noinherit generates implementation classes that do not inherit from
each other. Instead, each implementation class independently
implements all operations for its IDL interface, including operations that
are inherited from other IDL interfaces.

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_inherit.
 116

Starting Development Projects
-default_poa

In the standard CORBA C++ mapping, each servant class provides a
_this() method, which generates an object reference and implicitly activates
that object with the servant. Implicit activation calls _default_POA() on the
same servant to determine the POA in which this object is activated. Unless
you specify otherwise, _default_POA() returns the root POA, which is
typically not the POA where you want to activate objects.

The code that cpp_poa_genie.tcl generates always overrides
_default_POA() in a way that prevents implicit activation. Applications
generated by this genie can only activate objects explicitly. Two options are
available that determine how to override _default_POA():

• per_servant: (default) Servant constructors and generated _create()
methods takes a POA parameter. For each servant, _default_POA()
returns the POA specified when the servant was created.

• exception: _default_POA() throws a CORBA::INTERNAL system
exception. This option is useful in a group development environment, in
that it allows tests to easily catch any attempts at implicit activation.

For more information about explicit and implicit activation, see page 236.

-refcount/-norefcount
Multi-threaded servers need to reference-count their servants in order to
avoid destroying a servant on one thread that is still in use on another. The
POA specification provides the standard functions _add_ref() and
_remove_ref() to support reference counting, but by default they do nothing.

• -refcount generates servants that inherit from the standard class
PortableServer::RefCountServantBase, which enables reference
counting. For example:
class BankDemo_AccountImpl
: public virtual POA_BankDemo::Account,
public virtual PortableServer::RefCountServantBase

• -norefcount specifies that servants do not inherit from
RefCountServantBase.

The -refcount option is automatically enabled if you use the -threads
option (see page 119).
117

Chapter 5 | Developing Applications with Genies
The default for this option is set in the configuration file through
default.cpp_poa_genie.want_refcount.

Note: -refcount is invalid with -tie. The genie issues a warning if you
combine these options. Tie templates as defined in the POA standard do not
support reference counting, and the genie cannot change their inheritance. It
is recommended that you do not use the tie approach for multi-threaded
servers.

Implementing the Server Mainline

The -server option generates a simple server mainline that activates and
exports some objects. For example, the following command generates a file
called server.cxx that contains a main program:

> idlgen cpp_poa_genie.tcl -server bankdemo.idl

The server program performs the following steps:

1. Initializes the ORB and POA.

2. Installs a signal handler to shut down gracefully if the server is killed via
SIGTERM on Unix or a CTRL-C event on Windows.

3. For each interface:

♦ Activates a CORBA object of that interface.

♦ Exports a reference either to the naming service or to a file,
depending on whether you set the option -ns or -nons.

4. Catches any exceptions and print a message.
 118

Starting Development Projects
The -server option can take one or more arguments, shown in Table 9, that
let you modify server behavior:

-threads/-nothreads

The -nothreads option sets the SINGLE_THREAD_MODEL policy on all POAs in
the server, which ensures that all calls to application code are made in the
main thread. This policy allows a server to run thread-unsafe code, but might
reduce performance because the ORB can dispatch only one operation at a
time.

The -threads option sets the ORB_CTRL_MODEL policy on all POAs in the
server, allowing the ORB to dispatch incoming calls in multiple threads
concurrently.

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_threads.

Table 9: Options affecting the server

Command line option Purpose

-threads
-nothreads

Choose a single or multi-threaded server. The
-threads argument also implies -refcount
(see page 117).

-strategy simple Create servants during start-up.

-strategy activator Create servants on demand with a servant
activator.

-strategy locator Create servants per call with a servant
locator.

-strategy
default_servant

For each interface, generate a POA that uses
a default servant.

-ns
-nons

Determines how to export object references:

• -ns: use the naming service to publish
object references.

• -nons: write object references to a file.
119

Chapter 5 | Developing Applications with Genies
Note: If you enable multi-threading, you must ensure that your application
code is thread-safe and application data structures are adequately protected
by thread-synchronization calls.

-strategy Options

The POA is a flexible tool that lets servers manage objects with different
strategies. Some servers can use a combination of strategies for different
objects. You can use the genie to generate examples of each strategy, then
cut-and-paste the appropriate generated code into your own server.

You set a server’s object management strategy through one of the following
arguments to the -strategy option:

• -strategy simple: The server creates a POA with a policy of
USE_ACTIVE_OBJECT_MAP_ONLY (see page 229). For each interface in the
IDL file, the server main() creates a servant, activates it with the POA as
a CORBA object, and exports an object reference. After the ORB is shut
down, main() deletes the servants.

This strategy is appropriate for servers that implement a small, fixed set
of objects.

• -strategy activator: The server creates a POA and a servant activator
(see “Servant Activators” on page 251). For each interface, the server
exports an object reference. The object remains inactive until a client
first calls on its reference; then, the servant activator is invoked and
creates the appropriate servant, which remains in memory to handle
future calls on that reference. The servant activator deletes the servants
when the POA is destroyed.

This strategy lets the server start receiving requests immediately and
defer creation of servants until they are needed. It is useful for servers
that normally activate just a few objects out of a large collection on each
run, or for servants that take a long time to initialize.

• -strategy locator: The server creates a POA and a servant locator (see
“Servant Locators” on page 256). The server exports references, but all
objects are initially inactive. For every incoming operation, the POA asks
 120

Starting Development Projects
the servant locator to select an appropriate servant. The generated
servant locator creates a servant for each incoming operation, and
deletes it when the operation is complete.

A servant locator is ideal for managing a cache of servants from a very
large collection of objects in a database. You can replace the preinvoke
and postinvoke methods in the generated locator with code that looks
for servants in a database cache, loads them into the cache if required,
and deletes old servants when the cache is full.

• -strategy default_servant: The server creates a POA for each
interface, and defines a default servant for each POA to handle incoming
requests. A server that manages requests for many objects that all use
the same interface should probably have a POA that maps all these
requests to the same default servant. For more information about using
default servants, see “Setting a Default Servant” on page 264.

-ns/-nons

Determines how the server exports object references to the application:

• -ns: Use the naming service to publish object references. For each
interface, the server binds a reference that uses the interface name, in
naming context IT_GenieDemo. For example, for interface Demo_Bank, the
genie binds the reference IT_GenieDemo/BankDemo_Bank. If you use this
option, the naming service and locator daemon must be running when
you start the server.

For more information about the naming service, see Chapter 18 on
page 377.

• -nons: Write stringified object references to a file. For each interface, the
server exports a reference to a file named after the interface with the
suffix ref—for example BankDemo_Bank.ref

The default for this option is set in the configuration file through
default.cpp_poa_genie.

Implementing a Client

The -client option generates client source code in client.cxx. For
example:
121

Chapter 5 | Developing Applications with Genies
> idlgen cpp_poa_genie.tcl -client bank.idl

When you run this client, it performs the following actions for each interface:

1. Reads an object reference from the file generated by the server—for
example, BankDemo_Bank.ref.

2. If generated with the -complete option, for each operation:

♦ Calls the operation and passes random values.

♦ Prints out the results.

3. Catches raised exceptions and prints an appropriate message.

Generating a Makefile

The -makefile option generates a makefile that can build the server and
client applications. The makefile provides the following targets

• all: Compile and link the client and server.
• clean: Delete files created during compile and link.
• clean_all: Like clean, it also deletes all the source files generated by

idlgen, including the makefile itself.

To build the client and server, enter nmake (Windows) or make (UNIX).

Controlling Code Completeness

You can control the extent of the code that is generated for each interface
through the -complete and -incomplete options. These options are valid for
server, servant, and client code generation.

The default for this option is set in the configuration file through
default.cpp_poa_genie.want_complete.

For example, the following commands generate complete servant and client
code and incomplete server mainline code:

> idlgen cpp_poa_genie.tcl -servant -complete bankdemo.idl
> idlgen cpp_poa_genie.tcl -client -complete bankdemo.idl
> idlgen cpp_poa_genie.tcl -server -incomplete bankdemo.idl

Setting the -complete option on servant, server, and client components
yields a complete application that you can compile and run. The application
performs these tasks:
 122

Starting Development Projects
• The client application calls every operation in the server application and
passes random values as in parameters.

• The server application returns random values for inout/out parameters
and return values.

• Client and server print a message for each operation call, which includes
the values passed and returned.

Using the -complete option lets you quickly produce a demo or
proof-of-concept prototype. It also offers useful models for typical coding
tasks, showing how to initialize parameters properly, invoke operations,
throw and catch exceptions, and perform memory management.

If you are familiar with calling and parameter passing rules and simply want
a starting point for your application, you probably want to use the
-incomplete option. This option produces minimal code, omitting the bodies
of operations, attributes, and client-side invocations.

The sections that follow describe, for each application component, the
differences between complete and incomplete code generation. All examples
assume the following IDL for interface Account:

// IDL:
module BankDemo
{

// Other interfaces and type definitions omitted...
interface Account
{

exception InsufficientFunds {};
readonly attribute AccountId account_id;
readonly attribute CashAmount balance;
void withdraw(

in CashAmount amount
) raises (InsufficientFunds);

void
deposit(

in CashAmount amount
);

};
}

123

Chapter 5 | Developing Applications with Genies
Servant Code
Setting -complete servant and -incomplete servant yields the required
source files for each IDL interface. Either option generate the following files
for interface Account:

BankDemo_AccountImpl.h
BankDemo_AccountImpl.cxx

Incomplete Servant

The -incomplete option specifies to generate servant class
BankDemo_AccountImpl, which implements the BankDemo::Account
interface. The implementation of each operation and attribute throws a
CORBA::NO_IMPLEMENT exception.

For example, the following code is generated for the deposit() operation:

void
BankDemo_AccountImpl::deposit(

BankDemo::CashAmount amount
) throw(

CORBA::SystemException
)
{

throw CORBA::NO_IMPLEMENT();
}

All essential elements of IDL code are automatically generated, so you can
focus on writing the application logic for each IDL operation.

Complete Servant

The -complete option specifies to generate several files that provide the
functionality required to generate random values for parameter passing, and
to print those values:

it_print_funcs.h
it_print_funcs.cxx
it_random_funcs.h
it_random_funcs.cxx

Member methods are fully implemented to print parameter values and, if
required, return a value to the client. For example, the following code is
generated for the deposit() operation:
 124

Starting Development Projects
void
BankDemo_AccountImpl::deposit(

BankDemo::CashAmount amount
) throw(

CORBA::SystemException
)
{

// Diagnostics: print the values of "in" and "inout" parameters
cout << "BankDemo_AccountImpl::deposit(): "

<< "called with..."
<< endl;

cout << "\tamount = ";
IT_print_BankDemo_CashAmount(cout, amount, 3);
cout << endl;

// Diagnostics.
cout << "BankDemo_AccountImpl::deposit(): returning"

<< endl;

}

Client Code
In a completely implemented client, cpp_poa_genie.tcl generates the client
source file call_funcs.cxx, which contains method calls that invoke on all
operation and attributes of each object. Each method assigns random values
to the parameters of operations and prints out the values of parameters that
they send, and those that are received back as out parameters. Utility
methods to assign random values to IDL types are generated in the file
it_random_funcs.cxx, and utility methods to print the values of IDL types
are generated in the file it_print_funcs.cxx.

An incomplete client contains no invocations.

Both complete and incomplete clients catch raised exceptions and print
appropriate messages.
125

Chapter 5 | Developing Applications with Genies
General Options

You can supply switches that control cpp_poa_genie.tcl genie output:

-dir: By default, cpp_poa_genie.tcl writes all output files to the current
directory. With the -dir option, you can explicitly specify where to generate
file output.

-v/-s: By default, cpp_poa_genie.tcl runs in verbose (-v) mode. With the -s
option, you can silence all messaging.

Compiling the Application

To compile a genie-generated application, Orbix must be properly installed on
the client and server hosts:

1. Build the application using the makefile.

2. In separate windows, run first the server, then the client applications.

Generating Signatures of Individual Operations
IDL interfaces sometimes change during development. A new operation
might be added to an interface, or the signature of an existing operation
might change. When such a change occurs, you must update existing C++
code with the signatures of the new or modified operations. You can avoid
much of this work with the cpp_poa_op.tcl genie. This genie prints the
C++ signatures of specified operations and attributes to a file. You can then
paste these operations back into the application source files.

For example, you might add a new operation close() to interface BankDemo:
:Account. To generate the new operation, run the cpp_poa_op.tcl genie:

> idlgen cpp_poa_op.tcl bankdemo.idl "*::close"

idlgen: creating tmp
Generating signatures for BankDemo::Account::close

As in this example, you can use wildcards to specify the names of operations
or attributes. If you do not explicitly specify any operations or attributes, the
genie generates signatures for all operations and attributes.
 126

Configuration Settings
By default, wild cards are matched only against names of operations and
attributes in the specified IDL file. If you specify the -include option,
wildcards are also matched against all operations and attributes in the
included IDL files.

By default, cpp_poa_op.tcl writes generated operations to file tmp. You can
specify a different file name with the -o command-line option:

> idlgen cpp_poa_op.tcl bankdemo.idl -o ops.txt "*::close"

bankdemo.idl:
idlgen: creating ops.txt
Generating signatures for BankDemo::Account::close

Configuration Settings
The configuration file idlgen.cfg contains default settings for the C++ genie
cpp_poa_genie.tcl at the scope default.cpp_poa_genie.

Some other settings are not specific to cpp_poa_genie.tcl but are used by
the std/cpp_poa_boa_lib.tcl library, which maps IDL constructs to their
C++ equivalents. cpp_poa_genie.tcl uses this library extensively, so these
settings affect the output that it generates. They are held in the scope
default.cpp.

For a full listing of these settings, refer to the Orbix 2000 Code Generation
Toolkit Programmer’s Guide.
127

Chapter 5 | Developing Applications with Genies
 128

ORB Intialization and
Shutdown
The mechanisms for initializing and shutting down the ORB
on a client and a server are the same.

The main() of both sever and client must perform these steps:

• Initialize the ORB by calling CORBA::ORB_init().
• Shut down and destroy the ORB at the end of main(), by calling

shutdown() and destroy() on the ORB.

Orbix also provides its own IT_TerminationHandler class, which enables
applications to handle delivery of Ctrl-C and similar events in a portable
manner. For more information, see “Termination Handler” on page 219

Initializing the ORB Runtime
Before an application can start any CORBA-related activity, it must initialize
the ORB runtime by calling ORB_init(). ORB_init() returns an object
reference to the ORB object; this, in turn, lets the client obtain references to
other CORBA objects, and make other CORBA-related calls.

Calling within main()

It is common practice to set a global variable with the ORB reference, so the
ORB object is accessible to most parts of the code. However, you should call
ORB_init() only after you call main() to ensure access to command line
arguments. ORB_init() scans its arguments parameter for command-line
options that start with -ORB and removes them. The arguments that remain
can be assumed to be application-specific.
129

Chapter 6 | ORB Intialization and Shutdown
Supplying an ORB Name

You can supply an ORB name as an argument; this name determines the
configuration information that the ORB uses. If you supply null, Orbix uses
the ORB identifier as the default ORB name. ORB names and configuration
are discussed in the Orbix 2000 Administrator’s Guide.

C++ Mapping

ORB_init() is defined as follows:

namespace CORBA {

// ...
ORB_ptr ORB_init(

int & argc,
char ** aaccv,
const char * orb_identifier = ""

);
// ...

}

ORB_init() expects a reference to argc and a non-constant pointer to aaccv.
ORB_init() scans the passed argument vector for command-line options that
start with -ORB and removes them.

Registering Portable Interceptors

During ORB intialization, portable interceptors are instantiated and registered
through an ORB intializer. The client and server applications must register
the ORB initializer before calling ORB_init(). For more information, see
“Registering Portable Interceptors” on page 529.

Shutting Down the ORB
For maximum portability and to ensure against resource leaks, a client or
server should always shut down and destroy the ORB at the end of main():
 130

Shutting Down the ORB
• shutdown() stops all server processing, deactivates all POA managers,
destroys all POAs, and causes the run() loop to terminate. shutdown()
takes a single Boolean argument; if set to true, the call blocks until the
shutdown process completes before it returns control to the caller. If set
to false, a background thread is created to handle shutdown, and the
call returns immediately.

• destroy() destroys the ORB object and reclaims all resources
associated with it.
131

Chapter 6 | ORB Intialization and Shutdown
 132

Using Policies
Orbix supports a number of CORBA and proprietary policies
that control the behavior of application components.

Most policies are locality-constrained; that is, they apply only to the server or
client on which they are set. Therefore, policies can generally be divided into
server-side and client-side policies:

• Server-side policies generally apply to the processing of requests on
object implementations. Server-side policies can be set
programmatically and in the configuration, and applied to the server’s
ORB and its POAs.

• client-side policies apply to invocations that are made from the client
process on an object reference. Client-side policies can be set
programmatically and in the configuration, and applied to the client’s
ORB, to a thread, and to an object reference.

The procedure for setting policies programmatically is the same for both
client and server:

1. Create the CORBA::Policy object for the desired policy.

2. Add the Policy object to a PolicyList.

3. Apply the PolicyList to the appropriate target—ORB, POA, thread, or
object reference.

This chapter discusses issues that are common to all client and server
policies. For detailed information about specific policies, refer to the chapters
that cover client and POA development: “Developing a Client” on page 145,
and “Managing Server Objects” on page 221.
133

Chapter 7 | Using Policies
Creating Policy and PolicyList Objects
Two methods are generally available to create policy objects:

• To apply policies to a POA, use the appropriate policy factory from the
PortableServer::POA interface.

• Call ORB::create_policy() on the ORB.

 After you create the required policy objects, you add them to a PolicyList.
The PolicyList is then applied to the desired application component.

Using POA Policy Factories

The PortableServer::POA interface provides factories for creating CORBA::
Policy objects that apply only to a POA (see Table 13 on page 226). For
example, the following code uses POA factories to create policy objects that
specify PERSISTENT and USER_ID policies for a POA, and adds these policies
to a PolicyList.

CORBA::PolicyList policies;
policies.length (2);

// Use root POA to create POA policies
policies[0] = poa–>create_lifespan_policy

(PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy

(PortableServer::USER_ID)

Orbix also provides several proprietary policies to control POA behavior (see
page 226). These policies require you to call create_policy() on the ORB
to create Policy objects, as described in the next section.

Calling create_policy()

You call create_policy() on the ORB to create Policy objects. For example,
the following code creates a PolicyList that sets a SyncScope policy of
SYNC_WITH_SERVER; you can then use this PolicyList to set client policy
overrides at the ORB, thread, or object scope:
 134

Setting Orb and Thread Policies
#include <omg/messaging.hh>;
// ...
CORBA::PolicyList policies(1);
policies.length(1);
CORBA::Any policy_value;
policy_any <<= Messaging::SYNC_WITH_SERVER;

policies[0] = orb->create_policy(
Messaging::SYNC_SCOPE_POLICY_TYPE, policy_value);

Setting Orb and Thread Policies
The CORBA::PolicyManager interface provides the operations that a program
requires to access and set ORB policies. CORBA::PolicyCurrent is an empty
interface that simply inherits all PolicyManager operations; it provides
access to client-side policies at the thread scope.

ORB policies override system defaults, while thread policies override policies
set on a system or ORB level. You obtain a PolicyManager or PolicyCurrent
through resolve_initial_references():

• resolve_initial_references ("ORBPolicyManager") returns the
ORB’s PolicyManager. Both server- and client-side policies can be
applied at the ORB level.

• resolve_initial_references ("PolicyCurrent") returns a thread’s
PolicyCurrent. Only client-side policies can be applied to a thread.

The CORBA module contains the following interface definitions and related
definitions to manage ORB and thread policies:

module CORBA {
// ...

enum SetOverrideType
{

SET_OVERRIDE,
ADD_OVERRIDE

};

exception InvalidPolicies
{

sequence<unsigned short> indices;
135

Chapter 7 | Using Policies
};

interface PolicyManager {
PolicyList
get_policy_overrides(in PolicyTypeSeq ts);

void
set_policy_overrides(

in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);
};

interface PolicyCurrent : PolicyManager, Current
{
};
// ...

}

set_policy_overrides() overrides policies of the same PolicyType that are set
at a higher scope. The operation takes two arguments:

• A PolicyList sequence of Policy object references that specify the
policy overrides.

• An argument of type SetOverrideType:

ADD_OVERRIDE adds these policies to the policies already in effect.

SET_OVERRIDE removes all previous policy overrides and establishes the
specified policies as the only override policies in effect at the given
scope.

set_policy_overrides() returns a new proxy that has the specified policies
in effect; the original proxy remains unchanged.

To remove all overrides, supply an empty PolicyList and SET_OVERRIDE as
arguments.

get_policy_overrides() returns a PolicyList of object-level overrides that are
in effect for the specified PolicyTypes. The operation takes a single
argument, a PolicyTypeSeq that specifies the PolicyTypes to query. If the
 136

Setting Server-Side Policies
PolicyTypeSeq argument is empty, the operation returns with all overrides
for the given scope. If no overrides are in effect for the specified PolicyTypes,
the operation returns an empty PolicyList.

After get_policy_overrides() returns a PolicyList, you can iterate
through the individual Policy objects and obtain the actual setting in each
one by narrowing it to the appropriate derivation (see “Getting Policies” on
page 141).

Setting Server-Side Policies
Orbix provides a set of default policies that are effective if no policy is
explicitly set in the configuration or programmatically. You can explicitly set
server policies at three scopes, listed in ascending order of precedence:

1. In the configuration, so they apply to all ORBs that are in the scope of a
given policy setting. For a complete list of policies that you can set in the
configuration, refer to the Orbix 2000 Administrator’s Guide.

2. On the server’s ORB, so they apply to all POAs that derive from that
ORB’s root POA. The ORB has a PolicyManager with operations that let
you access and set policies on the server ORB (see “Setting Orb and
Thread Policies” on page 135).

3. On individual POAs, so they apply only to requests that are processed by
that POA. Each POA can have its own set of policies (see “Using POA
Policies” on page 228).

You can set policies in any combination at all scopes. If settings are found for
the same policy type at more than one scope, the policy at the lowest scope
prevails.

Most server-side policies are POA-specific. POA policies are typically
attached to a POA when it is created, by supplying a PolicyList object as an
argument to create_POA(). The following code creates POA persistentPOA
as a child of the root POA, and attaches a PolicyList to it:

//get an object reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = POA::_narrow(obj);

//create policy object
137

Chapter 7 | Using Policies
CORBA::PolicyList policies;
policies.length (2);

// set policy object with desired policies
policies[0] = poa–>create_lifespan_policy

(PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy

(PortableServer::USER_ID)

//create a POA for persistent objects
poa = poa->create_POA("persistentPOA", NULL, policies);

In general, you use different sets of policies in order to differentiate among
various POAs within the same server process, where each POA is defined in a
way that best accommodates the needs of the objects that it processes. So, a
server process that contains the POA persistentPOA might also contain a
POA that supports only transient object references, and only handles requests
for callback objects.

For more information about using POA policies, see page 228.

Setting Client Policies
Orbix provides a set of default policies that are effective if no policy is
explicitly set in the configuration or programmatically. Client policies can be
set at four scopes:

1. In the configuration, so they apply to all ORBs that are in the scope of a
given policy setting. For a complete list of policies that you can set in the
configuration, refer to the Orbix 2000 Administrator’s Guide.

2. On the client’s ORB, so they apply to all invocations. The ORB has a
PolicyManager with operations that let you access and set policies on
the client ORB (see “Setting Orb and Thread Policies” on page 135).

3. On a given thread, so they apply only to invocations on that thread. Each
client thread has a PolicyCurrent with operations that let you access and
set policies on that thread (see page 135).
 138

Setting Client Policies
4. On individual object references, so they apply only to invocations on
those objects. Each object reference can have its own set of policies; the
Object interface provides operations that let you access and set an object
reference’s quality of service policies (see “Managing Object Reference
Policies” on page 139).

Setting Policies at Different Scopes

You can set policies in any combination at all scopes. If settings are found for
the same policy type at more than one scope, the policy at the lowest scope
prevails.

For example, the SyncScope policy type determines how quickly a client
resumes processing after sending one-way requests. The default SyncScope
policy is SYNC_NONE: Orbix clients resume processing immediately after
sending one-way requests.

You can set this policy differently on the client’s ORB, threads, and individual
object references. For example, you might leave the default SyncScope policy
unchanged at the ORB scope, set a thread to SYNC_WITH_SERVER; and set
certain objects within that thread to SYNC_WITH_TARGET. Given these quality
of service settings, the client blocks on one-way invocations as follows:

• Outside the thread, the client never blocks.
• Within the thread, the client always blocks until it knows whether the

invocations reached the server.
• For all objects within the thread that have SYNC_WITH_TARGET policies,

the client blocks until the request is fully processed.

Managing Object Reference Policies

The CORBA::Object interface contains the following operations to manage
object policies:

interface Object {
// ...
Policy
get_client_policy(in PolicyType type);

Policy
get_policy(in PolicyType type);
139

Chapter 7 | Using Policies
PolicyList
get_policy_overrides(in PolicyTypeSeq ts);

Object
set_policy_overrides(

in PolicyList policies,
in SetOverrideType set_add

) raises (InvalidPolicies);

boolean
validate_connection(out PolicyList inconsistent_policies);

};

get_client_policy() returns the policy override that is in effect for the
specified PolicyType. This method obtains the effective policy override by
checking each scope until it finds a policy setting: first at object scope, then
thread scope, and finally ORB scope. If no override is set at any scope, the
system default is returned.

get_policy() returns the object’s effective policy for the specified PolicyType.
The effective policy is the intersection of values allowed by the object’s
effective override —as returned by get_client_policy()—and the policy
that is set in the object’s IOR. If the intersection is empty, the method raises
exception INV_POLICY. Otherwise, it returns a policy whose value is legally
within the intersection. If the IOR has no policy set for the PolicyType, the
method returns the object-level override.

get_policy_overrides() returns a PolicyList of overrides that are in effect for
the specified PolicyTypes. The operation takes a single argument, a
PolicyTypeSeq that specifies the PolicyTypes to query. If the
PolicyTypeSeq argument is empty, the operation returns with all overrides
for the given scope. If no overrides are in effect for the specified PolicyTypes,
the operation returns an empty PolicyList.

After get_policy_overrides() returns a PolicyList, you can iterate
through the individual Policy objects and obtain the actual setting in each
one by narrowing it to the appropriate derivation (see “Getting Policies” on
page 141).
 140

Getting Policies
set_policy_overrides() overrides policies of the same PolicyType that are set
at a higher scope, and applies them to the new object reference that it
returns. The operation takes two arguments:

• A PolicyList sequence of Policy object references that specify the
policy overrides.

• An argument of type SetOverrideType:

♦ ADD_OVERRIDE adds these policies to the policies already in effect.

♦ SET_OVERRIDE removes all previous policy overrides and establishes
the specified policies as the only override policies in effect at the
given scope.

To remove all overrides, supply an empty PolicyList and SET_OVERRIDE as
arguments.

validate_connection() returns true if the object’s effective policies allow
invocations on that object. This method forces rebinding if one of these
conditions is true:

• The object reference is not yet bound.
• The object reference is bound but the current policy overrides have

changed since the last binding occurred; or the binding is invalid for
some other reason.

The method returns false if the object’s effective policies cause invocations to
raise the exception INV_POLICY. If the current effective policies are
incompatible, the output parameter inconsistent_policies returns with a
PolicyList of those policies that are at fault.

If binding fails for a reason that is unrelated to policies,
validate_connections() raises the appropriate system exception.

A client typically calls validate_connections() when its RebindPolicy is
set to NO_REBIND.

Getting Policies
As shown earlier, CORBA::PolicyManager, CORBA::PolicyCurrent, and
CORBA::Object each provide operations that allow programmatic access to
the effective policies for an ORB, thread, and object. Accessor operations
141

Chapter 7 | Using Policies
obtain a PolicyList for the given scope. After you get a PolicyList, you can
iterate over its Policy objects. Each Policy object has an accessor method
that identifies its PolicyType. You can then use the Policy object’s
PolicyType to narrow to the appropriate type-specific Policy derivation—for
example, a SyncScopePolicy object. Each derived object provides its own
accessor method that obtains the policy in effect for that scope.

The Messaging module provides these PolicyType definitions:

module Messaging
{

// Messaging Quality of Service

typedef short RebindMode;

const RebindMode TRANSPARENT = 0;
const RebindMode NO_REBIND = 1;
const RebindMode NO_RECONNECT = 2;

typedef short SyncScope;

const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;

// PolicyType constants

const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;

// Locally-Constrained Policy Objects

// Rebind Policy (default = TRANSPARENT)

interface RebindPolicy : CORBA::Policy {
readonly attribute RebindMode rebind_mode;

};

// Synchronization Policy (default = SYNC_WITH_TRANSPORT)
 142

Getting Policies
interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;

};
...

}

For example, the following code gets the ORB’s SyncScope policy:

#include <omg/messaging.hh>
...
// get reference to PolicyManager

CORBA::Object_var object;
object = orb->resolve_initial_references("ORBPolicyManager");

// narrow
CORBA::PolicyManager_var policy_mgr =

CORBA::PolicyManager::_narrow(object);

// set SyncScope policy at ORB scope (not shown)
// ...

// get SyncScope policy at ORB scope
CORBA::PolicyTypeSeq types;
types.length(1);
types[0] = SYNC_SCOPE_POLICY_TYPE;

// get PolicyList from ORB’s PolicyManager
CORBA::PolicyList_var pList =

policy_mgr->get_policy_overrides(types);

// evaluate first Policy in PolicyList
Messaging::SyncScopePolicy_var sync_p =

Messaging::SyncScopePolicy::_narrow(pList[0]);

Messaging::SyncScope sync_policy = sync_p->synchronization();

cout << "Effective SyncScope policy at ORB level is "
<< sync_policy << endl;
143

Chapter 7 | Using Policies
 144

Developing a Client
A CORBA client initializes the ORB runtime, handles object
references, invokes operations on objects, and handles
exceptions that these operations throw.

This chapter covers the following topics:

• Mapping of IDL interfaces to proxies and references.
• Handling object reference types.
• Initializing the ORB runtime.
• Invoking operations and parameter passing rules.
• Using quality of service policies.

For information about exception handling, see Chapter 13.

Interfaces and Proxies
When you compile IDL, the compiler maps each IDL interface to a client-side
proxy class of the same name. Proxy classes implement the client-side call
stubs that marshal parameter values and send operation invocations to the
correct destination object. When a client invokes on a proxy method that
corresponds to an IDL operation, Orbix conveys the call to the corresponding
server object, whether remote or local.

The client application accesses proxy methods only through an object
reference. When the client brings an object reference into its address space,
the client runtime ORB instantiates a proxy to represent the object. In other
words, a proxy acts as a local ambassador for the remote object.

For example, interface Bank::Acount has this IDL definition:

module BankDemo
{

typedef float CashAmount;
exception InsufficientFunds {};
145

Chapter 8 | Developing a Client
// ...
interface Account{

void withdraw(in CashAmount amount)
raises (InsufficientFunds);

// ... other operations not shown
};

};

Given this IDL, the IDL compiler generates the following proxy class definition
for the client implementation:

namespace BankDemo
{

typedef CORBA::Float CashAmount;
// ...

class Account : public virtual CORBA::Object
{

// ...
virtual void withdraw(CashAmount amount) = 0;

}
// other operations not shown ...

}

This proxy class demonstrates several characteristics that are true of all proxy
classes:

• Member methods derive their names from the corresponding interface
operations—in this case, withdrawal().

• The proxy class inherits from CORBA::Object, so the client can access all
the inherited functionality of a CORBA object.

• Account::withdrawal and all other member methods are defined as
pure virtual, so the client code cannot instantiate the Account proxy
class or any other proxy class. Instead, clients can access the Account
object only indirectly through object references.
 146

Using Object References
Using Object References
For each IDL interface definition, a POA server can generate and export
references to the corresponding object that it implements. To access this
object and invoke on its methods, a client must obtain an object reference—
generally, from a CORBA naming service. For each generated proxy class, the
IDL compiler also generates two other classes: interface_var and
interface_ptr, where interface is the name of the proxy class. Briefly,
_ptr types are unmanaged reference types, while _var types can be
characterized as smart pointers.

Both reference types support the indirection operator ->; when you invoke an
operation on a _var or _ptr reference, the corresponding proxy object
redirects the C++ call across the network to the appropriate member
method of the object’s servant.

While _ptr and _var references differ in a number of ways, they both act as
handles to the corresponding client proxy. The client code only needs to
obtain an object reference and use it to initialize the correct _ptr or _var
reference. The underlying proxy code and ORB runtime take all responsibility
for ensuring transparent access to the server object

For example, given the previous IDL, the IDL compiler generates two object
reference types to the CORBA object, Bank::Account: Account_ptr and
Account_var. You can use either reference type to invoke operations such as
withdrawal() on the Bank::Account object. Thus, the following two
invocations are equivalent:

// ...
// withdraw_amt is already initialized

// Use a _ptr reference
Account_ptr accp = ...; // get reference...
balance = accp->withdrawal(withdraw_amt);

// Use a _var reference
Account_var accv = ...; // get reference...
balance = accv->withdrawal(withdraw_amt);
147

Chapter 8 | Developing a Client
Note: Because _ptr types are not always implemented as actual C++
pointers, you should always use the _ptr definition. Regardless of the
underlying mapping, a _ptr type is always guaranteed to behave like a
pointer, so it is portable across all platforms and language mappings.

Counting References

When you initialize a _var or _ptr reference with an object reference for the
first time, the client instantiates a proxy and sets that proxy’s reference count
to one. Each proxy class has a _duplicate() method, which allows a client
to create a copy of the target proxy. In practice, this method simply
increments the reference count on that proxy and returns a new _ptr
reference to it. Actual methods for copying _ptr and _var references differ
and are addressed separately in this chapter; conceptually, however, the
result is the same.

For example, given an object reference to the Account interface, the following
client code initializes a _ptr reference as follows:

Account_ptr accp1 = ...; // get reference somehow

This instantiates an Account object proxy and automatically sets its reference
count to one:

The following code copies accp1 into reference accp2, thus incrementing the
Account proxy’s reference count to 2

Account_ptr accp2 = Account::_duplicate(accp1);

Figure 17: Reference count for Account proxy is set to one.

Account

1
accp1
 148

Using Object References
The client now has two initialized _ptr references, accp1 and accp2. Both
refer to the same proxy, so invocations on either are treated as invocations on
the same object.

When you release a reference, the reference count of the corresponding proxy
is automatically decremented. When the reference count is zero, Orbix
deallocates the proxy. You can release references in any order, but you can
only release a reference once, and you must not use any reference after it is
released.

Note: A server object is completely unaware of its corresponding client
proxy and its life cycle. Thus, calling release() and _duplicate() on a
proxy reference has no effect on the server object.

Nil References

Nil references are analogous to C++ null pointers and contain a special
value to indicate that the reference points nowhere. Nil references are useful
mainly to indicate “not there” or optional semantics. For example, if you have
a lookup operation that searches for objects via a key, it can return a nil
reference to indicate the “not found” condition instead of raising an
exception. Similarly, clients can pass a nil reference to an operation to
indicate that no reference was passed for this operation—that is, you can use
a nil reference to simulate an optional reference parameter.

Figure 18: Reference for Account proxy is incremented to 2.

Account

2
accp1

accp2
149

Chapter 8 | Developing a Client
You should only use the CORBA::is_nil() method to test whether a
reference is nil. All other attempts to test for nil have undefined behavior. For
example, the following code is not CORBA-compliant and can yield
unpredictable results:

Object_ptr ref = ...;
if (ref != 0) { // WRONG! Use CORBA::is_nil

// Use reference...
}

You cannot invoke operations on a nil reference. For example, the following
code has undefined behavior:

Account_ptr accp = Account::_nil();
// ...
CORBA::CashAmount bal = accp->balance(); // Crash imminent!

Object Reference Operations

Because all object references inherit from CORBA::Object, you can invoke its
operations on any object reference. CORBA::Object is a pseudo-interface with
this definition:

module CORBA{ //PIDL
// ..

interface Object{
Object duplicate()
void release();
boolean is_nil();
boolean is_a(in string repository_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
boolean hash(in unsigned long max);
// ...

}
};

In C++, these operations are mapped to CORBA::Object member methods
as follows:

// In namespace CORBA:

class Object {
public:
 150

Using Object References
static Object_ptr _duplicate(Object_ptr obj);
void release(Type_ptr);
Boolean is_nil(Type_ptr p);
Boolean _is_a(const char * repository_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_obj);
ULong _hash(ULong max);
// ...

};

The is_nil() method is discussed earlier in this chapter (see page 149).
Methods _duplicate(), and release() are discussed later in this chapter
(see page 153). This section covers the remaining methods.

_is_a

The _is_a() method is similar to _narrow() in that it lets you to determine
whether an object supports a specific interface. For example:

CORBA::Object_ptr obj = ...; // Get a reference

if (!CORBA::is_nil(obj) && obj->_is_a("IDL:BankDemo/Account:1.0"))
// It's an Account object...

else
// Some other type of object...

The test for nil in this code example prevents the client program from making
a call via a nil object reference.

_is_a() lets applications manipulate IDL interfaces without static knowledge
of the IDL—that is, without having linked the IDL-generated stubs. Most
applications have static knowledge of IDL definitions, so they never need to
call _is_a(). In this case, you can rely on _narrow() to ascertain whether an
object supports the desired interface.

_non_existent

The _non_existent() method tests whether a CORBA object exists.
_non_existent() returns true if an object no longer exists. A return of true
denotes that this reference and all copies are no longer viable and should be
released.
151

Chapter 8 | Developing a Client
If _non_existent() needs to contact a remote server, the operation is liable
to raise system exceptions that have no bearing on the object’s existence—for
example, the client might be unable to connect to the server.

If you invoke a user-defined operation on a reference to a non-existent object,
the ORB raises the OBJECT_NOT_EXIST system exception. So, invoking an
operation on a reference to a non-existent object is safe, but the client must
be prepared to handle errors.

_is_equivalent

The _is_equivalent() method tests whether two references are identical. If
_is_equivalent() returns true, you can be sure that both references point to
the same object.

A false return does not necessarily indicate that the references denote
different objects, only that the internals of the two references differ in some
way. The information in references can vary among different ORB
implementations. For example, one vendor might enhance performance by
adding cached information to references, to speed up connection
establishment. Because _is_equivalent() tests for absolute identity, it
cannot distinguish between vendor-specific and generic information.

_hash

The _hash() method returns a hash value in the range 0..max-1. The hash
value remains constant for the lifetime of the reference. Because the CORBA
specifications offer no hashing algorithm, the same reference on different
ORBs can have different hash values.

_hash() is guaranteed to be implemented as a local operation—that is, it will
not send a message on the wire.

_hash() is mainly useful for services such as the transaction service, which
must be able to determine efficiently whether a given reference is already a
member of a set of references. _hash() permits partitioning of a set of
references into an arbitrary number of equivalence classes, so set
membership testing can be performed in (amortized) constant time.
Applications rarely need to call this method.
 152

Using Object References
Using _ptr References

The IDL compiler defines a _ptr reference type for each IDL interface. In
general, you can think of a _ptr reference as a pointer to a proxy instance,
with the same semantics and requirements as any C++ pointer.

Duplicating and Releasing References
To make a copy of a _ptr reference, invoke the static _duplicate() member
method on an existing object reference. For example:

Account_ptr acc1 = ...; // Get ref from somewhere...
Account_ptr acc2; // acc2 has undefined contents
acc2 = Account::_duplicate(acc1); // Both reference same Account

_duplicate() makes an exact copy of a reference. The copy and the original
are indistinguishable from each other. As shown earlier (see “Counting
References” on page 148), _duplicate() also makes a deep copy of the
target reference, so the reference count on the proxy object is incremented.
Consequently, you must call release() on all duplicated references to
destroy them and prevent memory leaks.

To destroy a reference, use the release method. For example:

Account_ptr accp = ...; // Get reference from somewhere...
// ...Use accp
CORBA::release(accp); // Don't want to use Account anymore

_duplicate() is type safe. To copy an Account reference, supply an Account
reference argument to _duplicate(). Conversely, the CORBA namespace
contains only one release() method, which releases object references of any
type.

Widening and Narrowing _ptr References
Proxy classes emulate the inheritance hierarchy of the IDL interfaces from
which they are generated. Thus, you can widen and narrow _ptr references
to the corresponding proxies.
153

Chapter 8 | Developing a Client
Widening Assignments

Object references to proxy instances conform to C++ rules for type
compatibility. Thus, you can assign a derived reference to a base reference,
or pass a derived reference where a base reference is expected.

For example, the following IDL defines the CheckingAccount interface, which
inherits from the Account interface shown earlier:

interface CheckingAccount : Account {
exception InsufficientFunds {};
readonly attribute CashAmount overdraftLimit;
boolean orderCheckBook ();

};

Given this inheritance hierarchy, the following widening assignments are
legal:

CheckingAccount_ptr ck = ...; // Get checking account reference
Account_ptr accp = ck; // Widening assignment
CORBA::Object_ptr obj1 = ck; // Widening assignment
CORBA::Object_ptr obj2 = accp; // Widening assignment

Note: Because all proxies inherit from CORBA::Object, you can assign any
type of object reference to Object_ptr, such as _ptr references obj1 and
obj2.
 154

Using Object References
Ordinary assignments between _ptr references have no effect on the
reference count. Thus, the assignments shown in the previous code can be
characterized as shown in Figure 19:

Because the reference count is only 1, calling release() on any of these
references decrements the proxy reference count to 0, causing Orbix to
deallocate the proxy. Thereafter, all references to this proxy are invalid.

Type-Safe Narrowing of _ptr References

For each interface, the IDL compiler generates a static _narrow() method
that lets you down-cast a _ptr reference at runtime. For example, the
following code narrows an Account reference to a CheckingAccount
reference:

BankDemo::Account_ptr accp = ..; // get a reference from somewhere
BankDemo::CheckingAccount_ptr ckp =

BankDemo::CheckingAccount::_narrow(accp);
if (CORBA::is_nil(ckp))
{

// accp is not of type CheckingAccount
}
else
{

// accp is a CheckingAccount type, so ckp is a valid reference
}
// ...

Figure 19: Multiple _ptr references to a proxy object can leave the reference count
unchanged.

Account

1

obj2

ck

accp

obj1
155

Chapter 8 | Developing a Client
// release references to Account proxy
CORBA::release(ckp);
CORBA::release(accp);

Because _narrow() calls _duplicate(), it increments the reference count on
the Account proxy—in this example, to 2. Consequently, the code must
release both references.

Using _var References

The IDL compiler defines a _var class type for each IDL interface, which lets
you instantiate _var references in the client code. Each _var references takes
ownership of the reference that it is initialized with, and calls CORBA::
release() when it goes out of scope.

If you initialize a _var reference with a _ptr reference, you cannot suffer a
resource leak because, when it goes out of scope, the _var reference
automatically decrements the reference count on the proxy.

_var references are also useful for gaining exception safety. For example, if
you keep a reference you have just obtained as a _var reference, you can
throw an exception at any time and it does not leak the reference because the
C++ run time system calls the _var’s destructor as it unwinds the stack

_var Class Member Methods
Given the Account interface shown earlier, the IDL compiler generates an
Account_var class with the following definition:

class Account_var{
public:

Account_var();
Account_var(Account_ptr &);
Account_var(const Account_var &);
~Account_var();
Account_var & operator=(Account_ptr &);
Account_var & operator=(const Account_var &);
operator Account_ptr & ();
Account_ptr in() const;
Account_ptr & in inout();
Account_ptr & in out();
Account_ptr _retn();
 156

Using Object References
private:
Account_ptr p; //actual reference stored here

};

Account_var()

The default constructor initializes the private _ptr reference to nil.

Account_var(Account_ptr &)

Constructing a _var from a _ptr reference passes ownership of the _ptr
reference to the _var. This method leaves the proxy reference count
unchanged.

Account_var(const Account_var &)

Copy-constructing a _var makes a deep copy by calling _duplicate() on the
source reference. This method increments the proxy reference count.

~Account_var()

The destructor decrements the proxy reference count by calling release().

Account_var & operator=(Account_ptr &)
Account_var & operator=(const Account_var &)

Assignment from a pointer passes ownership and leaves the proxy reference
count unchanged; assignment from another Account_var makes a deep copy
and increments the reference count.

operator Account_ptr &()

This conversion operator lets you pass a _var reference where a _ptr
reference is expected, so use of _var references is transparent for assignment
and parameter passing.

Account_ptr operator->() const

The indirection operator permits access to the member methods on the proxy
via a _var by returning the internal _ptr reference.
157

Chapter 8 | Developing a Client
Account_ptr in() const
Account_ptr & inout()
Account_ptr & out()

Explicit conversion operators are provided for compilers that incorrectly apply
C++ argument-matching rules.

Account_ptr _retn()

The _retn() method removes ownership of a reference from a _var without
decrementing the reference count. This is useful if a method must allocate
and return a _var reference, but also throws exceptions.

Widening and Narrowing _var References
You can copy-construct and assign from _var references, but only if both
references are of the same type. For example, the following code is valid:

Account_var accv1 = ...; // get object reference
Account_var accv2(accv1); // Fine, deep copy
accv1 = accv2; // Fine, deep assignment

Unlike _ptr references, _var references have no inheritance relationship, so
implicit widening among _var references is not allowed. For example, you
cannot use a CheckingAccount_var to initialize an Account_var:

CheckingAccount_var ckv = ...; // get object reference
accv1 = ckv; // Compile-time error
Account_var accv3(ckv); // Compile-time error

To widen a _var reference, you must first call _duplicate() on the original
_var. Although _duplicate() expects a _ptr reference, a _var can be
supplied in its place, as with any method that expects a _ptr reference.
_duplicate() returns a _ptr reference that can then be implicitly widened.

For example, in the following statement, _duplicate() receives a
CheckingAccount_var:

Account_var accv1(CheckingAccount::_duplicate(ckv));

_duplicate() returns a CheckingAccount_ptr that is implicitly widened to
an Account_ptr as the argument to the Account_var constructor. The
constructor in turn takes ownership, so the copy made by _duplicate() is
not leaked.
 158

Using Object References
In the next statement, _duplicate() expects an Account_ptr:

Account_var accv2(Account::_duplicate(ckv));

In fact, a CheckingAccount_var argument is supplied, which has a
conversion operator to CheckingAccount_ptr. A CheckingAccount_ptr can
be passed where an Account_ptr is expected, so the compiler finds an
argument match. _duplicate() makes a copy of the passed reference and
returns it as an Account_ptr, which is adopted by the Account_var, and no
leak occurs.

You can also use _duplicate() for implicit _var widening through
assignment, as in these examples:

accv1 = CheckingAccount::_duplicate(ckv);
accv2 = Account::_duplicate(ckv);

You can freely mix _ptr and _var references; you only need to remember that
when you give a _ptr reference to a _var reference, the _var takes
ownership:

// Be careful of ownership when mixing _var and _ptr:
{
CheckingAccount_var ckv = ...; // Get reference...
Account_ptr accp = ckv; // OK, but ckv still has ownership

// Can use both ckv and accp here...

CheckingAccount_ptr ckp = ...; // Get reference...
ckv = ckp; // ckv now owner, accp dangles

level = accp->balance(); // ERROR - accp dangles
} // ckv automatically releases its reference, ckp dangles!
level = ckp->balance() // ERROR -ckp dangles

String Conversions

Object references can be converted to and from strings, which facilitates
persistent storage. When a client obtains a stringified reference, it can
convert the string back into an active reference and contact the referenced
object. The reference remains valid as long as the object remains viable.
When the object is destroyed, the reference becomes permanently invalid.
159

Chapter 8 | Developing a Client
The object_to_string() and string_to_object() operations are defined in
C++ as follows:

// In <corba/orb.hh>:
namespace CORBA {

// ...
class ORB {
public:

char * object_to_string(Object_ptr op);
Object_ptr string_to_object(const char *);
// ...

};
// ...

}

For example, the following code stringifies an Account object reference:

BankDemo::Account_ptr accp = ...; // Account reference

// Write reference as a string to stdout
//
try {

CORBA::String_var str = orb->object_to_string(accp);
cout << str << endl;

} catch (...) {
// Deal with error...

}

The example puts the return value from object_to_string in a String_var.
This ensures that the string is not leaked. This code prints an IOR
(interoperable reference) string whose format is similar to this:

IOR:
010000002000000049444c3a61636d652e636f6d2f4943532f436f6e74726f6c
c65723a312e300001000000000000004a000000010102000e0000003139322e3
36382e312e3231300049051b0000003a3e0231310c01000000c7010000234800
008000000000000000000010000000600000006000000010000001100

The stringified references returned by object_to_string() always contain
the prefix IOR:, followed by an even number of hexadecimal digits. Stringified
references do not contain any unusual characters, such as control characters
or embedded newlines, so they are suitable for text I/O.

To convert a string back into a reference, call string_to_object():
 160

Using Object References
// Assume stringified reference is in aaccv[1]

try {
CORBA::Object_ptr obj;
obj = orb->string_to_object(accv[1]);
if (CORBA::is_nil(obj))

throw 0; // accv[1] is nil

BankDemo::Account_ptr accp = BankDemo::Account::_narrow(obj);
if (CORBA::is_nil(accp))

throw 0; // Not an Account reference

// Use accp reference...

CORBA::release(accp); // Avoid leak

} catch (...) {
// Deal with error...

}

The CORBA specification defines the representation of stringified IOR
references, so it is interoperable across all ORBs that support the Internet
Inter-ORB Protocol (IIOP).

Although the IOR shown earlier looks large, its string representation is
misleading. The in-memory representation of references is much more
compact. Typically, the incremental memory overhead for each reference in a
client can be as little as 30 bytes.

You can also stringify or destringify a nil reference. Nil references look like
one of the following strings:

IOR:00000000000000010000000000000000
IOR:01000000010000000000000000000000

Constraints
IOR string references should be used only for these tasks:

• Store and retrieve an IOR string to and from a storage medium such as
disk or tape.

• Conversion to an active reference.
161

Chapter 8 | Developing a Client
It is inadvisable to rely on IOR string references as database keys for the
following reasons:

• Actual implementations of IOR strings can vary across different ORBs—
for example, vendors can add proprietary information to the string, such
as a time stamp. Given these differences, you cannot rely on consistent
string representations of any object reference.

• The actual size of IOR strings—between 200 and 600 bytes— makes
them prohibitively expensive to use as database keys.

In general, you should not compare one IOR string to another. To compare
object references, use is_equivalent() (see page 152).

Note: Stringified IOR references are one way to make references to initial
objects known to clients. However, distributing strings as e-mail messages or
writing them into shared file systems is neither a distributed nor a scalable
solution. More typically, applications obtain object references through the
naming service (see Chapter 18 on page 377).

Using corbaloc URL Strings
string_to_object() can also take as an argument a corbaloc-formatted
URL, and convert it into an object reference. A corbaloc URL denotes objects
that can be contacted by IIOP or resolve_initial_references().

A corbaloc URL uses one of the following formats:

corbaloc:rir:/rir-argument
corbaloc:iiop-address[, iiop-address].../key-string

rir-argument: A value that is valid for resolve_initial_references(), such
as NameService.

iiop-address: Identifies a single IIOP address with the following format:

[iiop]:[major-version-num.minor-version-num@]host-spec[:port-num]

IIOP version information is optional; if omitted, version 1.0 is assumed.
host-spec can specify either a DNS-style host name or a numeric IP address;
specification of port-num is optional.
 162

Initializing and Shutting Down the ORB
key-string: corresponds to the octet sequence in the object key member of a
stringified object reference, or an object’s named key that is defined in the
implementation repository.

For example, if you register the named key BankService for an IOR in the
implementation repository, a client can access an object reference with
string_to_object() as follows:

// assume that xyz.com specifies a location domain’s host
global_orb->string_to_object

("corbaloc:iiop:xyz.com/BankService");

The following code obtains an object reference to the naming service:

global_orb->string_to_object("corbaloc:rir:/NameService");

You can define a named key in the implementation repository through the
itadmin named_key create command. For more information, see the Orbix
2000 Administrator’s Guide.

Initializing and Shutting Down the ORB
Before a client application can start any CORBA-related activity, it must
initialize the ORB runtime by calling ORB_init(). ORB_init() returns an
object reference to the ORB object; this, in turn, lets the client obtain
references to other CORBA objects, and make other CORBA-related calls.

Procedures for ORB initialization and shutdown are the same for both servers
and clients. For detailed information, see “ORB Intialization and Shutdown”
on page 129.

Invoking Operations and Attributes
For each IDL operation in an interface, the IDL compiler generates a method
with the name of the operation in the corresponding proxy. It also maps each
unqualified attribute to a pair of overloaded methods with the name of the
attribute, where one method acts as an accessor and the other acts as a
modifier. For readonly attributes, the compiler generates only an accessor
method.
163

Chapter 8 | Developing a Client
An IDL attribute definition is functionally equivalent to a pair of set/get
operation definitions, with this difference: attribute accessors and modifiers
can only raise system exceptions, while user exceptions apply only to
operations.

For example, the following IDL defines a single attribute and two operations
in interface Test::Example:

module Test {

interface Example {
attribute string name;
oneway void set_address(in string addr);
string get_address();

};
};

The IDL compiler maps this definition’s members to the following methods in
the C++ proxy class Example. A client invokes on these methods as if their
implementations existed within its own address space:

namespace Test {
// ...
class Example : public virtual CORBA::Object

{
public:
// ...

virtual char* name() = 0;
virtual void name(const char* _itvar_name) = 0;
virtual void set_address(const char* addr) = 0;
virtual char* get_address() = 0;
// ...

};
};

Passing Parameters in Client Invocations
The C++ mapping has strict rules on passing parameters to operations.
Several objectives underlie these rules:

• Avoid data copying.
 164

Passing Parameters in Client Invocations
• Deal with variable-length types, which are allocated by the sender and
deallocated by the receiver.

• Map the source code so it is location-transparent; source code does not
need to consider whether or not client and server are collocated.

In general, a variable-length parameter is always dynamically allocated, and
the receiver of the value is responsible for deallocation. For variable-length
out parameters and return values, the server allocates the value and the
client deallocates it.

For string, reference, and variable-length array inout parameters, the client
dynamically allocates the value and passes it to the server. The server can
either leave the initial value’s memory alone or it can deallocate the initial
value and allocate a different value to return to the client; either way,
responsibility for deallocation of a variable-length inout parameter remains
with the client.

All other parameters are either fixed-length or in parameters. For these,
dynamic allocation is unnecessary, and parameters are passed either by
value for small types, or by reference for complex types.

Simple Parameters

For simple fixed-length types, parameters are passed by value if they are in
parameters or return values, and are passed by reference if they are inout or
out parameters.

For example, the following IDL defines an operation with simple parameters:

interface Example {
long op(

in long in_p, inout long inout_p, out long out_p
);

};

The proxy member method signature is the same as the signature of any
other C++ method that passes simple types in these directions:

virtual CORBA::Long
op(

CORBA::Long in_p,
CORBA::Long & inout_p,
CORBA::Long & out_p
165

Chapter 8 | Developing a Client
) = 0;

For example, a client can invoke op as follows:

Example_var ev = ...; // Get reference

CORBA::Long inout = 99; // Note initialization
CORBA::Long out; // No initialization needed
CORBA::Long ret_val;

ret_val = ev->op(500, inout, out); // Invoke CORBA operation

cout << "ret_val: " << ret_val << endl;
cout << "inout: " << inout << endl;
cout << "out: " << out << endl;

The client passes the constant 500 as the in parameter. For the inout
parameter, the client passes the initial value 99, which the server can
change. No initialization is necessary for the out parameter and the return
value. No dynamic allocation is required; the client can pass variables on the
stack, on the heap, or in the data segment (global or static variables).

Fixed-Length Complex Parameters

For fixed-length complex types such as fixed-length structures, parameters
are passed by reference or constant reference and are returned by value.

For example, the following IDL defines an operation with fixed-length
complex parameters:

struct FLS { // Fixed-Length Structure
long long_val;
double double_val;

};

interface Example {
FLS op(in FLS in_p, inout FLS inout_p, out FLS out_p);

};

The corresponding proxy method has the following signature:

typedef FLS & FLS_out;
// ...
virtual FLS
op(const FLS & in_p, FLS & inout_p, FLS_out out_p) = 0;
 166

Passing Parameters in Client Invocations
Using the generated proxy method in the client is easy, and no dynamic
memory allocations are required:

Example_var ev = ...; // Get reference

FLS in; // Initialize in param
in.long_val = 99;
in.double_val = 33.0;

FLS inout; // Initialize inout param
inout.long_val = 33;
in.double_val = 11.0;

FLS out; // Out param
FLS ret_val; // Return value

ret_val = op(in, inout, out); // Make call

// inout may have been changed, and out and ret_val
// contain the values returned by the server.

Fixed-Length Array Parameters

Fixed-length array parameters follow the same parameter-passing rules as
other fixed-length types. However, an array that is passed in C++
degenerates to a pointer to the first element, so the method signature is
expressed in terms of pointers to array slices.

For example, the following IDL defines an operation with fixed-length array
parameters:

typedef long Larr[3];

interface Example {
Larr op(in Larr in_p, inout Larr inout_p, out Larr out_p);

};

The IDL compiler maps this IDL to the following C++ definitions:

typedef CORBA::Long Larr[3];
typedef CORBA::Long Larr_slice;
typedef Larr_slice * Larr_out;
// ...
virtual Larr_slice * op(
167

Chapter 8 | Developing a Client
const Larr in_p, Larr_slice * inout_p, Larr_out out_p
) = 0;

For in, inout, and out parameters, memory is caller-allocated and need not
be on the heap; the method receives and, for inout and out parameters,
modifies the array via the passed pointer. For the return value, a pointer must
be returned to dynamically allocated memory, simply because there is no
other way to return an array in C++. Therefore, the client must deallocate
the return value when it is no longer wanted:

Example_var ev = ...; // Get reference

Larr in = { 1, 2, 3 }; // Initialize in param
Larr inout = { 4, 5, 6 }; // Initialize inout param
Larr out; // out param
Larr_slice * ret_val; // return value
ret_val = ev->op(in, inout, out); // Make call

// Use results...
Larr_free(ret_val); // Must deallocate here!

In the previous example, the call to Larr_free is required to prevent a
memory leak. Alternatively, you can use _var types to avoid the need for
deallocation. So, you can rewrite the previous example as follows:

Example_var ev = ...; // Get reference

Larr in = { 1, 2, 3 }; // Initialize in param
Larr inout = { 4, 5, 6 }; // Initialize inout param
Larr out; // out param, note _var type!
Larr_var ret_val; // return value

ret_val = ev->op(in, inout, out); // Make call

// Use results...

// No need to deallocate anything here, ret_val takes care of it.

_var types are well-suited to manage the transfer of memory ownership from
sender to receiver because they work transparently for both fixed- and
variable-length types.
 168

Passing Parameters in Client Invocations
String Parameters

The C++ mapping does not encapsulate strings in a class, so string
parameters are passed as char *. Because strings are variable-length types,
the following memory management issues apply:

• in strings are passed as const char *, so the callee cannot modify the
string’s value. The passed string need not be allocated on the heap.

• inout strings must be allocated on the heap by the caller. The callee
receives a C++ reference to the string pointer. This is necessary
because the callee might need to reallocate the string if the new value is
longer than the initial value. Passing a reference to the callee lets the
callee modify the bytes of the string and the string pointer itself.
Responsibility for deallocating the string remains with the caller.

• out strings are dynamically allocated by the callee. Responsibility for
deallocating the string passes to the caller.

• Strings returned as the return value behave like out strings: they are
allocated by the callee and responsibility for deallocation passes to the
caller.

For example, the following IDL defines an operation with string parameters:

interface Example {
string op(

in string in_p,
inout string inout_p,
out string out_p

);
};

The IDL compiler maps this interface to the following class, in which string
parameters are passed as char *:

class String_out; // In the CORBA namespace
//...
virtual const char *
op(

const char * in_p,
char * & inout_p,
CORBA::String_out out_p

) = 0;
169

Chapter 8 | Developing a Client
The following example shows how to invoke an operation that passes a string
in each possible direction:

Example_var ev = ...; // Get ref

char * inout = CORBA::string_dup("Hello"); // Initialize
char * out;
char * ret_val;

ret_val = ev->op("Input string", inout, out); // Make call

// Use the strings...

CORBA::string_free(inout); // We retain ownership
CORBA::string_free(out); // Caller passed responsibility
CORBA::string_free(ret_val); // Caller passed responsibility

This example illustrates the following points:

• The in parameter can be allocated anywhere; the example passes a
string literal that is allocated in the data segment.

• The caller must pass a dynamically allocated string as the inout
parameter, because the callee assumes that it can, if necessary,
deallocate that parameter.

• The caller must deallocate the inout and out parameter and the return
value.

The following example shows the same method call as before, but uses
String_var variables to deallocate memory:

Example_var ev = ...;

CORBA::String_var inout = CORBA::string_dup("Hello");
CORBA::String_var out;
CORBA::String_var ret_val;

ret_val = ev->op("Input string", inout, out);

// Use the strings...

// No need to deallocate there because the String_var
// variables take ownership.
 170

Passing Parameters in Client Invocations
Be careful not to pass a default-constructed String_var as an in or inout
parameter:

Example_var ev = ...;

CORBA::String_var in; // Bad: no initialization
CORBA::String_var inout; // Bad: no initialization
CORBA::String_var out;
CORBA::String_var ret_val;

ret_val = ev->op(in, inout, out); // Oops :-(

In this example, in and inout are initialized to the null pointer by the default
constructor. However, it is illegal to pass a null pointer across an interface;
code that does so is liable to crash or raise an exception.

Note: This restriction applies to all types that are passed by pointer, such as
arrays and variable-length types. Never pass a null pointer or an uninitialized
pointer. Only one exception applies: you can pass a nil reference, even if nil
references are implemented as null pointers.

_out Types

IDL out parameters result in proxy signatures that use C++ _out types. _out
types ensure correct deallocation of previous results for _var types.

For example, the following IDL defines a single out parameter:

interface Person {
void get_name(out string name);
// ...

};

The IDL compiler generates the following class:

class Person {
public:

void get_name(CORBA::String_out name);
// ...

};

The following code fragment uses the Person interface, but leaks memory:
171

Chapter 8 | Developing a Client
char * name;
Person_var person_1 = ...;
Person_var person_2 = ...;

person_1->get_name(name);
cout << "Name of person 1: " << name << endl;

person_2->get_name(name); // Bad news!
cout << "Name of person 2: " << name << endl;

CORBA::string_free(name); // Deallocate

Because variable-length out parameters are dynamically allocated by the
proxy stub, the second call to get_name() causes the result of the first
get_name call to leak.

The following code corrects this problem by deallocating variable-length out
parameters between invocations:

char * name;
Person_var person_1 = ...;
Person_var person_2 = ...;

person_1->get_name(name);
cout << "Name of person 1: " << name << endl;
CORBA::String_free(name); // Much better!

person_2->get_name(name); // No problem
cout << "Name of person 2: " << name << endl;
CORBA::String_free(name); // Deallocate

However, if we use _var types, no deallocation is required at all:

CORBA::String_var name; // Note String_var
Person_var person_1 = ...;
Person_var person_2 = ...;

person_1->get_name(name);
cout << "Name of person 1: " << name << endl;

person_2->get_name(name); // No leak here
cout << "Name of person 2: " << name << endl;

// No need to deallocate name
 172

Passing Parameters in Client Invocations
When the name variable is passed to get_name a second time, the mapping
implementation transparently deallocates the previous string. However, how
does the mapping manage to avoid deallocation for pointer types but
deallocates the previous value for _var types?

The answer lies in the formal parameter type CORBA::String_out, which is a
class as outlined here:

class String_out { // In the CORBA namespace
public:

String_out(char * & s): m_ref(s) { m_ref = 0 }
String_out(String_var & s): m_ref(s.m_ref) {

string_free(m_ref);
m_ref = 0;

}
// Other member methods here...

private:
char * & m_ref;

};

This implementation of CORBA::String_out shows how char * out
parameters are left alone, but _var out parameters are deallocated.

If you pass a char * as an out parameter, the compiler looks for a way to
convert the char * into a String_out object. The single-argument
constructor for char * acts as a user-defined conversion operator, so the
compiler finds an argument match by constructing a temporary String_out
object that is passed to the method. Note that the char * constructor is
passed a reference to the string, which it binds to the private member
variable m_ref. The constructor body then assigns zero to the m_ref member.
m_ref is a reference to the passed string, so construction from a char *
clears (sets to null) the actual argument that is passed to the constructor,
without deallocating the previous string.

On the other hand, if you pass a String_var as an out parameter, the
compiler uses the second constructor to construct the temporary String_out.
That constructor binds the m_ref member variable to the passed
String_var’s internal pointer and deallocates the current string before setting
the passed string pointer to null.
173

Chapter 8 | Developing a Client
_out types are generated for all complex types, such as strings, sequences,
and structures. If a complex type has fixed length, then the generated _out
type is simply an alias for a reference to the actual type (see “Fixed-Length
Complex Parameters” on page 166 for an example).

Note: You can ignore most of the implementation details for _out types. It is
only important to know that they serve to prevent memory leaks when you
pass a _var as an out parameter.

Variable-Length Complex Parameters

The parameter-passing rules for variable-length complex types differ from
those for fixed-length complex types. In particular, for out parameters and
return values, the caller is responsible for deallocating the value.

For example, the following IDL defines an operation with variable-length
complex parameters:

struct VLS { // Variable-Length Structure
long long_val;
string string_val;

};

interface Example {
VLS op(in VLS in_p, inout VLS inout_p, out VLS out_p);

};

The IDL compiler maps this IDL to the following C++ definitions:

class VLS_out;
// ...
virtual VLS *
op(const VLS & in_p, VLS & inout_p, VLS_out out_p) = 0;

The following code calls the op() operation:

Example_var ev = ...; // Get reference

VLS in; // Initialize in param
in.long_val = 99;
in.string_val = CORBA::string_dup("Ninety-nine");
 174

Passing Parameters in Client Invocations
VLS inout; // Initialize inout param
inout.long_val = 86;
in.string_val = CORBA::string_dup("Eighty-six");

VLS * out; // Note *pointer* to out param
VLS * ret_val; // Note *pointer* to return value

ret_val = op(in, inout, out); // Make call

// Use values...

delete out; // Make sure nothing is leaked
delete ret_val; // Ditto...

As with fixed-length complex types, in and inout parameters can be ordinary
stack variables. However, both the out parameter and the return value are
dynamically allocated by the call. You are responsible for deallocating these
values when you no longer require them.

You can also use _var types to take care of the memory-management chores
for you, as in this modified version of the previous code:

Example_var ev = ...; // Get reference

VLS in; // Initialize in param
in.long_val = 99;
in.string_val = CORBA::string_dup("Ninety-nine");

VLS inout; // Initialize inout param
inout.long_val = 86;
in.string_val = CORBA::string_dup("Eighty-six");

VLS_var out; // Note _var type
VLS_var ret_val; // Note _var type

ret_val = op(in, inout, out); // Make call

// Use values...

// No need to deallocate anything here
175

Chapter 8 | Developing a Client
Note: Type Any is passed using the same rules—that is, out parameters and
return values are dynamically allocated by the stub and must be deallocated
by the caller. Of course, you can use CORBA::Any_var to achieve automatic
deallocation.

Variable-Length Array Parameters

Variable-length arrays are passed as parameters in the same way as
fixed-length arrays, except for out parameters: these are passed as a
reference to a pointer. As for strings, the generated _out class takes care of
deallocating values from a previous invocation held in _var types.

For example, the following IDL defines an operation with variable-length
string array parameters:

typedef string Sarr[3];

interface Example {
Sarr op(in Sarr in_p, inout Sarr inout_p, out Sarr out_p);

};

The IDL compiler maps this IDL to the following C++ definitions:

typedef CORBA::String_mgr Sarr[3];
typedef CORBA::String_Mgr Sarr_slice;
class Sarr_out;
// ...
virtual Sarr_slice * op(

const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) = 0;

The following code calls the op() operation:

Example_var ev = ...; // Get reference

Sarr in;
in[0] = CORBA::string_dup("Bjarne");
in[1] = CORBA::string_dup("Stan");
in[2] = CORBA::string_dup("Andrew");

Sarr inout;
inout[0] = CORBA::string_dup("Dennis");
 176

Passing Parameters in Client Invocations
inout[1] = CORBA::string_dup("Ken");
inout[2] = CORBA::string_dup("Brian");

Sarr_slice * out; // Pointer to array slice
Sarr_slice * ret_val; // Pointer to array slice

ret_val = ev->op(in, inout, out); // Make call

// Use values...

Sarr_free(out); // Deallocate to avoid leak
Sarr_free(ret_val); // Ditto...

As always, you can rewrite the code to use _var types, and so prevent
memory leaks:

Example_var ev = ...; // Get reference

Sarr in;
in[0] = CORBA::string_dup("Bjarne");
in[1] = CORBA::string_dup("Stan");
in[2] = CORBA::string_dup("Andrew");

Sarr inout;
inout[0] = CORBA::string_dup("Dennis");
inout[1] = CORBA::string_dup("Ken");
inout[2] = CORBA::string_dup("Brian");

Sarr_var out; // Note _var type
Sarr_var ret_val; // Note _var type

ret_val = ev->op(in, inout, out); // Make call

// Use values...

// No need to free anything here

Object Reference Parameters

You pass object references as parameters as you do strings. For inout
reference, the caller must pass a C++ reference to a _ptr reference. For an
out parameters and return values, the caller is responsible for deallocation.
177

Chapter 8 | Developing a Client
For example, the following IDL defines an operation with object reference
parameters:

interface Example {
string greeting();
Example op(

in Example in_p,
inout Example inout_p,
out Example out_p

);
};

The IDL compiler maps this IDL to the following C++ definitions:

class Example_out;
// ...
virtual Example_ptr op(
Example_ptr in_p, Example_ptr & inout_p, Example_out out_p

) = 0;

The following code calls the op() operation:

Example_var ev = ...;
Example_var in = ...; // Initialize in param
Example_var inout = ...; // Initialize inout param
Example_ptr out; // Note _ptr reference
Example_ptr ret_val; // Note _ptr reference

ret_val = ev->op(in, inout, out);

// Use references...

CORBA::release(out); // Deallocate
CORBA::release(ret_val); // Ditto...

Note that the code explicitly releases the references returned as the out
parameter and the return value.

You can also rewrite this code to use _var references in order to avoid
memory leaks:

Example_var ev = ...;
Example_var in = ...; // Initialize in param
Example_var inout = ...; // Initialize inout param
Example_var out; // Note _var reference
Example_var ret_val; // Note _var reference
 178

Passing Parameters in Client Invocations
ret_val = ev->op(in, inout, out);

// Use references...

// No need to deallocate here

Parameter-Passing Rules: Summary

The following sections summarize the parameter-passing rules for the C++
mapping.

Never Pass Null or Uninitialized Pointers as in or inout Parameters.

As shown earlier (see page 171), it is illegal to pass null pointers or
uninitialized pointers as inout or in parameters. The most likely outcome of
ignoring this rule is a core dump.

Nil object references are exempt from this rule, so it is safe to pass a nil
reference as a parameter.

Do Not Ignore Variable-Length Return Values

Ignoring return values can leak memory. For example, the following interface
defines operation do_something() to return a string value:

// interface Example {
// string do_something();
// };

The following client call on do_something() erroneously ignores its return
value:

Example_var ev = ...; // Get reference
ev->do_something(); // Memory leak!

Be careful never to ignore the return, because the memory that the stub
allocates to the return value can never be reclaimed.
179

Chapter 8 | Developing a Client
Allocate String and Reference inout Parameters on the Heap and Deallocate
them After the Call

String and reference inout parameters must be allocated on the heap;
ownership of the memory remains with the caller.

Deallocate Variable-Length Return Values and out Parameters

Variable-length types passed as return values or out parameters are passed
by pointer and are dynamically allocated by the stub. You must deallocate
these values to avoid memory leaks.

Use _var Types for Complex inout and out Parameters and Return Values

Always use a _var type when a value must be heap-allocated. This includes
any complex or variable-length inout or out parameter or return value. After
you have assigned a parameter to a _var type, you don’t have to worry about
deallocating memory.

For example, the following interface defines three operations:

// Some sample IDL to show how _var types make life easier.
interface Example {

string get_string();
void modify_string(inout string s);
void put_string(in string s);

};

Because _var types convert correctly to pass in any direction, the following
code does exactly the right things:

// _var automates memory management.
{

Example_var ev = ...; // Get reference
CORBA::String_var s; // Parameter

s = ev->get_string(); // Get value
ev->modify_string(s); // Change it
ev->put_string(s); // Put it somewhere

}
// Everything is deallocated here
 180

Passing Parameters in Client Invocations
Table 10 summarizes parameter-passing rules. It does not show that out
parameters are passed as _out types. Instead, it shows the corresponding
alias for fixed-length types, or the type of constructor argument for the _out
type for variable-length types.

Table 10: Parameter passing for low-level mapping

IDL Type in inout out Return Value

simple simple simple & simple & simple

enum enum enum & enum & enum

fixed const Fixed & Fixed & Fixed & Fixed

string const char * char * & char * & char *

wstring const WChar * WChar * & WChar * & WChar *

any const Any & Any & Any * & Any *

objref objref_ptr objref_ptr & objref_ptr & objref_ptr

sequence const sequence & sequence & sequence * & sequence *

struct, fixed const struct & struct & struct & struct

union, fixed const union & union & union & union

array, fixed const array array_slice * array_slice * array_slice *

struct, variable const struct & struct & struct * & struct *

union, variable const union & union & union * & union *

array, variable const array array_slice * array_slice * & array_slice *
181

Chapter 8 | Developing a Client
As Table 10 shows, the parameter type varies for both out parameters and
return values, depending on whether a complex structure, union, or array is
variable length or fixed length. Table 11 shows the considerably simpler
parameter-passing rules for _var types:

 _var types are carefully crafted so that parameter passing is uniform,
regardless of the underlying type. This aspect of _var types, together with
their automatic deallocation behavior, makes them most useful for parameter
passing.

Setting Client Policies
Orbix supports a number of quality of service policies, which can give a client
programmatic control over request processing:

RebindPolicy specifies whether the ORB transparently reopens closed
connections and rebinds forwarded objects.

SyncScopePolicy determines how quickly a client resumes processing after
sending one-way requests.

Table 11: Parameter passing with _var types

IDL Type in inout/out Return Value

string const String_var & String_var & String_var

wstring const WString_var & WString_var & WString_var

any const Any_var & Any_var & Any_var

objref const objref_var & objref_var & objref_var

sequence const sequence_var & ssequence_var & sequence_var

struct const struct_var & struct_var & struct_var

union const union_var & union_var & union_var

array const array_var & array_var & array_var
 182

Setting Client Policies
Timeout policies offer different degrees of control over the length of time that
an outstanding request remains viable.

You can set quality of service policies at three scopes:

• On the client ORB, so they apply to all invocations.
• On a given thread, so they apply only to invocations on that thread
• On individual objects, so they apply only to invocations on those objects.

You can set policies in any combination at all three scopes; the effective
policy is determined on each invocation. If settings are found for the same
policy type at more than one scope, the policy at the lowest scope prevails.

For detailed information about setting these and other policies on a client,
see “Setting Client Policies” on page 138.

Note: Because all policy types and their settings are defined in the
Messaging module, client code that sets quality of service policies must
include omg/messaging.hh.

RebindPolicy

A client’s RebindPolicy determines whether the ORB can transparently
reconnect and rebind. A client’s rebind policy is set by a RebindMode
constant, which describes the level of transparent binding that can occur
when the ORB tries to carry out a remote request:

TRANSPARENT The default policy: the ORB silently reopens closed
connections and rebinds forwarded objects.

NO_REBIND The ORB silently reopens closed connections; it disallows
rebinding of forwarded objects if client-visible policies have changed since
the original binding. Objects can be explicitly rebound by calling CORBA::
Object::validate_connection() on them.

NO_RECONNECT The ORB disallows reopening of closed connections and
rebinding of forwarded objects. Objects can be explicitly rebound by calling
CORBA::Object::validate_connection() on them.
183

Chapter 8 | Developing a Client
Note: Currently, Orbix requires rebinding on reconnection. Therefore,
NO_REBIND and NO_RECONNECT policies have the same effect.

SyncScopePolicy

A client’s SyncScopePolicy determines how quickly it resumes processing
after sending one-way requests. You specify this behavior with one of these
SyncScope constants:

SYNC_NONE The default policy: Orbix clients resume processing
immediately after sending one-way requests, without knowing whether the
request was processed, or whether it was even sent over the wire.

SYNC_WITH_TRANSPORT The client resumes processing after a transport
accepts the request. This policy is especially helpful when used with
store-and-forward transports. In that case, this policy offer clients assurance
of a high degree of probable delivery.

SYNC_WITH_SERVER The client resumes processing after the request finds
a server object to process it—that is, the server ORB sends a NO_EXCEPTION
reply. If the request must be forwarded, the client continues to block until
location forwarding is complete.

SYNC_WITH_TARGET The client resumes processing after the request
processing is complete. This behavior is equivalent to a synchronous
(two-way) operation. With this policy in effect, a client has absolute
assurance that a its request has found a target and been acted on. The object
transaction service (OTS) requires this policy for any operation that
participates in a transaction.

Note: This policy only applies to GIOP 1.2 (and higher) requests.
 184

Setting Client Policies
Timeout Policies

A responsive client must be able to specify timeouts in order to abort
invocations. Orbix supports several standard OMG timeout policies, as
specified in the Messaging module; it also provides proprietary policies in the
IT_CORBA module that offer more fine-grained control. Table 12 shows which
policies are supported in each category:

If a request’s timeout expires before the request can complete, the client
receives the system exception CORBA::TIMEOUT.

Note: When using these policies, be careful that their settings are consistent
with each other. For example, the RelativeRoundtripTimeoutPolicy
specifies the maximum amount of time allowed for round-trip execution of a
request. Orbix also provides its own policies, which let you control specific
segments of request execution—for example, BindingEstablishmentPolicy
lets you set the maximum time to establish bindings. It is possible to set the
maximum binding time to be greater than the maximum allowed for roundtrip
request execution. Although these settings are inconsistent, no warning is
issued; and Orbix silently adheres to the more restrictive policy.

Setting Absolute Times
Two policies, RequestEndTimePolicy and ReplyEndTimePolicy, set absolute
deadlines for request and reply delivery, respectively, through the TimeBase::
UtcT type. The Orbix libraries include helper class IT_UtcT, which provides
ease-of-use operators and methods for working with the types defined in the

Table 12: Timeout Policies

OMG Timeout
Policies

RelativeRoundtripTimeoutPolicy
ReplyEndTimePolicy
RelativeRequestTimeoutPolicy
RequestEndTimePolicy

Proprietary
Timeout Policies

BindingEstablishmentPolicy
RelativeBindingExclusiveRoundtripTimeoutPolicy
RelativeBindingExclusiveRequestTimeoutPolicy
InvocationRetryPolicy
185

Chapter 8 | Developing a Client
TimeBase module. For example, you can use IT_UtcT::current() and
IT_UtCT::operator+() to obtain an absolute time that is relative to the
current time.

For more information, refer to the Orbix 2000 Programmer’s Reference.

RelativeRoundtripTimeoutPolicy
This policy specifies how much time is allowed to deliver a request and its
reply. Set this policy’s value in 100-nanosecond units. No default is set for
this policy; if it is not set, a request has unlimited time to complete.

The timeout countdown begins with the request invocation, and includes the
following activities:

• Marshalling in/inout parameters
• Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of reply
data, the request is cancelled via a GIOP CancelRequest message and all
received reply data is discarded.

For example, the following code sets a RelativeRoundtripTimeoutPolicy
override on the ORB PolicyManager, setting a four-second limit on the time
allowed to deliver a request and receive the reply:

// C++
TimeBase::TimeT relative_expiry = 4L * 10000000L; // 4 seconds
try{

CORBA::Any relative_roundtrip_timeout_value;
relative_roundtrip_timeout_value <<= relative_expiry;
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = orb->create_policy(

Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE,
relative_roundtrip_timeout_value

);
policy_manager->set_policy_overrides(

policies,
CORBA::ADD_OVERRIDE

);
}
catch (CORBA::PolicyError& pe){

return 1;
 186

Setting Client Policies
}
catch (CORBA::InvalidPolicies& ip){

return 1;
}
catch (CORBA::SystemException& se){

return 1;
}

ReplyEndTimePolicy
This policy sets an absolute deadline for receipt of a reply. This policy is
otherwise identical to RelativeRoundtripTimeoutPolicy. Set this policy’s
value with a TimeBase::UtcT type (see “Setting Absolute Times” on
page 185).

No default is set for this policy; if it is not set, a request has unlimited time to
complete.

RelativeRequestTimeoutPolicy
This policy specifies how much time is allowed to deliver a request. Request
delivery is considered complete when the last fragment of the GIOP request is
sent over the wire to the target object. The timeout-specified period includes
any delay in establishing a binding. This policy type is useful to a client that
only needs to limit request delivery time. Set this policy’s value in
100-nanosecond units.

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

For example, the following code sets a RelativeRequestTimeoutPolicy
override on the ORB PolicyManager, setting a three-second limit on the time
allowed to deliver a request:

// C++
TimeBase::TimeT relative_expiry = 3L * 10000000L; // 3 seconds
try{

CORBA::Any relative_request_timeout_value;
relative_request_timeout_value <<= relative_expiry;
CORBA::PolicyList policies(1);
policies.length(1);
187

Chapter 8 | Developing a Client
policies[0] = orb->create_policy(
Messaging::RELATIVE_REQ_TIMEOUT_POLICY_TYPE,
relative_request_timeout_value

);
policy_manager->set_policy_overrides(

policies,
CORBA::ADD_OVERRIDE

);
}
catch (CORBA::PolicyError& pe){

return 1;
}
catch (CORBA::InvalidPolicies& ip){

return 1;
}
catch (CORBA::SystemException& se){

return 1;
}

RequestEndTimePolicy
This policy sets an absolute deadline for request delivery. This policy is
otherwise identical to RelativeRequestTimeoutPolicy. Set this policy’s
value with a TimeBase::UtcT type (see “Setting Absolute Times” on
page 185).

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

BindingEstablishmentPolicy
This policy limits the amount of effort Orbix puts into establishing a binding.
The policy equally affects transparent binding (which results from invoking on
an unbound object reference), and explicit binding (which results from calling
Object::_validate_connection().

A client’s BindingEstablishmentPolicy is determined by the members of its
BindingEstablishmentPolicyValue, which is defined as follows:
 188

Setting Client Policies
struct BindingEstablishmentPolicyValue
{

TimeBase::TimeT relative_expiry;
unsigned short max_binding_iterations;
unsigned short max_forwards;
TimeBase::TimeT initial_iteration_delay;
float backoff_ratio;

};

relative_expiry limits the amount of time allowed to establish a binding. Set
this member in 100-nanosecond units. The default value is infinity.

max_binding_iterations limits the number of times the client tries to
establish a binding. Set to -1 to specify unlimited retries. The default value is
5.

Note: If location forwarding requires that a new binding be established for a
forwarded IOR, only one iteration is allowed to bind the new IOR. If the first
binding attempt fails, the client reverts to the previous IOR. This allows a
load balancing forwarding agent to redirect the client to another, more
responsive server.

max_forwards limits the number of forward tries that are allowed during
binding establishment. Set to -1 to specify unlimited forward tries. The
default value is 20.

initial_iteration_delay sets the amount of time, in 100-nanosecond units,
between the first and second tries to establish a binding. The default value is
0.1 seconds.

backoff_ratio lets you specify the degree to which delays between binding
retries increase from one retry to the next. The successive delays between
retries form a geometric progression:

0,
initial_iteration_delay x backoff_ratio0,
initial_iteration_delay x backoff_ratio1,
initial_iteration_delay x backoff_ratio2,
...,
189

Chapter 8 | Developing a Client
initial_iteration_delay x backoff_ratio(max_binding_iterations - 2)

The default value is 2.

For example, the following code sets an BindingEstablishmentPolicy
override on an object reference:

// C++
try{

CORBA::Any bind_est_value;

IT_CORBA::BindingEstablishmentPolicyValue val;
val.rel_expiry = (TimeBase::TimeT)30 * 10000000; // 30s
val.max_rebinds = (CORBA::UShort)5; // 5 binding tries
val.max_forwards = (CORBA::UShort)20; // 20 forwards
val.initial_iteration_delay

= (TimeBase::TimeT)1000000; // 0.1s delay
val.backoff_ratio = (CORBA::Float)2.0; // back-off ratio

bind_est_value <<= val;

CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = orb->create_policy(

IT_CORBA::BINDING_ESTABLISHMENT_POLICY_ID,
bind_est_value

);

CORBA::Object_var obj = slave->_set_policy_overrides(
policies,
CORBA::ADD_OVERRIDE

);

lots_of_retries_slave = ClientPolicy::Slave::_narrow(obj);
}
catch (CORBA::PolicyError& pe){

return 1;
}
catch (CORBA::InvalidPolicies& ip){

return 1;
}
catch (CORBA::SystemException& se){

return 1;
}

 190

Setting Client Policies
RelativeBindingExclusiveRoundtripTimeoutPolicy
This policy limits the amount of time allowed to deliver a request and receive
its reply, exclusive of binding attempts. The countdown begins immediately
after a binding is obtained for the invocation. This policy’s value is set in
100-nanosecond units.

RelativeBindingExclusiveRequestTimeoutPolicy
This policy limits the amount of time allowed to deliver a request, exclusive of
binding attempts. Request delivery is considered complete when the last
fragment of the GIOP request is sent over the wire to the target object. This
policy’s value is set in 100-nanosecond units.

InvocationRetryPolicy
This policy applies to invocations that receive the following exceptions:

• A TRANSIENT exception with a completion status of COMPLETED_NO
triggers a transparent reinvocation.

• A COMM_FAILURE exception with a completion status of COMPLETED_NO
triggers a transparent rebind attempt.

A client’s InvocationRetryPolicy is determined by the members of its
InvocationRetryPolicyValue, which is defined as follows:

struct InvocationRetryPolicyValue
{

unsigned short max_retries;
unsigned short max_rebinds;
unsigned short max_forwards;
TimeBase::TimeT initial_retry_delay;
float backoff_ratio;

};

max_retries limits the number of transparent reinvocation that are attempted
on receipt of a TRANSIENT exception. The default value is 5.

max_rebinds limits the number of transparent rebinds that are attempted on
receipt of a COMM_FAILURE exception. The default value is 5.
191

Chapter 8 | Developing a Client
Note: This setting is valid only if the effective RebindPolicy is TRANSPARENT;
otherwise, no rebinding occurs.

max_forwards limits the number of forward tries that are allowed for a given
invocation. Set to -1 to specify unlimited forward tries. The default value is
20.

initial_retry_delay sets the amount of time, in 100-nanosecond units,
between the first and second retries. The default value is 0.1 seconds.

Note: The delay between the initial invocation and first retry is always 0.

This setting only affects the delay between transparent invocation retries; it
has no affect on rebind or forwarding attempts.

backoff_ratio lets you specify the degree to which delays between invocation
retries increase from one retry to the next. The successive delays between
retries form a geometric progression:

0,
initial_iteration_delay x backoff_ratio0,
initial_iteration_delay x backoff_ratio1,
initial_iteration_delay x backoff_ratio2,
...,
initial_iteration_delay x backoff_ratio(max_retries - 2)

The default value is 2.

For example, the following code sets an InvocationRetryPolicy override on
an object reference:

// C++
try{

CORBA::Any lots_of_retries_value;

IT_CORBA::InvocationRetryPolicyValue val;
val.max_retries = (CORBA::UShort)10000; // 10000 retries
val.max_rebinds = (CORBA::UShort)5; // 5 rebinds
val.max_forwards = (CORBA::UShort)20; // 20 forwards
 192

Implementing Callback Objects
val.initial_retry_delay
= (TimeBase::TimeT)1000000; // 0.1s delay

val.backoff_ratio = (CORBA::Float)2.0; // back-off ratio

lots_of_retries_value <<= val;

CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = orb->create_policy(

IT_CORBA::INVOCATION_RETRY_POLICY_ID,
lots_of_retries_value

);

CORBA::Object_var obj = slave->_set_policy_overrides(
policies,
CORBA::ADD_OVERRIDE

);

lots_of_retries_slave = ClientPolicy::Slave::_narrow(obj);
}
catch (CORBA::PolicyError& pe){

return 1;
}
catch (CORBA::InvalidPolicies& ip){

return 1;
}
catch (CORBA::SystemException& se){

return 1;
}

Implementing Callback Objects
Many CORBA applications implement callback objects on a client so that a
server can notify the client of some event. You implement a callback object
on a client exactly as you do on a server, by activating it in a client-side POA
(see “Activating CORBA Objects” on page 202). This POA’s LifeSpanPolicy
should be set to TRANSIENT. Thus, all object references that the POA exports
are valid only as long as the POA is running. This ensures that a late server
callback is not misdirected to another client after the original client shuts
down.
193

Chapter 8 | Developing a Client
It is often appropriate to use a client’s root POA for callback objects,
inasmuch as it always exports transient object references. If you do so, make
sure that your callback code is thread-safe; otherwise, you must create a POA
with policies of SINGLE_THREAD_MODEL and TRANSIENT.
 194

Developing a Server
This chapter explains how to develop a server that
implements servants for CORBA objects.

A CORBA server performs these tasks:

• Uses a POA to map CORBA objects to servants, and to process client
requests on those objects.

• Implements CORBA objects as POA servants.
• Creates and exports object references for these servants.
• Manages memory for POA servants and object references.
• Initializes and shuts down the runtime ORB.
• Passes parameters to server-side operations.

For an overview of server code requirements, see “Learning More About the
Server” on page 61. Although throwing exceptions is an important aspect of
server programming, it is covered separately in Chapter 13.

For information on ORB initialization and shutdown, see “ORB Intialization
and Shutdown” on page 129.

POAs, Skeletons, and Servants
CORBA objects exist in server applications. Objects are implemented, or
incarnated, by language-specific servants. Objects and their servants are
connected by the portable object adapter (POA). The POA provides the
server-side runtime support that connects server application code to the
networking layer of the ORB.

A POA has these responsibilities:

• Create and destroy object references.
• Convert client requests into appropriate calls to application code.
• Synchronize access to objects.
• Cleanly start up and shut down applications.
195

Chapter 9 | Developing a Server
For detailed information about the POA, see Chapter 10.

For each IDL interface, the IDL compiler generates a POA_ skeleton class that
you compile into the server application. Skeleton classes are abstract base
classes. You implement skeleton classes in the server application code with
servant classes, which define the behavior of the pure virtual methods that
they inherit. Through a servant’s inherited connection to a skeleton class,
ORB runtime connects that servant back to the CORBA object that it
incarnates.

The IDL compiler can also generate a TIE class, which lets you implement
CORBA objects with classes that are unrelated (by inheritance) to skeleton
classes. For more information, see “Delegating Servant Implementations” on
page 214.

Note: The POA_ prefix only applies to the outermost naming scope of an IDL
construct. So, if an interface is nested in a module, only the outermost
module gets the POA_ prefix; constructs nested inside the module do not have
the prefix.

Figure 20 shows how a CORBA server handles an incoming client request,
and the stages by which it dispatches that request to the appropriate servant.
The server’s ORB runtime directs an incoming request to the POA where the
object was created. Depending on the POA’s state, the request is either
processed or blocked. A POA manager can block requests by rejecting them
outright and raising an exception in the client, or by queueing them for later
processing.
 196

Mapping Interfaces to Skeleton Classes
Mapping Interfaces to Skeleton Classes
When the ORB receives a request on a CORBA object, the POA maps that
request to an instance of the corresponding servant class and invokes the
appropriate method. All operations are represented as virtual member
methods, so dynamic binding ensures that the proper method in your derived
servant class is invoked.

For example, interface Account is defined as follows:

module BankDemo
{

typedef float CashAmount; // type represents cash
typedef string AccountId; // Type represents account IDs
// ...
interface Account
{

exception InsufficientFunds {};

readonly attribute AccountId account_id;
readonly attribute CashAmount balance;

Figure 20: The server-side ORB conveys client requests to the POA via its manager,
and the POA dispatches the request to the appropriate servant.

POA

Servants
Server

Request

ORB

PO
A

m
an

ag
er
197

Chapter 9 | Developing a Server
void
withdraw(in CashAmount amount)
raises (InsufficientFunds);

void
deposit(in CashAmount amount);
};

The IDL compiler maps the Account interface to skeleton class
POA_BankDemo::Account. For purposes of simplification, only methods that
map directly to IDL operations and attribute are shown:

namespace POA_BankDemo
{

class Account :
virtual public PortableServer::ServantBase

{
virtual ::BankDemo::AccountId
account_id() IT_THROW_DECL((CORBA::SystemException)) = 0;

virtual ::BankDemo::CashAmount
balance() IT_THROW_DECL((CORBA::SystemException)) = 0;

virtual void
withdraw(

::BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException,
BankDemo::Account::InsufficientFunds)) = 0;

virtual void
deposit(

::BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException)) = 0;

};

The following points are worth noting about the skeleton class:

• POA_BankDemo::Account inherits from PortableServer::ServantBase.
All skeleton classes inherit from the ServantBase class for two reasons:

♦ ServantBase provides functionality that is common to all servants.

♦ Servants can be passed generically—you can pass a servant for any
type of object as a pointer or reference to ServantBase.
 198

Mapping Interfaces to Skeleton Classes
• The names of the skeleton class and the corresponding client-side proxy
class are different. In this case, the fully scoped name of the skeleton
class is POA_BankDemo::Account, while the proxy class name is
BankDemo::Account.

This differentiation is important if client and server are linked into the
same program, because it avoids name clashes for multiply defined
symbols. It also preserves location transparency because it guarantees
that collocated calls are always dispatched by an intervening proxy
object, and are never dispatched as a direct virtual method call from
client to servant. So, if the server decides to delete an object and a
collocated client attempts to make a call on the deleted object, the proxy
raises an OBJECT_NOT_EXIST exception instead of attempting to access
deallocated memory and causing the program to crash.

• The skeleton class defines methods that correspond to the interface
operations and attributes.

• Methods are all defined as pure virtual, so you cannot instantiate a
skeleton class. Instead, you must derive from the skeleton a concrete
servant class that implements the pure virtual methods that it inherits.

• Each method has an exception specification. Orbix generates exception
specifications only for skeleton classes. In this example, the methods
throw system exceptions and, in the case of withdraw(), the user
exception InsufficientFunds.

• The throw clause prevents methods from throwing illegal exceptions. For
example, if deposit() throws an exception other than CORBA::
SystemException, the C++ run time calls the unexpected method
(which, by default, aborts the process).

• Apart from the exception specification, the signature of each skeleton
class method is the same as the corresponding proxy class method.

Identical signatures preserve location transparency. If the server and
client are collocated, the proxy can delegate calls directly to the skeleton
without translating or copying data. It also simplifies client and server
application development in that one set of parameter passing rules apply
to both.
199

Chapter 9 | Developing a Server
Creating a Servant Class
Each servant class inherits from a skeleton class. The following code defines
servant class AccountImpl, which derives from skeleton class POA_BankDemo:
:Account. Unlike the skeleton class methods, the AccountImpl methods that
map to IDL operations and attributes are not pure virtual, so a server can
instantiate AccountImpl as a servant.

#include "BankDemoS.hh" // Generated server-side header

class AccountImpl : public POA_BankDemo::Account {
public:

// Inherited IDL operations

virtual BankDemo::AccountId
account_id() IT_THROW_DECL((CORBA::SystemException));

virtual BankDemo::CashAmount
balance() IT_THROW_DECL((CORBA::SystemException));

virtual void
withdraw(

BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException,
BankDemo::Account::InsufficientFunds));

virtual void
deposit(

BankDemo::CashAmount amount
) IT_THROW_DECL((CORBA::SystemException));

// other members here ...

private:
// Prevent copying and assigment of servants
AccountImpl(const AccountImpl &);
void operator=(const AccountImpl &);

};

The following requirements and recommendations apply to servant class
definitions:
 200

Implementing Operations
• The code must include the generated server header file—in this case,
BankDemoS.hh.

• AccountImpl inherits from POA_BankDemo::Account through virtual
inheritance. If, as in this case, the servant class inherits from only one
source, it is unimporant to specify virtual inheritance. However, a
servant class that inherits from multiple skeleton classes should always
use virtual inheritance to prevent errors.

• The choice of name for servant classes is purely a matter of convention.
The examples here and elsewhere apply the Impl suffix to the original
interface name, as in AccountImpl. It is always good practice to have a
naming convention and use it consistently in your code.

• The copy constructor and assignment operator for the servant class are
private to prevent copying and assignment of servant instances.

Servants should not be copied or assigned; only one servant should
incarnate any given CORBA object; otherwise, it is unclear which
servant should handle requests for that object. It is always good practice
to hide a servant’s copy constructor and assignment operator.

The preceding AccountImpl class is a complete and functional servant class.
It only remains to implement the pure virtual methods that are inherited from
the skeleton. You can also can add other member variables and methods,
public and private, that can help implement a servant. For example, it is
typical to add a constructor and destructor, and private member variables to
hold the state of the object while the servant is in memory.

Implementing Operations
Most work in developing a servant consists of implementing each inherited
pure virtual method. Because the application code controls the body of each
operation, it largely determines the application’s overall behavior. The
following code outlines an implementation of the withdraw() method:

void
AccountImpl::withdraw(

BankDemo::CashAmount amount
) IT_THROW_DECL((

CORBA::SystemException,
BankDemo::Account::InsufficientFunds

))
201

Chapter 9 | Developing a Server
{
// ... database connection (via PSS) code omitted here

// get a PSS reference to corresponding database object
IT_PSS_RefVar<BankDemoStore_AccountBaseRef> ref =

my_state(accounts_home_obj.in());

BankDemo::CashAmount new_balance = ref->balance() - amount;

if (new_balance < 0.0F)
{

cout << " throwing InsufficientFunds" << endl;
throw BankDemo::Account::InsufficientFunds();

}

ref->balance(new_balance);
// ...

cout << " withdrew $" << amount << endl;
}

Activating CORBA Objects
In order to enable clients to invoke on CORBA operations, a server must
create and export object references. These object references must point back
to a CORBA object that is active through its incarnation by a C++ or Java
servant. Activation of a CORBA object is a two-step process:

1. Instantiate the CORBA object’s servant.

Instantiating a servant does not by itself activate the CORBA object. The
ORB runtime remains unaware of the existence of the servant and the
corresponding CORBA object.

2. Register the servant and the object’s ID in a POA. The easiest way to do
this is to call _this() on the servant. The IDL compiler generates a
_this() method for each servant skeleton class. _this() performs two
separate tasks:
 202

Handling Output Parameters
♦ Checks the POA to determine whether the servant is registered with
an existing object. If not, _this() creates an object from the
servant’s interface, registers a unique ID for this object in the POA’s
active object map, and maps this object ID to the servant’s address.

♦ Generates and returns an object reference that includes the object’s
ID and POA identifier.

In other words, the object is implicitly activated in order to return an
object reference.

You can also implicitly activate an object by calling servant_to_reference()
on the desired POA. This requires you to narrow to the appropriate object;
however, there can be no ambiguity concerning the POA in which the object
is active, as can happen through using _this() (see page 238).

Alternatively, you can explicitly activate a CORBA object: call
activate_object() or activate_object_with_id() on the POA. You can
then obtain an object reference by calling _this() on the servant. Because
the servant is already registered in the POA with an object ID, the method
simply returns an object reference.

The ability to activate an object implicitly or explicitly depends on a POA’s
activation policy. For more information on this topic, see “Explicit and
Implicit Object Activation” on page 236.

Note: The object reference returned by _this() is independent of the
servant itself; you must eventually call release() on the object or hold it in a
_var reference in order to avoid resource leaks. Releasing the object
reference has no effect on the corresponding servant.

Handling Output Parameters
Server-side rules for passing output (in/inout) parameters and return values
to the client complement client-side rules. For example, if the client is
expected to deallocate a variable-length return value, the server must allocate
that value.

In general, these rules apply:
203

Chapter 9 | Developing a Server
• If the type to pass is variable-length, the server dynamically allocates the
value and the client deallocates it.

• String, reference, and variable-length array types are dynamically
allocated and deallocated by the client. Strings and references can be
reallocated by the server.

Other types are passed by value or reference.

The following sections show the server-side rules for passing output
parameters and return values of various IDL types.

Simple Parameters

Simple IDL types such as short or long are passed by value. For example,
the following IDL defines operation Example::op(), which passes three long
parameters:

interface Example {
long
op(in long in_p, inout long inout_p, out long out_p);

};

The corresponding servant class contains this signature for op():

virtual CORBA::Long
op(

CORBA::Long in_p,
CORBA::Long & inout_p,
CORBA::Long_out out_p

) throw(CORBA::SystemException);

This example has the same mapping as the client, where CORBA::Long_out
type is simply an alias for CORBA::Long &. You might implement this
operation as follows:

CORBA::Long
ExampleImpl::op(

CORBA::Long in_p, CORBA::Long & inout_p, CORBA::Long_out out_p
) throw(CORBA::SystemException)
{

inout_p = 2 * inout_p; // Change inout_p.
out_p = in_p * in_p; // Set out_p
return in_p / 2; // Return in_p

}

 204

Handling Output Parameters
The method simply sets output parameters and return values; the changes
are automatically propagated back to the client.

Fixed-Length Complex Parameters

Fixed-length complex parameters are passed by value or by reference. For
example, the following IDL defines a fixed-length structure that operation
Example::op() uses in its return value and parameters:

struct FLS { // Fixed-Length Structure
long long_val;
double double_val;

};

interface Example {
FLS op(in FLS in_p, inout FLS inout_p, out FLS out_p);

};

The corresponding servant class contains this signature for op():

typedef FLS & FLS_out;
// ...
virtual FLS
op(const FLS & in_p, FLS & inout_p, FLS_out out_p)
throw(CORBA::SystemException);

The following code implements the servant operation. No memory
management issues arise; the method simply assigns the values of output
parameters and the return value:

FLS
ExampleImpl::op(const FLS & in_p, FLS & inout_p, FLS_out out_p)
throw(CORBA::SystemException)
{

cout << in_p.long_val << endl; // Use in_p
cout << in_p.double_val << endl; // Use in_p
cout << inout_p.double_val << endl; // Use inout_p

// Change inout_p
inout_p.double_val = inout_p.long_val * in_p.double_val;

out_p.long_val = 99; // Initialize out_p
out_p.double_val = 3.14;
205

Chapter 9 | Developing a Server
FLS ret_val = { 42, 42.0 }; // Initialize return value
return ret_val;

}

Fixed-Length Array Parameters

Fixed-length arrays are passed as pointers to array slices. The return value is
dynamically allocated. For example, the following IDL defines a fixed-length
array that operation Example::op() uses in its return value and parameters:

typedef long Larr[3];

interface Example {
Larr op(in Larr in_p, inout Larr inout_p, out Larr out_p);

};

The corresponding servant class contains this signature for op():

typedef CORBA::Long Larr[3];
typedef CORBA::Long Larr_slice;
typedef Larr_slice * Larr_out;
// ...
virtual Larr_slice *
op(const Larr in_p, Larr_slice * inout_p, Larr_out out_p)
throw(CORBA::SystemException);

In the following implementation, the generated Larr_alloc() method
dynamically allocates the return value:

Larr_slice *
ExampleImpl::
op(const Larr in_p, Larr_slice * inout_p, Larr_out out_p)
throw(CORBA::SystemException)
{

int len = sizeof(in_p) / sizeof(*in_p);

// Use incoming values of in_p and inout_p...

// Modify inout_p
inout_p[1] = 12345;

// Initialize out_p
for (int i = 0; i < len; i++)

out_p[i] = i * i;
 206

Handling Output Parameters
// Return value must be dynamically allocated
Larr_slice * ret_val = new Larr_alloc();
for (int i = 0; i < len; i++)

ret_val[i] = i * i * i;

return ret_val;
}

String Parameters

String-type output parameters and return values must be dynamically
allocated. For example, the following IDL defines a fixed-length array that
operation Example::op() uses in its return value and parameters:

interface Example {
string op(

in string in_p,
inout string inout_p,
out string out_p

);
};

The corresponding servant class contains this signature for op():

virtual const char *
op(

const char * in_p,
char * & inout_p,
CORBA::String_out out_p

) throw(CORBA::SystemException);

The server is constrained by the same memory requirements as the client:

• Strings are initialized as usual.
• inout strings are dynamically allocated and initialized by the client. The

servant can change an inout string by modifying the bytes of the inout
string in place, or shorten the inout string in place by writing a
terminating NUL byte into the string. To return an inout string that is
longer than the initial value, the servant must deallocate the original
copy and allocate a longer string.

• out strings must be dynamically allocated.
• Return value strings must be dynamically allocated.
207

Chapter 9 | Developing a Server
The following code implements the servant operation:

const char *
ExampleImpl::
op(

const char * in_p,
char * & inout_p,
CORBA::String_out out_p

) throw(CORBA::SystemException)
{

cout << in_p << endl; // Show in_p
cout << inout_p << endl; // Show inout_p

// Modify inout_p in place:
//
char * p = inout_p;
while (*p != '\0')

toupper(*p++);

// OR make a string shorter by writing a terminating NUL:
//
*inout_p = '\0'; // Set to empty string.

// OR deallocate the initial string and allocate a new one:
//

CORBA::string_free(inout_p);
inout_p = CORBA::string_dup("New string value");

// out strings must be dynamically allocated.
//
out_p = CORBA::string_dup("I am an out parameter");

// Return value strings must be dynamically allocated.
//
char * ret_val

= CORBA::string_dup("In Xanadu did Kubla Khan..."));

return ret_val;
}

 208

Handling Output Parameters
Variable-Length Complex Parameters

out parameters and return values of variable-length complex types must be
dynamically allocated; in and inout parameters are passed by reference.

For example, the following IDL defines a variable-length structure that
operation Example::op() uses in its return value and parameters:

struct VLS { // Variable-length structure
long long_val;
string string_val;

};

interface Example {
VLS op(in VLS in_p, inout VLS inout_p, out VLS out_p);

};

The corresponding servant class contains this signature for op():

class VLS_out { /* ... */ };
// ...
virtual VLS *
op(const VLS & in_p, VLS & inout_p, VLS_out out_p)
throw(CORBA::SystemException);

The following code implements the servant operation:

VLS *
ExampleImpl::
op(const VLS & in_p, VLS & inout_p, VLS_out out_p)
throw(CORBA::SystemException)
{

cout << in_p.string_val << endl; // Use in_p
cout << inout_p.long_val << endl; // Use inout_p
inout_p.long_val = 99; // Modify inout_p
out_p = new VLS; // Allocate out param
out_p->long_val = 1; // Initialize...
out_p->string_val = CORBA::string_dup("One");

VLS * ret_val = new VLS; // Allocate return value
ret_val->long_val = 2; // Initialize...
ret_val->string_val = CORBA::string_dup("Two");

return ret_val;
}

209

Chapter 9 | Developing a Server
Variable-Length Array Parameters

Like fixed-length arrays, variable-length arrays are passed as pointers to array
slices. out parameters and the return value must be dynamically allocated.

For example, the following IDL defines a variable-length array that operation
Example::op() uses in its return value and parameters:

typedef string Sarr[3];

interface Example {
Sarr op(in Sarr in_p, inout Sarr inout_p, out Sarr out_p);

};

The corresponding servant class contains this signature for op():

typedef CORBA::String_mgr Sarr[3];
typedef CORBA::String_Mgr Sarr_slice;
class Sarr_out { /* ... */ };
// ...
virtual Sarr_slice * op(

const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) throw(CORBA::SystemException);

The following code implements the servant operation. As with all nested
strings, string elements behave like a String_var, so assignments make
deep copies or, if a pointer is assigned, take ownership:

typedef CORBA::String_mgr Sarr[3];
typedef CORBA::String_Mgr Sarr_slice;
class Sarr_out;
// ...

Sarr_slice *
ExampleImpl::
op(

const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) throw(CORBA::SystemException)
{

cout << in_p[1] << endl; // Use in_p
cout << inout_p[0] << endl; // Use inout_p
inout_p[1] = in_p[0]; // Modify inout_p

out_p = Sarr_alloc(); // Allocate out param
out_p[0] = CORBA::string_dup("In Xanadu did Kubla Khan");
 210

Handling Output Parameters
out_p[1] = CORBA::string_dup("A stately pleasure-dome
out_p[2] = CORBA::string_dup("decree: Where Alph...");

// Allocate return value and initialize...
//
Sarr_slice * ret_val = Sarr_alloc();
ret_val[0] = out_p[0];
ret_val[1] = inout_p[1];
ret_val[2] = in_p[2];

return ret_val; // Poor Coleridge...
}

Object Reference Parameters

Object references are passed as _ptr references. The following memory
management rules apply to object reference parameters:

• in parameters are initialized by the caller and must not be released; the
caller retains ownership of the in parameter.

• inout parameters are initialized by the caller. To change the value of an
inout parameter, you must call release() on the original value and use
_duplicate() to obtain the new value.

• out parameters and return values must be allocated by _duplicate() or
_this(), which calls _duplicate() implicitly.

For example, the following IDL defines interface Example; operation Example:
:op() specifies this interface for its return value and parameters:

interface Example {
string greeting();
Example op(

in Example in_p,
inout Example inout_p,
out Example out_p

);
};

The corresponding servant class contains this signature for op():
211

Chapter 9 | Developing a Server
class Example_out { /* ... */ };
// ...
virtual Example_ptr op(
Example_ptr in_p, Example_ptr & inout_p, Example_out out_p

) throw(CORBA::SystemException);

The following implementation dynamically allocates the new value of
inout_p after releasing the previous value. The return value is dynamically
allocated because _this() calls _duplicate() implicitly.

As shown in this example, you should always test for nil before making a call
on a passed in or inout reference. Otherwise, your servant is liable to make
a call on a nil reference and cause a core dump.

Example_ptr
ExampleImpl::
op(

Example_ptr in_p, Example_ptr & inout_p, Example_out out_p
) throw(CORBA::SystemException)
{

// Use in_p.
//
if (!CORBA::is_nil(in_p)) {

CORBA::String_var s = in_p->greeting();
cout << s << endl;

}

// Use inout_p.
//
if (!CORBA::is_nil(inout_p)) {

CORBA::String_var s = inout_p->greeting();
cout << s << endl;

}

// Modify inout_p to be the same as in_p.
//
CORBA::release(inout_p); // First deallocate,
inout_p = Example::_duplicate(in_p); // then assign.

// Set return value.
//
return _this(); // Return reference to self.

}

 212

Counting Servant References
Note: This example is unrealistic in returning a reference to self, because in
order to invoke the operation, the caller must hold a reference to this object
already.

Counting Servant References
Multi-threaded servers need to reference-count their servants in order to
avoid destroying a servant on one thread that is still in use on another. In
general, you should enable reference counting for servants that are activated
in a POA with a policy of ORB_CTRL_MODEL.

The POA specification provides the standard methods _add_ref() and
_remove_ref() to support reference counting, but by default they do nothing.
You can enable reference counting by inheriting the standard class
PortableServer::RefCountServantBase in servant implementations. For
example:

class BankDemo_AccountImpl
: public virtual POA_BankDemo::Account,
public virtual PortableServer::RefCountServantBase

With reference counting enabled, the POA calls _add_ref() when it holds a
pointer to a servant in any thread, and calls _remove_ref() when it is
finished with that servant. POA methods that return servants to user code
call _add_ref() before they deliver the servant, so the same code should call
_remove_ref() on the result when it is finished.

In your own code, you should call _add_ref() for each additional pointer to a
servant, and _remove_ref() when you are done with that pointer (rather
than delete it). Doing so ensures that the servant is deleted when no pointers
are held to that servant either in your own code or in the POA.

Reference counting is ignored by tie-based servants. Tie templates, as
defined in the POA standard, do not support reference counting, Therefore, it
is not recommended that you use the tie approach for multi-threaded servers.
213

Chapter 9 | Developing a Server
Delegating Servant Implementations
Previous examples show how Orbix uses inheritance to associate servant
classes and their implementations with IDL interfaces. By inheriting from
IDL-derived skeleton classes, servants establish their connection to the
corresponding IDL interfaces, and thereby make themselves available to
client requests.

Alternatively, you can explicitly associate, or tie a servant and its operations
to the appropriate IDL interface through tie template classes. The tie
approach lets you implement CORBA objects with classes that are unrelated
(by inheritance) to skeleton classes.

In most cases, inheritance and tie approaches are functionally equivalent;
only programming style preferences determine whether to favor one approach
over the other. For more on the comparative merits of each approach, see
“Tie Versus Inheritance” on page 215.

Creating Tie-Based Servants

Tie-based servants rely on two components:

• A tie object implements the CORBA object; however, unlike the inherited
approach, the class that it instantiates does not inherit from any of the
IDL-generated base skeleton classes.

• A tie servant instantiates a tie template class, which the IDL compiler
generates when you run it with the -xTIE switch. The POA regards a tie
servant as the actual servant of an object. Thus, all POA operations on a
servant such as activate_object() take the tie servant as an argument.
The tie servant receives client invocations and forwards them to the tie
object.

To create a tie servant and associate it with a tie object:

1. Instantiate the tie object

2. Pass the tie object’s address to the tie object constructor with this
syntax:

tie-template-class<impl-class> tie-servant(tied-object);
 214

Delegating Servant Implementations
For example, given an IDL specification that includes interface BankDemo::
Bank, the IDL compiler can generate tie template class POA_BankDemo::
Bank_tie. This class supplies a number of operations that enable its tie
servant to control the tie object.

Given implementation class BankImpl, you can instantiate a tie object and
create tie servant bank_srv_tie for it as follows:

// instantiate tie object and create its tie servant
POA_BankDemo::Bank_tie<BankImpl> bank_srv_tie(new BankImpl);

Given this tie servant, you can use it to create an object reference:

//create an object reference for bank servant
bank_var bankref = bank_srv_tie._this();

When the POA receives client invocations on the bankref object, it relays
them to tie servant bank_srv_tie, which delegates them to the bank tie
object for processing.

Removing Tie Objects and Servants

You remove a tie servant from memory like any other servant—for example,
with PortableServer::POA::deactivate_object(). If the tie servant’s tie
object implements only a single object, the tie object is also removed.

Tie Versus Inheritance

The tie approach can be useful where implementations must inherit from an
existing class framework, as often occurs with OODB systems. In this case,
you can create object implementations only with the tie approach. Otherwise,
the tie approach has several drawbacks:

• Because the tie approach requires two C++ instances for each CORBA
object, it uses up more resources.

• Tie-based servants ignore reference counting; therefore, you should not
use the tie approach for multi-threaded servers.

• The tie approach adds an unnecessary layer of complexity to application
code.

In general, unless you have a compelling reason to use the tie approach, you
should favor the inheritance approach in your code.
215

Chapter 9 | Developing a Server
Implementation Inheritance
IDL inheritance does not constrain your options for implementing servant
classes. In Figure 21, shaded classes represent the skeleton abstract base
classes generated by the IDL compiler; non-shaded classes represent the
servant classes that you provide

CheckingAccountImpl inherits from AccountImpl, so CheckingAccountImpl
needs only to implement the two pure virtual methods that it inherits from
CheckingAccount: overdraftLimit() and orderCheckBook(). Functions in
base interface Account such as balance() are already implemented in and
inherited from AccountImpl.

Interface Inheritance
You can choose not to derive CheckingAccountImpl() from AccountImpl().
If all methods in POA_BankDemo::CheckingAccount are defined as pure
virtual, then CheckingAccountImpl must implement the methods that it
inherits from POA_BankDemo::Account, as well as those inherited from
POA_BankDemo::CheckingAccount, as shown in Figure 22

Interface inheritance facilitates encapsulation. With interface inheritance, the
derived class servant is independent of the base class servant. This might be
desirable if you plan to split a single server into two servers: one that
implements base objects and another that implements derived objects.

Figure 21: A servant class can inherit base class implementations.

AccountImpl

CheckingAccountImpl

POA_BankDemo::

POA_BankDemo::
 216

Multiple Inheritance
This model also serves any application design that requires all base classes
to be abstract, while it retains interface inheritance.

Multiple Inheritance
Implementation and interface inheritance extend to multiple inheritance. In
Figure 23, solid arrows indicate inheritance that is mandated by the C++
mapping. The dotted arrows indicate that the servants allow either
implementation or interface inheritance.

Given this hierarchy, it is also possible to leave POA_BankDemo::Account
without an implementation, inasmuch as it is an IDL abstract base class. In
this case, CheckingAccountImpl and SavingsAccountImpl must provide the
required virtual method implementations.

Figure 22: A servant class can implement operations of all base skeleton classes.

AccountImpl

CheckingAccountIm

POA_BankDemo::

POA_BankDemo::
217

Chapter 9 | Developing a Server
Explicit Event Handling
When you call ORB::run(), the ORB gets the thread of control to dispatch
events. This is acceptable for a server that only processes CORBA requests.
However, if your process must also support a GUI or uses another networking
stack, you also must be able to monitor incoming events that are not CORBA
client requests.

The ORB interface methods work_pending() and perform_work() let you poll
the ORB’s event loop for incoming requests:

• work_pending() returns true if the ORB’s event loop has at least one
request ready to process

Figure 23: Inheritance options among servant and base skeleton classes.

POA_BankDemo::

POA_BankDemo::

POA_BankDemo::

POA_BankDemo::

SavingsAccountIm

AccountImp

NOWAccountIm

CheckingAccountIm
 218

Termination Handler
• perform_work() processes one or more requests before it completes and
returns the thread of control to the application code. The amount of work
processed by this call depends on the threading policies and the number
of queued requests; however, perform_work() guarantees to return
periodically so you can handle events from other sources.

Termination Handler
Orbix provides its own IT_TerminationHandler class, which enables server
applications to handle delivery of Ctrl-C and similar events in a portable
manner. On UNIX, the termination handler handles the following signals:

SIGINT
SIGTERM
SIGQUIT

On Windows, the termination handler is just a wrapper around
SetConsoleCtrlHandler, which handles delivery of the following control
events:

CTRL_C_EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOWN_EVENT
CTRL_LOGOFF_EVENT
CTRL_CLOSE_EVENT

You can create only one termination handler object in a program.

In the following example, the main routine creates a termination handler
object on the stack. On POSIX platforms, it is critical to create this object in
the main thread before creation of any other thread, especially before calling
ORBinit(). The IT_TerminationHandler destructor deregisters the callback,
in order to avoid calling it during static destruction.

static void
termination_handler_callback(

long signal
)
{

cout << "Processing shutdown signal " << signal << endl;
if (!CORBA::is_nil(orb))
{

219

Chapter 9 | Developing a Server
cout >> "ORB shutdown ... " << flush;
orb->shutdown(IT_FALSE);
cout << "done." << endl;

}
}

int
main(int argc, char** argv)
{

IT_TerminationHandler
termination_handler(termination_handler_callback);

}

Compiling and Linking
Server compile and link requirements are almost the same as the client,
except that it also requires the server-side skeleton code, which has the
format idl-nameS.cxx—for example, BankDemoS.cxx. You also must link
with the poa library, which contains the server-side run-time support for the
POA.

Details for compiling and linking a server differ among platforms. For more
information about platform-specific compiler flags and libraries, refer to the
demo makefiles in your Orbix distribution.
 220

Managing Server Objects
A portable object adapter, or POA, provides the mechanism
by which a server process maps CORBA objects to
language-specific implementations, or servants. All
interaction with server objects takes place via the POA.

A POA identifies objects through their object IDs, which are encapsulated
within the object requests that it receives. Orbix views an object as active
when its object ID is mapped to a servant; the servant is viewed as incarnat-
ing that object. By abstracting an object’s identity from its implementation, a
POA enables a server to be portable among different implementations.

This chapter shows how to create and manage a POA within a server
process, covering the following topics:

• Mapping objects to servants
• Creating a POA and setting POA policies
• Using POA policies
• Activating objects implicitly and explicitly
• Using the POA manager to manipulate request flow control

Mapping Objects to Servants
Figure 24 shows how a POA manages the relationship between CORBA
objects and servants, within the context of a client request. A client
references an object or invokes a request on it through an interoperable
object reference (IOR). This IOR encapsulates the information required to
find the object, including its server address, POA, and object ID—in this
case, A. On receiving the request, the POA uses the object’s ID to find its
servant. It then dispatches the requested operation to the servant via the
server skeleton code, which extracts the operation’s parameters and passes
the operation as a language-specific call to the servant.
221

Chapter 10 | Managing Server Objects
Depending on a POA’s policies, a servant can be allowed to incarnate only
one object; or it can incarnate multiple objects. During an object’s lifetime, it
can be activated multiple times by successive servant incarnations.

Mapping Options

A POA can map between objects and servants in several ways:

• An active object map retains object-servant mappings throughout the
lifetime of its POA, or until an object is explicitly deactivated. Before a
POA is activated, it can anticipate incoming requests by mapping known
objects to servants, and thus facilitate request processing.

Figure 24: A portable object adapter (POA) maps abstract objects to their concrete
implementations (servants)

Object IDs encapsulated
within IORs

Server

POA

Servant

A

Client request

Servant

Object ID

Skeleton

A

 222

Creating a POA
• A servant manager maps objects to servants on demand, either on the
initial object request, or on every request. Servant managers can
enhance control over servant instantiation, and help avoid or reduce the
overhead incurred by a static object-servant mapping.

• A single default servant can be used to handle all object requests. A POA
that uses a default servant incurs the same overhead no matter how
many objects it processes.

Depending on its policies, a POA can use just one object-mapping method, or
several methods in combination. For more information, see “Enabling the
Active Object Map” on page 228.

Creating a POA
All server processes in a location domain use the same root POA, which you
obtain by calling resolve_initial_references("POA"). The root POA has
predefined policies which cannot be changed (see page 227). Within each
server process, the root POA can spawn one or more child POAs. Each child
POA provides a unique namespace; and each can have its own set of poli-
cies, which determine how the POA implements and manages object-servant
mapping. Further, each POA can have its own POA manager and servant
manager.

A number of objectives can justify the use of multiple POAs within the same
server. These include:

• Partition the server into logical or functional groups of servants. You can
associate each group with a POA whose policies conform with the
group’s requirements. For example, a server that manages Customer and
Account servants can provide a different POA for each set of servants.

You can also group servants according to common processing
requirements. For example, a POA can be configured to generate object
references that are valid only during the lifespan of that POA, or across
all instantiations of that POA and its server. POAs thus offer built-in
support for differentiating between persistent and transient objects.

• Independently control request processing for sets of objects. A POA
manager’s state determines whether a POA is active or inactive; it also
determines whether an active POA accepts incoming requests for
223

Chapter 10 | Managing Server Objects
processing, or defers them to a queue (see “Processing Object Requests”
on page 229). By associating POAs with different managers, you can
gain finer control over object request flow.

• Choose the method of object-servant binding that best serves a given POA.
For example, a POA that processes many objects can map all of them to
the same default servant, incurring the same overhead no matter how
many objects it processes.

Creating a POA consists of these steps:

1. Set the POA policies.

Before you create a POA, establish its desired behavior through a
CORBA PolicyList, which you attach to the new POA on its creation. Any
policies that are explicitly set override a new POA’s default policies (refer
to Table 13 on page 226).

2. Create the POA by calling create_POA() on an existing POA.

3. If the POA has a policy of USE_SERVANT_MANAGER, register its servant
manager by calling set_servant_manager() on the POA.

4. Enable the POA to receive client requests by calling activate() on its
POA manager.

Setting POA Policies

A new POA’s policies are set when it is created. You can explicitly set a
POA’s policies through a CORBA PolicyList object, which is a sequence of
Policy objects. The PortableServer::POA interface provides factories to cre-
ate CORBA Policy object types (see Table 13 on page 226). If a Policy object
type is proprietary to Orbix, you must create the Policy object by calling
create_policy() on the ORB (see “Setting Proprietary Policies for a POA” on
page 226). In all cases, you attach the PolicyList object to the new POA. All
policies that are not explicitly set in the PolicyList are set to their defaults.

For example, the following code creates policy objects of PERSISTENT and
USER_ID:

CORBA::PolicyList policies;
policies.length (2);
policies[0] = poa–>create_lifespan_policy

(PortableServer::PERSISTENT)
 224

Creating a POA
policies[1] = poa–>create_id_assignment_policy
(PortableServer::USER_ID)

With the PERSISTENT policy, a POA can create object references that remain
valid across successive instantiations of this POA and its server process. The
USER_ID policy requires the application to autoassign all object IDs for a POA.

After you create a PolicyList object, you attach it to a new POA by supplying
it as an argument to create_POA(). The following code creates POA
persistentPOA as a child of the root POA, and attaches to it the PolicyList
object just shown:

//get an object reference to the root POA
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = POA::_narrow(obj);

//create policy object
CORBA::PolicyList policies;
policies.length (2);

// set policy object with desired policies
policies[0] = poa–>create_lifespan_policy

(PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy

(PortableServer::USER_ID)

//create a POA for persistent objects
poa = poa->create_POA("persistentPOA", NULL, policies);

In general, POA policies let you differentiate among various POAs within the
same server process, where each POA is defined in a way that best accom-
modates the needs of the objects that it processes. So, a server process that
contains the POA persistentPOA might also contain a POA that supports
only transient object references, and only handles requests for callback
objects.

Note: Orbix automatically removes policy objects when they are no longer
referenced by any POA.
225

Chapter 10 | Managing Server Objects
POA Policy Factories
The PortableServer::POA interface contains factory methods for creating
CORBA Policy objects:

For specific information about these methods, refer to their descriptions in
the Orbix 2000 Programmer’s Reference.

Setting Proprietary Policies for a POA
Orbix provides several proprietary policies to control POA behavior. To set
these policies, call create_policy() on the ORB to create Policy objects
with the desired policy value, and add these objects to the POA’s PolicyList.
For example, Orbix provides policies that determine how a POA handles
incoming requests for any object as it undergoes deactivation. You can
specify a DISCARD policy for a POA so it discards all incoming requests for
deactivating objects:

Table 13: POA policy factories and argument options

POA policy factories Policy options (d) = default

create_id_assignment_policy() SYSTEM_ID (d)
USER_ID

create_id_uniqueness_policy() UNIQUE_ID (d)
MULTIPLE_ID

create_implicit_activation_policy() NO_IMPLICIT_ACTIVATION (d)
IMPLICIT_ACTIVATION

create_lifespan_policy() TRANSIENT (d)
PERSISTENT

create_request_processing_policy() USE_ACTIVE_OBJECT_MAP_ONLY (d)
USE_DEFAULT_SERVANT
USE_SERVANT_MANAGER

create_servant_retention_policy() RETAIN (d)
NON_RETAIN

create_thread_policy() ORB_CTRL_MODEL (d)
SINGLE_THREAD_MODEL
 226

Creating a POA
CORBA::PolicyList policies;
policies.length (1);
CORBA::Any obj_deactivation_policy_value;
obj_deactivation_policy_value <<= IT_PortableServer::DISCARD;

policies[0] = orb->create_policy(
(IT_PortableServer::OBJECT_DEACTIVATION_POLICY_ID,
obj_deactivation_policy_value);

You can attach the following Orbix-proprietary Policy objects to a POA’s
PolicyList:

• ObjectDeactivationPolicy: Controls how the POA handles requests
that are directed at deactivating objects. This policy is valid only for a
POA that uses a servant activator to control object activation. For more
information, see “Setting Deactivation Policies” on page 255.

• PersistenceModePolicy: Can specify a policy of DIRECT_PERSISTENCE,
so that the POA uses a well-known address in the IORs that it generates
for persistent objects. This policy is valid only for a POA that has a
PERSISTENT lifespan policy. For more information, see “Direct
Persistence” on page 232.

• WellKnownAddressingPolicy: Sets transport configuration data—for
example, address information for persistent objects that use a
well-known address, or IIOP buffer sizes. For more information, see
“Direct Persistence” on page 232.

• WorkQueuePolicy: Allows the application to control the work queue in
which incoming requests are placed for processing. For more
information, see “Creating a Work Queue” on page 242.

Root POA Policies

The root POA has the following policy settings, which cannot be changed:

Policy Default setting

Id Assignment SYSTEM_ID

Id Uniqueness UNIQUE_ID

Implicit Activation IMPLICIT_ACTIVATION

Lifespan TRANSIENT
227

Chapter 10 | Managing Server Objects
Using POA Policies
A POA’s policies play an important role in determining how the POA
implements and manages objects and processes client requests. While the
root POA has a set of predefined policies that cannot be changed, any POA
that you create can have its policies explicitly set.

The following sections describe POA policies and setting options.

Enabling the Active Object Map

A POA’s servant retention policy determines whether it uses an active object
map to maintain servant-object associations. Depending on its request
processing policy (see page 229), a POA can rely exclusively on an active
object map to map object IDs to servants, or it can use an active object map
together with a servant manager and/or default servant. A POA that lacks an
active object map must use either a servant manager or a default servant to
map between objects and servants.

You specify a POA’s servant retention policy by calling
create_servant_retention_policy() with one of these arguments:

RETAIN: The POA retains active servants in its active object map.

NON_RETAIN: The POA has no active object map. For each request, the
POA relies on the servant manager or default servant to map between an
object and its servant; all mapping information is destroyed when request
processing returns. Thus, a NON_RETAIN policy also requires that the POA
have a request processing policy of USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER (see “Processing Object Requests”).

Request Processing USE_ACTIVE_OBJECT_MAP_ONLY

Servant Retention RETAIN

Thread ORB_CTRL_MODEL

Policy Default setting
 228

Using POA Policies
If a POA has a policy of USE_SERVANT_MANAGER, its servant retention policy
determines whether it uses a servant activator or servant locator as its
servant manager. A RETAIN policy requires the use of a servant activator; a
NON_RETAIN policy requires the use of a servant locator. For more information
about servant managers, see Chapter 11.

Processing Object Requests

A POA's request processing policy determines how it locates a servant for
object requests. Four options are available:

• Maintain a permanent map, or active object map, between object IDs
and servants and rely exclusively on that map to process all object
requests.

• Activate servants on demand for object requests.
• Locate a servant for each new object request.
• Map object requests to a single default servant.

For example, if the application processes many lightweight requests for the
same object type, the server should probably have a POA that maps all these
requests to the same default servant. At the same time, another POA in the
same server might be dedicated to a few objects that each use different
servants. In this case, requests can probably be processed more efficiently if
the POA is enabled for permanent object-servant mapping.

You set a POA’s request processing policy by calling
create_request_processing_policy() and supplying one of these
arguments:

• USE_ACTIVE_OBJECT_MAP_ONLY

• USE_SERVANT_MANAGER

• USE_DEFAULT_SERVANT

USE_ACTIVE_OBJECT_MAP_ONLY

All object IDs must be mapped to a servant in the active object map;
otherwise, Orbix returns an exception of OBJECT_NOT_EXIST to the client.
During POA initialization and anytime thereafter, the active object map is
populated with all object-servant mappings that are required during the
229

Chapter 10 | Managing Server Objects
POA’s lifetime. The active object map maintains object-servant mappings
until the POA shuts down, or an object is explicitly deactivated through
deactivate_object().

Typically, a POA can rely exclusively on an active object map when it
processes requests for a small number of objects.

This policy requires POA to have a servant retention policy of RETAIN. (see
“Enabling the Active Object Map” on page 228).

USE_SERVANT_MANAGER

The POA’s servant manager finds a servant for the requested object.
Depending on its servant retention policy, the POA can implement one of two
servant manager types, either a servant activator or a servant locator:

• A servant activator can be registered with a POA that has a RETAIN
policy. The servant activator incarnates servants for inactive objects on
receiving an initial request for them. The active object map retains
mappings between objects and their servants; it handles all subsequent
requests for this object.

• If the POA has a policy of NON_RETAIN (the POA has no active object
map), a servant locator must find a servant for an object on each
request; otherwise, an OBJ_ADAPTER exception is returned when clients
invoke requests.

USE_SERVANT_MANAGER requires the application to register a servant manager
with the POA by calling set_servant_manager().

For more information about servant managers, see Chapter 11.

USE_DEFAULT_SERVANT

The POA dispatches requests to the default servant when it cannot otherwise
find a servant for the requested object. This can occur because the object’s
ID is not in the active object map, or the POA’s servant retention policy is set
to NON_RETAIN.

Set this policy for a POA that needs to process many objects that are
instantiated from the same class, and thus can be implemented by the same
servant.
 230

Using POA Policies
This policy requires the application to register the POA’s default servant by
calling set_servant() on the POA; it also requires the POA’s ID uniqueness
policy to be set to MULTIPLE_ID, so multiple objects can use the default
servant.

Setting Object Lifespan

A POA creates object references through calls to create_reference() or
create_reference_with_id(). The POA’s lifespan policy determines
whether these object references are persistent—that is, whether they outlive
the process in which they were created. A persistent object reference is one
that a client can successfully reissue over successive instantiations of the
target server and POA.

You specify a POA’s lifespan policy by calling create_lifespan_policy()
with one of these arguments

TRANSIENT: (default policy) Object references do not outlive the POA in
which they are created. After a transient object’s POA is destroyed,
attempts to use this reference yield the exception CORBA::
OBJECT_NOT_EXIST.

PERSISTENT: Object references can outlive the POA in which they are
created.

Transient Object References
When a POA creates an object reference, it encapsulates it within an IOR. If
the POA has a TRANSIENT policy, the IOR contains the server process’s
current location—its host address and port. Consequently, that object
reference is valid only as long as the server process remains alive. If the
server process dies, the object reference becomes invalid.
231

Chapter 10 | Managing Server Objects
Persistent Object References
If the POA has a PERSISTENT policy, the IOR contains the address of the
location domain’s implementation repository, which maps all servers and
their POAs to their current locations. Given a request for a persistent object,
the location daemon uses the object’s “virtual” address first, and looks up the
server process’s actual location via the implementation repository.

A POA with a PERSISTENT policy must be registered in the implementation
repository through the itadmin poa create command. For more information,
see the Orbix 2000 Administrator’s Guide.

Direct Persistence
Occasionally, you might want to generate persistent object references that
avoid the overhead of using the location daemon. In this case, Orbix provides
the proprietary policy of DIRECT_PERSISTENCE. A POA with policies of
PERSISTENT and DIRECT_PERSISTENCE generates IORs that contain a
well-known address for the server process. A POA that uses direct
persistence must indicate where the configuration policy sets the well-known
address to be embedded in object references. For this purpose, the
configuration must contain a well-known address configuration variable, with
this syntax:

prefix:transport:addr_list={...}

This is done by creating a WellKnownAddressingPolicy object and setting its
value to the prefix that contains the well-known address.

For example, you can create a well-known address configuration variable in
name scope MyConfigApp as follows:

MyConfigApp {
...
wka:IIOP:addr_list=
...

}

Given this configuration, a POA is created in the ORB MyConfigApp can have
its PolicyList set so it generates persistent object references that use direct
persistence, as follows:

CORBA::PolicyList policies;
policies.length (4);
 232

Using POA Policies
CORBA::Any persistence_mode_policy_value;
CORBA::Any well_known_addressing_policy_value;
persistence_mode_policy_value

<<= IT_PortableServer::DIRECT_PERSISTENCE;
well_known_addressing_policy_value <<=

CORBA::Any::from_string("MyAppConfigScope", IT_TRUE);

policies[0] = poa–>create_lifespan_policy
(PortableServer::PERSISTENT);

policies[1] = poa–>create_id_assignment_policy
(PortableServer::USER_ID);

policies[2] = orb->create_policy(
(IT_PortableServer::PERSISTENCE_MODE_POLICY_ID,
persistence_mode_policy_value);

policies[3] = orb->create_policy(
IT_CORBA::WELL_KNOWN_ADDRESSING_POLICY_ID,
well_known_addressing_policy_value);

Object Lifespan and ID Assignment
A POA typically correlates its lifespan and ID assignment policies. TRANSIENT
and SYSTEM_ID are the default settings for a new POA, as system-assigned
IDs are generally sufficient for transient object references. PERSISTENT and
USER_ID policies are usually set together, inasmuch as an application
typically requires explicit control over the object IDs of its persistent object
references.

Assigning Object IDs

The ID assignment policy determines whether object IDs are generated by the
POA or the application. Specify the POA’s ID assignment policy by calling
create_id_assignment_policy() with one of these arguments:

SYSTEM_ID: The POA generates and assigns IDs to its objects.

USER_ID: The application assigns object IDs to objects in this POA. The
application must ensure that all user-assigned IDs are unique across all
instantiations of the same POA.
233

Chapter 10 | Managing Server Objects
Typically, a POA with a SYSTEM_ID policy manages objects that are active for
only a short period of time, and so do not need to outlive their server process.
In this case, the POA also has an object lifespan policy of TRANSIENT. Note,
however, that system-generated IDs in a persistent POA are unique across all
instantiations of that POA.

USER_ID is usually assigned to a POA that has an object lifespan policy of
PERSISTENT—that is, it generates object references whose validity can span
multiple instantiations of a POA or server process, so the application requires
explicit control over object IDs.

Activating Objects with Dedicated Servants

A POA’s ID uniqueness policy determines whether it allows a servant to
incarnate more than one object. You specify a POA’s ID uniqueness policy by
calling create_id_uniqueness_policy() with one of these arguments:

UNIQUE_ID: Each servant in the POA can be associated with only one object
ID.

MULTIPLE_ID: Any servant in the POA can be associated with multiple
object IDs.

Note: If the same servant is used by different POAs, that servant conforms
to the uniqueness policy of each POA. Thus, it is possible for the same
servant to be associated with multiple objects in one POA, and be restricted
to one object in another.

Activating Objects

A POA’s activation policy determines whether objects are explicitly or
implicitly associated with servants. If a POA is enabled for explicit activation,
you activate an object by calling activate_object() or
activate_object_with_id() on the POA. A POA that supports implicit
activation allows the server application to call the _this() function on a
servant to create an active object (see “Implicit Activation” on page 237).
 234

Using POA Policies
The activation policy determines whether the POA supports implicit
activation of servants.

Specify the POA’s activation policy by supplying one of these arguments:

NO_IMPLICIT_ACTIVATION: (default) The POA only supports explicit
activation of servants.

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants.
This policy requires that the POA’s object ID assignment policy be set to
SYSTEM_ID, and its servant retention policy be set to RETAIN.

For more information, see “Explicit and Implicit Object Activation” on
page 236.

Setting Threading Support

Specify the POA’s thread policy by supplying one of these arguments:

ORB_CTRL_MODEL: The ORB is responsible for assigning requests for an
ORB-controlled POA to threads. In a multi-threaded environment, concurrent
requests can be delivered using multiple threads.

SINGLE_THREAD_MODEL: Requests for a single-threaded POA are
processed sequentially. In a multi-threaded environment, all calls by a
single-threaded POA to implementation code (servants and servant
managers) are made in a manner that is safe for code that does not account
for multi-threading.

Multiple single-threaded POAs might need to cooperate to ensure that calls
are safe when they share implementation code such as a servant manager.

Orbix maintains for each ORB two default work queues, one manual and the
other automatic. Depending on its thread policy, a POA that lacks its own
work queue uses one of the default work queues to process requests:

• A POA with a threading policy of SINGLE_THREAD_MODEL uses the manual
work queue. To remove requests from the manual work queue, you must
call either ORB::perform_work() or ORB::run() within the main thread.
235

Chapter 10 | Managing Server Objects
• A POA with a threading policy of ORB_CTRL_MODEL uses the automatic
work queue. Requests are automatically removed from this work queue;
however, because ORB::run() blocks until the ORB shuts down, an
application can call this method to detect when shutdown is complete.

Both threading policies assume that the ORB and the application are using
compatible threading synchronization. All uses of the POA within the server
must conform to its threading policy.For information about creating a POA
workqueue, see page 242.

Explicit and Implicit Object Activation
A POA’s activation policy determines whether a server application can
activate objects implicitly or explicitly.

Explicit Activation

If the POA has a policy of NO_IMPLICIT_ACTIVATION, the server must call
either activate_object() or activate_object_with_id() on the POA to
activate objects. Either of these calls registers an object in the POA with
either a user-supplied or system-generated object ID, and maps that object to
the specified servant.

After you explicitly activate an object, you can obtain its object reference in
two ways:

• Use the object’s ID to call id_to_reference() on the POA where the
object was activated. id_to_reference() uses the object’s ID to obtain
the information needed to compose an object reference, and returns that
reference to the caller.

• Call _this() on the servant. Because the servant is already registered in
the POA with an object ID, the function composes an object reference
from the available information and returns that reference to the caller.
 236

Explicit and Implicit Object Activation
Implicit Activation

A server activates an object implicitly by calling _this() on the servant
designated to incarnate that object. _this() is valid only if the POA that
maintains these objects has policies of RETAIN, SYSTEM_ID, and
IMPLICIT_ACTIVATION; otherwise, it raises a WrongPolicy exception. Thus,
implicit activation is generally a good option for a POA that maintains a
relatively small number of transient objects.

_this() performs two separate tasks:

• Checks the POA to determine whether the servant is registered with an
existing object. If it is not, _this() creates an object from the servant’s
interface, registers a new ID for this object in the POA’s active object
map, and maps this object ID to the servant.

• Generates and returns an object reference.

In other words, the object is implicitly activated in order to return an object
reference.

Calling _this() Inside an Operation
If called inside an operation, _this() returns a reference to the object on
which the operation was invoked. Thus, a servant can always obtain a
reference to the object that it incarnates—for example, in order to register the
object as a callback with another object.

The following interface defines the get_self() operation, whose
implementation returns a reference to the same interface:

interface Whatever {
Whatever get_self();

};

You might implement this operation as follows:

Whatever_ptr
WhateverImpl::get_self() throw(CORBA::SystemException)
{

return _this(); // Return reference to self
}

237

Chapter 10 | Managing Server Objects
Calling _this() Outside an Operation
As discussed earlier, you can call _this() on a servant to activate an object.
When you do so, the function also returns an object reference. This object
reference must include information that it obtains from the POA in which the
object is registered: the fully qualified POA name, protocol information, and
the object ID that is registered in the POA’s active object map. _this()
determines which POA to use by calling _default_POA() on the servant.

_default_POA() is inherited from the ServantBase class:

class ServantBase {
public:

virtual POA_ptr _default_POA();
// ...

};

All skeleton classes and the servants that implement them derive from
ServantBase, and therefore inherit its implementation of _default_POA().
The inherited _default_POA() always returns the root POA. Thus, calling
_this() on a servant that does not override _default_POA() returns a
transient object reference that points back to the root POA. All invocations on
that object are processed by the root POA.

As seen earlier, an application typically creates its own POAs to manage
objects and client requests. For example, to create and export persistent
object references, you must create a POA with a PERSISTENT lifespan policy
and use it to generate the desired object references. If this is the case, you
must be sure that the servants that incarnate those objects also override
_default_POA(); otherwise, calling _this() on those servants returns tran-
sient object references whose mappings to servants are handled by the root
POA.

Note: To avoid ambiguity concerning the POA in which an object is
implicitly activated, call servant_to_reference() on the desired POA
instead of _this(). While using servant_to_reference() requires you to
narrow to the appropriate object, the extra code is worth the extra degree of
clarity that you achieve.
 238

Explicit and Implicit Object Activation
To ensure that _this() uses the right POA to generate object references, an
application’s servants must override the default POA. You can do this three
ways:

Override _default_POA() to throw a system exception

For example, _default_POA() can return system exception CORBA::
INTERNAL. This prevents use of _this() to generate any object references for
that servant. By overriding _default_POA() to throw an exception, you
ensure that attempts to use _this() yield an immediate error instead of a
subtly incorrect behavior that must be debugged later. Instead, you must
create object references with calls to either create_reference() or
create_reference_with_id() (see page 264), then explicitly map objects to
servants—for example, through a servant manager, or via the active object
map by calling activate_object_with_id.().

Disabling _default_POA() also prevents you from calling _this() to obtain
an existing object reference for a servant. To obtain the reference, you must
call servant_to_reference().

Override _default_POA() in each servant to return the correct POA

Calls to _this() are guaranteed to use the correct POA. This approach also
raises a WrongPolicy exception if the POA that you set for a servant has
invalid policies for implicit activation. such as USER_ID.

This approach requires the application to maintain a reference for the
servant’s POA. If all servants use the same POA, you can set the reference in
a global variable or a static private member. However, if a server uses unique
POAs for different groups of servants, each servant must carry the overhead
of an additional (non-static) data member.

Override _default_POA() in a common base class

Servant classes that need to override _default_POA() can inherit from a
common base class that contains an override definition. This approach to
overriding _default_POA() has two advantages:

• You only need to write the overriding definition of _default_POA() once.
• If you define a servant class that inherits from multiple servant classes,

you avoid inheriting conflicting definitions of the _default_POA()
method.
239

Chapter 10 | Managing Server Objects
Orbix’s cpp_poa_genie.tcl genie uses this approach to override
_default_POA() in the servant code that it generates. The genie generates
the common base class IT_ServantBaseOverrides, which overrides the
definition of _default_POA():

//C++
//File: it_servant_base_overrides.h
...
class IT_ServantBaseOverrides :

1 public virtual PortableServer::ServantBase
{
public:

2 IT_ServantBaseOverrides(
PortableServer::POA_ptr

);

virtual
~IT_ServantBaseOverrides();

virtual PortableServer::POA_ptr
3 _default_POA();

private:
4 PortableServer::POA_var m_poa;

...
};

The code can be explained as follows:

1. IT_ServantBaseOverrides inherits from PortableServer::
ServantBase, which is the base class for all servant classes.

2. The constructor is passed a reference to a POA object, which it stores in
private member variable m_poa.

3. IT_ServantBaseOverrides::_default_POA() overrides the definition
inherited from PortableServer::ServantBase. It returns a copy of the
POA reference stored in m_poa.

4. The m_poa private member is used to stores the POA reference.

For more information about using the IT_ServantBaseOverrides class, see
page 49.
 240

Managing Request Flow
Managing Request Flow
Each POA is associated with a POAManager object that determines whether
the POA can accept and process object requests. When you create a POA,
you specify its manager by supplying it as an argument to create_POA().
This manager remains associated with the POA throughout its life span.

You can register either an existing POA manager or supply NULL to create a
POAManager object. You can obtain the POAManager object of a given POA by
calling the_POAManager() on it. By creating POA managers and using
existing ones, you can group POAs under different managers according to
their request processing needs. Any POA in the POA hierarchy can be
associated with a given manager; the same manager can be used to manage
POAs in different branches.

A POA manager can be in four different states. The POAManager interface
provides four operations to change the state of a POA manager, as shown in
Table 14.

Table 14: POA manager states and interface operations

State Operation Description

Active activate() Incoming requests are accepted for processing.
When a POA manager is created, it is initially in
a holding state. Until you call activate() on a
POA’s manager, all requests sent to that POA
are queued.

Holding hold_requests() All incoming requests are queued. If the queue
fills to capacity, incoming requests are returned
with an exception of TRANSIENT.
241

Chapter 10 | Managing Server Objects
The POA manager of the root POA is initially in a holding state, as is a new
POA manager. Until you call activate() on a POA’s manager, all requests
sent to that POA are queued. activate() can also reactivate a POA manager
that has reverted to a holding state (due to a hold_requests() call) or is in a
discarding state (due to a discard_requests() call).

If a new POA is associated with an existing active POA manager, it is
unnecessary to call activate(). However, it is generally a good idea to put a
POA manager in a holding state before creating a new POA with it.

The queue for a POA manager that is in a holding state has limited capacity,
so this state should be maintained for a short time only. Otherwise, the
queue is liable to fill to capacity with pending requests. When this happens,
all subsequent requests return to the client with a TRANSIENT exception.

Creating a Work Queue
Orbix provides a proprietary WorkQueue policy, which you can associate with
a POA and thereby control the flow of incoming requests for that POA.

Discarding discard_requests() All incoming requests are refused and a system
exception of TRANSIENT is raised to clients so
they can reissue their requests. A POA manager
is typically in a discarding state when the
application detects that an object or the POA in
general cannot keep pace with incoming
requests. A POA manager should be in a
discarding state only temporarily. On resolution
of the problem that required this call, the
application should restore the POA manager to
its active state with activate().

Inactive deactivate() The POA manager is shutting down and
destroying all POAs that are associated with it.
Incoming requests are rejected with the
exception CORBA::OBJ_ADAPTER.

Table 14: POA manager states and interface operations

State Operation Description
 242

Creating a Work Queue
A work queue has the following interface definition:

interface WorkQueue
{

readonly attribute long max_size;
readonly attribute unsigned long count;

boolean
enqueue(in WorkItem work, in long timeout);

boolean
is_full();

boolean
is_empty();

boolean
activate();

boolean
deactivate();

void
flush();

};

You can implement your own WorkQueue interface, or use IONA-supplied
WorkQueue factories to create one of two WorkQueue types: a
ManualWorkQueue, or an AutomaticWorkQueue.

ManualWorkQueue

A ManualWorkQueue is a work queue that holds incoming requests until they
are explicitly dequeued. Its interface is defined as follows:

interface ManualWorkQueue : WorkQueue {
boolean
dequeue(

out WorkItem work,
in long timeout

);

boolean
243

Chapter 10 | Managing Server Objects
do_work(
in long number_of_jobs,
in long timeout

);
void
shutdown(in boolean process_remaining_jobs);

};

Applications that use a ManualWorkQueue must periodically call dequeue() or
do_work() to ensure that requests are handled in a timely manner. A false
return value from either method indicates that the timeout has expired or that
the queue has shut down.

You create a ManualWorkQueueFactory by calling
resolve_initial_references("IT_ManualWorkQueueFactory"). The
ManualWorkQueueFactory has the following interface:

interface ManualWorkQueueFactory {
ManualWorkQueue
create_work_queue(

in long max_size
);

};

max_size is the maximum number of work items that the queue can hold. If
the queue becomes full, the transport considers the server to be overloaded
and tries to gracefully close down connections to reduce the load.

AutomaticWorkQueue

An AutomaticWorkQueue is a work queue that feeds a thread pool. Its
interface is defined as follows:

interface AutomaticWorkQueue : WorkQueue {
attribute long high_water_mark;
attribute long low_water_mark;

void
shutdown(

in boolean process_remaining_jobs
);

};
 244

Creating a Work Queue
Applications that use an AutomaticWorkQueue do not need to explicitly
dequeue work items; instead, work items are automatically dequeued and
processed by threads in the thread pool. You create an AutomaticWorkQueue
through the AutomaticWorkQueueFactory, obtained by calling
resolve_initial_references("IT_AutomaticWorkQueue"). The
AutomaticWorkQueueFactory has the following interface:

interface AutomaticWorkQueueFactory {
AutomaticWorkQueue
create_work_queue(

in long max_size,
in unsigned long initial_thread_count,
in long high_water_mark,
in long low_water_mark

);
};

create_work_queue() takes these arguments:

max_size is the maximum number of work items that the queue can hold. To
specify an unlimited queue size, supply a value of -1.

initial_thread_count is the initial number of threads in the thread pool; the
ORB automatically creates and starts these threads when the workqueue is
created.

high_water_mark specifies the maximum number of threads that can be
created to process work queue items. If all threads are busy and the number
of threads is less than high_water_mark, the ORB can start additional
threads to process items in the work queue, up to the value of
high_water_mark. To specify an unlimited number of threads, supply a value
of -1.

low_water_mark lets the ORB remove idle threads from the thread pool,
down to the value of low_water_mark. The number of available threads is
never less than this value.

If the number of threads is equal to high_water_mark and all are busy, and
the work queue is filled to capacity, the transport considers the server to be
overloaded and tries to gracefully close down connections to reduce the load.
245

Chapter 10 | Managing Server Objects
Creating a POA with a WorkQueue Policy

To create a POA with a WorkQueue policy, follow these steps:

1. Create a work queue factory by calling resolve_initial_references()
and specify the desired factory type by supplying an argument of
IT_AutomaticWorkQueueFactory or IT_ManualWorkQueueFactory.

2. Set work queue parameters.

3. Create the work queue by calling create_work_queue() on the work
queue factory.

4. Insert the work queue into an Any.

5. Add a work queue policy object to a POA’s PolicyList.

The following code illustrates these steps:

// get an automatic work queue factory
1 CORBA::Object obj_var obj =

resolve_initial_references("IT_AutomaticWorkQueueFactory");
IT_WorkQueue::AutomaticWorkQueueFactory_var wqf =

AutomaticWorkQueueFactory::_narrow(obj);

2 // set work queue parameters
CORBA::Long max_size = 20;
CORBA::Long init_thread_count = 1;
CORBA::Long high_water_mark = 10;
CORBA::Long low_water_mark = 2;

3 // create work queue
IT_AutomaticWorkQueue_var auto_wq = wqf->create_work_queue(

max_size,
init_thread_count,
high_water_mark,
low_water_mark

);

4 // insert the work queue into an any
CORBA::Any work_queue_policy_val;
work_queue_policy_val <<= auto_wq;

// create PolicyList
CORBA::PolicyList policies;
policies.length(3);
 246

Creating a Work Queue
// other POA policies set
// ...

5 // add work queue policy object to POA’s PolicyList
policies[0] = orb->create_policy(

(IT_WorkQueue::WORK_QUEUE_POLICY_ID,
work_queue_policy_val);

// ... add other POA policies to PolicyList
// ...
247

Chapter 10 | Managing Server Objects
 248

Managing Servants
A POA that needs to manage a large number of objects can
be configured to incarnate servants only as they are needed.
Alternatively, a POA can use a single servant to service all
requests.

A POA’s default request processing policy is USE_ACTIVE_OBJECT_MAP_ONLY.
During POA initialization, the active object map must be populated with all
object-servant mappings that are required during the POA’s lifetime. The
active object map maintains object-servant mappings until the POA shuts
down, or an object is explicitly deactivated.

For example, you might implement the BankDemo::Account interface so that
at startup, a server instantiates a servant for each account and activates all
the account objects. Thus, a servant is always available for any client invoca-
tion on that account—for example, balance() or withdraw(). However,
given the potential for many thousands of accounts, and the likelihood that
account information changes—accounts are closed down, new accounts are
created—the drawbacks of this static approach become obvious:

• Code duplication: For each account, the same code for servant creation
and activation must be repeated, increasing the potential for errors.

• Inflexibility: For each change in account information, you must modify
and recompile the server code, then stop and restart server processes.

• Startup time: The time required to create and activate a large number of
servants prolongs server startup and delays its readiness to process
client requests.

• Memory usage: An excessive amount of memory might be required to
maintain all servants continuously.

This scenario makes it clear that you should usually configure a POA to rely
exclusively on an active object map only when it maintains a small number of
objects. If a POA is required to maintain a large number of objects, you
should probably configure it to instantiate servants on demand by setting its
request processing policy to USE_SERVANT_MANAGER. Or you can set this policy
249

Chapter 11 | Managing Servants
to USE_DEFAULT_SERVANT to specify a default servant that handles requests
for any objects that are not registered in the active object map, or for all
requests in general. This chapter shows how to implement both policies.

Using Servant Managers
A POA whose request processing policy is set to USE_SERVANT_MANAGER
supplies servants on demand for object requests. The POA depends on a
servant manager to map objects to servants. Depending on its servant
retention policy, the POA can implement one of two servant manager types,
either a servant activator or servant locator:

• A servant activator is registered with a POA that has a RETAIN policy.
The servant activator supplies a servant for an inactive object on
receiving an initial request for it. The active object map retains the
mapping between the object and its servant until the object is
deactivated.

• A servant locator is registered with a POA that has a policy of
NON_RETAIN. The servant locator supplies a servant for an inactive object
each time the object is requested. In the absence of an active object
map, the servant locator must deactivate the object and delete the
servant from memory after the request returns.

Because a servant activator depends on the active object map to maintain
the servants that it supplies, its usefulness is generally limited to minimizing
an application’s startup time. In almost all cases, you should use a servant
locator for applications that must dynamically manage large numbers of
objects.

An application registers its servant manager —whether activator or locator—
with the POA by calling set_servant_manager() on it; otherwise, an
OBJ_ADAPTER exception is returned to the client on attempts to invoke on one
of its objects.

The following sections show how to implement the BankDemo::Account
interface with a servant activator and a servant locator. Both servant manager
types activate account objects with instantiations of servant class
AccountImpl, which inherits from skeleton class POA_BankDemo::Account:

// C++
class SingleAccountImpl :
 250

Using Servant Managers
public POA_BankDemo::Account
{
public:
SingleAccountImpl(
const char* account_id,
AccountDatabase& account_db
);

~SingleAccountImpl();

void withdraw(BankDemo::CashAmount amount) throw(
CORBA::SystemException,
BankDemo::Account::InsufficientFunds);

void deposit(BankDemo::CashAmount amount) throw(
CORBA::SystemException);

char* account_id() throw(CORBA::SystemException);

BankDemo::CashAmount balance() throw(CORBA::SystemException);

private:
CORBA::String_var m_account_id;
BankDemo::CashAmount m_balance;
AccountDatabase& m_account_db;

};

Servant Activators

A POA with policies of USE_SERVANT_MANAGER and RETAIN uses a servant
activator as its servant manager. The POA directs the first request for an
inactive object to the servant activator. If the servant activator returns a
servant, the POA associates it with the requested object in the active object
map and thereby activates the object. Subsequent requests for the object are
routed directly to its servant.
251

Chapter 11 | Managing Servants
Servant activators are generally useful when a server can hold all its servants
in memory at once, but the servants are slow to initialize, or they are not all
needed each time the server runs. In both cases, you can expedite server
startup by deferring servant activation until it is actually needed.

ServantActivator Interface
The PortableServer::ServantActivator interface is defined as follows:

interface ServantActivator : ServantManager
{

Servant
incarnate(

in ObjectId oid,
in POA adapter

Figure 25: On the first request on an object, the servant activator returns a servant
to the POA, which establishes the mapping in its active object map.

POA

servant
activatorInitial object requests are

directed to servant activator
servant-object ID
mappings

Subsequent requests on
activated objects
are routed through
the active
object map

active object
map

servants

1

3

Servant activator activates
servants on
demand

object IDs

2

 252

Using Servant Managers
) raises (ForwardRequest);

void
etherealize(

in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations

);
};

A POA can call two methods on its servant activator:

• incarnate() is called by the POA when it receives a request for an
inactive object, and should return an appropriate servant for the
requested object.

• etherealize() is called by the POA when an object is deactivated or the
POA shuts down. In either case, it allows the application to clean up
resources that the servant uses.

Implementing a Servant Activator
You can define a servant activator as follows:

// C++
#include <omg/PortableServerS.hh>
#include "account_db.h"

class AccountServantActivatorImpl :
public PortableServer::ServantActivator,
public CORBA::LocalObject

{
public:
AccountServantActivatorImpl(AccountDatabase& account_db);

PortableServer::Servant incarnate(
const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter
) throw(CORBA::SystemException,
PortableServer::ForwardRequest);

void etherealize(
253

Chapter 11 | Managing Servants
const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
PortableServer::Servant serv,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations
) throw(CORBA::SystemException);

In this example, the servant activator’s constructor takes a single argument,
an AccountDatabase object, to enable interaction between Account objects
and persistent account data..

Activating Objects
incarnate() instantiates a servant for a requested object and returns the
servant to the POA. The POA registers the servant with the object’s ID,
thereby activating the object and making it available to process requests on
it.

In the following implementation, incarnate() performs these tasks:

1. Takes the object ID of a request for a BankDemo::Account object, and
the POA that relayed the request.

2. Instantiates an SingleAccountImpl servant, passing account information
to the servant’s constructor, and returns the servant to the POA.

// servant activator constructor
AccountServantActivatorImpl::AccountServantActivatorImpl(

AccountDatabase& account_db) : m_account_db(account_db)
{ // ... }

PortableServer::Servant
1 AccountServantActivatorImpl::incarnate(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter

) throw(CORBA::SystemException, PortableServer::ForwardRequest)
{

CORBA::String_var account_id =
PortableServer::ObjectId_to_string(oid);

2 return new SingleAccountImpl(account_id, m_account_db);
}

 254

Using Servant Managers
Deactivating Objects
The POA calls etherealize() when an object deactivates, either because the
object is destroyed or as part of general cleanup when the POA itself
deactivates or is destroyed.

The following implementation of etherealize() checks the
remaining_activations parameter to ensure that the servant does not
incarnate another object before it deletes the servant. Implementations can
also check the cleanup_in_progress parameter to determine whether
etherealization results from POA deactivation or destruction; this lets you
differentiate between this and other reasons to etherealize a servant.

void
AccountServantActivatorImpl::etherealize(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

) throw((CORBA::SystemException))
{

if (remaining_activations == 0)
delete serv;

}

Setting Deactivation Policies
By default, a POA that uses a servant activator lets an object deactivate (and
its servant to etherealize) only after all pending requests on that object return.
You can modify the way the POA handles incoming requests for a deactivat-
ing object by creating an Orbix-proprietary ObjectDeactivationPolicy
object and attaching it to the POA’s PolicyList (see “Setting Proprietary Poli-
cies for a POA” on page 226).

Three settings are valid for this Policy object:

• DELIVER (default) — The object deactivates only after processing all
pending requests, including any requests that arrive while the object is
deactivating. This behavior complies with CORBA specifications.

• DISCARD — The POA rejects incoming requests with an exception of
TRANSIENT. Clients should be able to reissue discarded requests.
255

Chapter 11 | Managing Servants
• HOLD — Requests block until the object deactivates. A POA with a HOLD
policy maintains all requests until the object reactivates. However, this
policy can cause deadlock if the object calls back into itself.

Setting a POA’s Servant Activator
You establish a POA’s servant activator in two steps:

1. Instantiate the servant activator.

2. Call set_servant_manager() on the target POA and supply the servant
activator.

...
AccountDatabase account_database = new AccountDatabase();

// instantiate servant activator
AccountServantActivatorImpl activator_impl(account_database);
acct_poa->set_servant_manager(&activator_impl);

// Associate the activator with the accounts POA
acct_poa->set_servant_manager(activator);

Servant Locators

A server that needs to manage a large number of objects might only require
short-term access to them. For example, the operations that are likely to be
invoked on most customer bank accounts—such as withdrawals and depos-
its—are usually infrequent and of short duration. Thus, it is unnecessary to
keep account objects active beyond the lifetime of any given request. A POA
that services requests like this can use a servant locator, which activates an
object for each request, and deactivates it after the request returns.

A POA with policies of USE_SERVANT_MANAGER and NON_RETAIN uses a servant
locator as its servant manager. Because the POA lacks an active object map,
it directs each object request to the servant locator, which returns a servant
to the POA in order to process the request. The POA calls the request
 256

Using Servant Managers
operation on the servant; when the operation returns, the POA deactivates
the object and returns control to the servant locator. From the POA’s
perspective, the servant is active only while the request is being processed.

An application that uses a servant locator has full control over servant
creation and deletion, independently of object activation and deactivation.
Your application can assert this control in a number of ways. For example:

• Servant caching: A servant locator can manage a cache of servants for
applications that have a large number of objects. Because the locator is
called for each operation, it can determine which objects are requested
most recently or frequently and retain and remove servants accordingly.

• Application-specific object map: A servant locator can implement its own
object-servant mapping algorithm. For example, a POA’s active object
map requires a unique servant for each interface. With a servant locator,
an application can implement an object map as a simple fixed table that
maps multiple objects with different interfaces to the same servant.
Objects can be directed to the appropriate servant through an identifier
that is embedded in their object IDs. For each incoming request, the
servant locator extracts the identifier from the object ID and directs the
request to the appropriate servant.

Figure 26: The POA directs each object request to the servant locator, which returns
a servant to the POA to process the request.

POA servant
locator

{ preinvoke()

postinvoke()
operation()

{ preinvoke()

postinvoke()
operation()

servant

servant

object
request

object
request
257

Chapter 11 | Managing Servants
ServantLocator Interface
The PortableServer:ServantLocator interface is defined as follows:

interface ServantLocator : ServantManager
{

native Cookie;
Servant
preinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie

) raises (ForwardRequest);

void
postinvoke(

in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
};

A servant locator processes each object request with a pair of methods,
preinvoke() and postinvoke():

• preinvoke() is called on a POA’s servant locator when the POA receives
a request for an object. preinvoke() returns an appropriate servant for
the requested object.

• postinvoke() is called on a POA’s servant locator to dispose of the
servant when processing of the object request is complete. The
postinvoke() implementation can either delete the servant, or cache it
for later reuse.

Implementing a Servant Locator
The following code defines a servant locator that handles account objects:

// C++
class AccountServantLocatorImpl :

public PortableServer::ServantLocator,
public CORBA::LocalObject
 258

Using Servant Managers
{
public:
AccountServantLocatorImpl(AccountDatabase& account_db);

public:
PortableServer::Servant preinvoke(

const PortableServer::ObjectId &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie)
throw(CORBA::SystemException);

void postinvoke (
const PortableServer::ObjectId &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie,
PortableServer::Servant the_servant)
throw(CORBA::SystemException);

Each request is guaranteed a pair of preinvoke() and postinvoke() calls.
This can be especially useful for applications with database transactions. For
example, a database server can use a servant locator to direct concurrent
operations to the same servant; each database transaction is opened and
closed within the preinvoke() and postinvoke() operations.

The signatures of preinvoke() and postinvoke() are differentiated from
those of invoke() and incarnate() by two parameters, the_cookie and
operation:

• the_cookie lets you explicitly map data between preinvoke() and its
corresponding postinvoke() call. This can be useful in a multi-threaded
environment and in transactions where it is important to ensure that a
pair of preinvoke() and postinvoke() calls operate on the same ser-
vant. For example, each preinvoke() call can set its the_cookie param-
eter to data that identifies its servant; the postinvoke() code can then
compare that data to its the_servant parameter.

• operation contains the name of the operation that is invoked on the
CORBA object, and thus provides the context of the servant’s
instantiation. The servant can use this to differentiate between different
operations and execute the appropriate code.
259

Chapter 11 | Managing Servants
Incarnating Objects With a Servant Locator
The following implementation of preinvoke()is functionally identical to the
incarnate() implementation shown earlier (see page 254).

// C++
PortableServer::Servant
MyAcctLocator::preinvoke(

const PortableServer::ObjectID &id,
PortableServer::POA_ptr poa
const char *operation
PortableServer::Cookie &cookie)

throw(CORBA::SystemException)
{

CORBA::String_var str =
PortableServer::ObjectId_to_string(id);

// look up account ID in accounts database,
// make sure it it exists
CORBA::Long acctId = acct_lookup(str);

if (acctId == -1)
throw CORBA::OBJECT_NOT_EXIST ();

return new SingleAccountImpl(str);
}

Etherealizing Objects With a Servant Locator
The following implementation of postinvoke() is similar to the
etherealize() implementation shown earlier (see page 255), with one
significant difference: because each servant is bound to a single request,
postinvoke() has no remaining activations to check.

PortableServer::Servant
MyAcctLocator::postinvoke(

const PortableServer::ObjectID &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie,
PortableServer::Servant the_servant)
 260

Using a Default Servant
throw(CORBA::SystemException)
{

delete servant;
}

Setting a POA’s Servant Locator
You establish a POA’s servant locator in two steps:

1. Instantiate the servant locator.

2. Call set_servant_manager() on the target POA and supply the servant
locator.

// C++
AccountServantLocatorImpl locator_impl(account_database);

// Associate the locator with the accounts POA
acct_poa->set_servant_manager(&locator_impl);

Using a Default Servant
If a number of objects share the same interface, a server can most efficiently
handle requests on them through a POA that provides a single default
servant. This servant processes all requests on a set of objects. A POA with a
request processing policy of USE_DEFAULT_SERVANT dispatches requests to the
default servant when it cannot otherwise find a servant for the requested
object. This can occur because the object’s ID is not in the active object map,
or the POA’s servant retention policy is set to NON_RETAIN.

For example, all customer account objects in the bank server share the same
BankDemo::Account interface. Instead of instantiating a new servant for each
customer account object as in previous examples, it might be more efficient
to create a single servant that processes requests on all accounts.

A default servant must be able to differentiate the objects that it is serving.
The PortableServer::Current interface offers this capability:

module PortableServer
{

interface Current : CORBA::Current
{

exception NoContext{};
261

Chapter 11 | Managing Servants
POA get_POA () raises (NoContext);
ObjectID get_object_id() raises (NoContext);

};
...

}

You can call a PortableServer::Current operation only in the context of
request processing. Thus, each Bank::Account operation such as deposit()
or balance() can call PortableServer::Current::get_object_id() to
obtain the current object’s account ID number.

To implement a default servant for account objects, modify the code as
follows:

• The SingleAccountImpl constructor identifies the ORB instead of an
object’s account ID.

• Each Account operation calls resolve_initial_references() on the
ORB to obtain a reference to the PortableServer::Current object, and
uses this reference to identify the current account object.

So, you might use the following servant code to implement an account
object:

// C++
class SingleAccountImpl : public virtual POA_BankDemo::Account{

public:
// constructor
SingleAccountImpl (CORBA::ORB_ptr orb) : orb_ (orb) {}

// get account holder’s name
char * name() throw(CORBA::SystemException){

CORBA::String_var acct = get_acct_id();
// rest of function not shown

}

// get account balance
CORBA::Float balance() throw(CORBA::SystemException){

CORBA::String_var acct = get_acct_id();
// rest of function not shown

}

 262

Using a Default Servant
// similar processing for other operations

private:
char *get_acct_id(void){

CORBA::Object_var obj =
orb_->resolve_initial_references("POACurrent");

PortableServer::Current_var cur =
PortableServer::Current::_narrow(obj);

try {
PortableServer::ObjectID_var id = cur->get_object_id();
return PortableServer::ObjectID_to_string(id);

} catch (const PortableServer::Current::NoContext &) {
cerr << "NoContext error" << endl;

}
}

}
try {
} catch (org.omg.PortableServer.Current.NoContext) {
// ...

}

In this implementation, the servant constructor takes a single argument, a
pointer to the ORB. Each method such as balance() calls the private helper
method get_account_id(), which obtains a reference to the current object
(PortableServer::Current) and gets its object ID. The method converts the
object ID to a string (PortableServer::ObjectID_to_string), and returns
with this string.

This implementation assumes that account object IDs are generated from
account ID strings. See “Creating Inactive Objects” on page 264 to see how
you can create object IDs from a string and use them to generate object
references.
263

Chapter 11 | Managing Servants
Setting a Default Servant

You can establish a POA’s default servant by instantiating the desired servant
class and supplying it as an argument to set_servant(), which you invoke
on that POA. The following code fragment from the server’s main()
instantiates servant def_serv from servant class SingleAccountImpl, and
sets this as the default servant for POA acct_poa:

// C++
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Instantiate default account object servant
SingleAccountImpl def_serv(orb);
...

// Set default servant for POA
acct_poa->set_servant(&def_serv);

Creating Inactive Objects
An application that uses a servant manager or default servant typically
creates objects independently of the servants that incarnate them. The
various implementations shown earlier in this chapter assume that all
account objects are available before they are associated with servants in the
POA. Thus, the account objects are initially inactive—that is, servants are
unavailable to process any requests that are invoked on them.

You can create inactive objects by calling either create_reference() or
create_reference_with_id() on a POA. In the next example, the POA that
is to maintain these objects has an ID assignment policy of USER_ID;
therefore, the server code calls create_reference_with_id() to create
objects in that POA:

// C++
int main(int argc, char **argv) {

// initialize ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// get object reference to the root POA
CORBA::Object_var obj =
 264

Creating Inactive Objects
orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = POA::_narrow(obj);

// set policies for persistent POA that uses servant locator
CORBA::PolicyList policies;
policies.length (2);
policies[0] = poa–>create_lifespan_policy

(PortableServer::PERSISTENT)
policies[1] = poa–>create_id_assignment_policy

(PortableServer::USER_ID)
policies[2] = poa–>create_servant_retention_policy

(PortableServer::NON_RETAIN)
policies[3] = poa–>create_request_processing_policy

(PortableServer::USE_SERVANT_MANAGER)

// create the POA
poa = poa->create_POA("acct_poa", NULL, policies);

AccountDatabase account_database = new AccountDatabase();

AccountServantLocatorImpl locator_impl(account_database);

// Associate the locator with the accounts POA
acct_poa->set_servant_manager(&locator_impl);

// Set Bank Account interface repository ID
const char *repository_id = "IDL:BankDemo/Account:1.0";

// create account object
PortableServer::ObjectId_var acct_id =

PortableServer::string_to_ObjectId("112-1110001");
CORBA::Object_var acctObj =

acct_poa->create_reference_with_id(
acct_id, repository_id);

// Export object reference to Naming Service (not shown)

// create another account object
PortableServer::ObjectId_var acct_id =

PortableServer::string_to_ObjectId("112-1110002");
CORBA::Object_var acctObj =

acct_poa->create_reference_with_id(
acct_id, repository_id);
265

Chapter 11 | Managing Servants
// Export object reference to Naming Service (not shown)

// Repeat for each account object...

// Start ORB
orb->run();
return 0;

}

As shown, main() executes as follows:

1. Creates all account objects in acct_poa without incarnating them.

2. Calls run() on the ORB so it starts listening to requests.

3. As the POA receives requests for objects, it passes them on to the
servant locator. The servant locator instantiates a servant to process
each request.

4. After the request returns from processing, the servant locator destroys its
servant.

Note: The repetitive mechanism used in this example to create objects is
used only for illustrative purposes. A real application would probably use a
factory object to create account objects from persistent data.
 266

Asynchronous Method
Invocations
Orbix support for asynchronous method invocations allows
a client to continue other work while it awaits responses
from previous requests.

Examples of client implementations in earlier chapters show client
invocations that follow a synchronous two-way model—that is, after a client
sends a request, it blocks on that thread until it receives a reply. If
single-threaded, the client is generally unable to perform any other work
while it awaits a response. This can be unacceptable in an application that
requires clients to issue requests in rapid succession and needs to process
replies as soon as they become available.

To avoid this problem, Orbix supports asynchronous method invocations
(AMI) through callbacks to reply handlers. In its invocation, the client
supplies an object reference to the appropriate reply handler. When it is
ready to reply, the server invokes on this object reference. The client ORB
dispatches the invocation to the reply handler servant

In most cases, AMI usage affects only client implementations; servers are
unaware that an invocation is synchronous or asynchronous. Client
asynchrony matters only to transactional servers, and in this case can require
changes to the server.

The examples in this chapter use the following IDL, which queries banking
institutions for current lending rates:

module LoanSearch
{

// nonexistent Bank
exception InvalidBank{};
// invalid loan type
exception InvalidLoanType{};

interface LoanRates{
267

Chapter 12 | Asynchronous Method Invocations
float get_loan_rate(
in string bank_name,
in string loan_type

) raises (InvalidBank, InvalidLoanType);
};
// ...

};

Client implementations must be able to invoke the get_loan_rate()
operation asynchronously on multiple lenders, so that information from each
one can be reviewed as soon as it is available, without waiting for previous
queries to return. Each implementation uses the following global variables:

static const char *banks[] =
{

"Fleet",
"Citizens",
"BkBoston",
"USTrust",
//...

}
static const int MAX_BANKS = sizeof(banks);
static const int replies_left = MAX_BANKS;

static const char *loan_types[] =
{

"AUTO",
"MORTGAGE",
"EQUITY",
"PERSONAL",
"BUSINESS",
// ...

}

Implied IDL
In order to support AMI, the IDL compiler provides the -xAMICallbacks
option. This generates an implied IDL sendc_ operation for each interface
operation and attribute, which supports AMI callbacks. You must supply the
-xAMICallbacks modifer with both -base and -poa switches, as in the
following example:
 268

Implied IDL
IDL -poa:-xAMICallbacks -base:-xAMICAllbacks LoanSearch.idl

For example, given the get_loan_rate() operation, the IDL compiler
generates an implied IDL sendc_get_loan_rate() operation that it adds to
the LoanRates interface. The compiler then generates stub and skeleton code
from the entire set of explicit and implicit IDL.

Mapping Operations to Implied IDL

In general, each in and inout parameter in an IDL operation is mapped to an
in parameter of the same name and type in the corresponding implied IDL
operation. sendc_ operations return void and supply as their first argument
an object reference to the client-implemented reply handler. They have the
following syntax

void sendc_op-name(
reply-hdlr-ref,
[in type argument[, in type argument]...);

Mapping Attributes to Implied IDL

Each IDL attribute is mapped to a sendc_get_ operation. If the attribute is
not read-only, the IDL compiler also generates a sendc_set_ operation,
which has a single in parameter of the same name and type as the attribute.

sendc_get_ and sendc_set_ operations return void and supply as their first
argument an object reference to the client-implemented reply handler. They
have the following syntax:

void sendc_get_attribute-name(reply-hdlr-ref);
void sendc_set_attribute-name(

reply-hdlr-ref,
in type attribute-name);
269

Chapter 12 | Asynchronous Method Invocations
Calling Back to Reply Handlers
For each IDL operation and attribute, the IDL compiler generates:

• A sendc_ operation that supports AMI callbacks.
• A reply handler class for each interface, derived from Messaging::

ReplyHandler.

The generated reply handler class name uses the following convention:

AMI_interface-nameHandler

If the generated handler name conflicts with other IDL definitions, the ORB
prepends additional strings of AMI_ until the name is unique. For example, all
send_c invocations on interface LoanRates take a reference to an instance of
AMI_LoanRatesHandler as their first argument.

The client instantiates reply handlers like any servant, and registers them
with a client-side POA. If a reply handler serves time-independent
invocations, its object reference must be persistent.

For each sendc_ invocation on the interface, the following events occur:

1. The client supplies an object reference to the invocation’s reply handler.

2. The invocation returns immediately to the client, which can continue
processing other tasks while it awaits a reply.

3. The server invokes on the reply handler when a reply is ready.

Note: A client-side POA has the same requirements as a POA that is
implemented on a server—for example, the POAManager must be in an
active state before the client can process reply handler callbacks.

Interface-to-Reply Handler Mapping

The client can implement a reply handler for each interface. For each
interface operation and attribute, a reply handler provides two types of
operations: one to handle normal replies, and another for exceptional replies.
 270

Calling Back to Reply Handlers
For example, when you run the IDL compiler on interface LoanSearch::
LoanRates (shown earlier), it generates skeleton class POA_LoanSearch::
AMI_LoanRatesHandler:

namespace POA_LoanSearch{
class AMI_LoanRatesHandler

: public POA_Messaging::ReplyHandler{
public:

// ...
virtual void
get_loan_rate_complete(

CORBA::Float ami_return_val
) IT_THROW_DECL((CORBA::SystemException)) = 0;

// ...
virtual void
get_loan_rate_excep(

Messaging::ExceptionHolder* ami_holder
) IT_THROW_DECL((CORBA::SystemException)) = 0;

};
}

LoanRates contains only one operation, LoanRates::get_loan_rate(),
which maps to AMI operation sendc_get_loan_rate(). The reply handler
AMI_LoanRatesHandler therefore has two operations:

• get_loan_rate_complete() handles normal replies to
sendc_get_loan_rate().

• get_loan_rate_excep() handles exceptions that might be raised by
sendc_get_loan_rate().

So, if the client invokes sendc_get_loan_loan_rate() and supplies a valid
bank name and loan type, the client ORB invokes an implementation of
AMI_LoanRatesHandler::get_loan_rate_complete() to handle the reply.
However, if either argument is invalid, the client ORB invokes
AMI_LoanRatesHandler::get_loan_rate_excep().
271

Chapter 12 | Asynchronous Method Invocations
Normal Replies
A reply handler can contain up to three types of operations to handle normal
replies—that is, replies on invocations that raise no exceptions:

In general, an in argument is included for each out or inout parameter in the
IDL definition. All arguments have the same type as the original IDL. If the
invocation returns a value, the first argument contains that value; otherwise,
arguments have the same order as in the original IDL.

Table 15: Reply Handler Operation Types for Normal Replies

For invocations on... The reply handler uses...

Operation An operation with the same name:

void op-name_complete(
[,in type ami_return_val
[,in type argument]...
);

Read-only attribute A get_ operation:

void get_attr-name(in type ami_return_val);

Read/write attribute A set_ operation:

void set_attr-name();
 272

Calling Back to Reply Handlers
Exceptional Replies
A reply handler can contain up to three types of operations to handle
exceptional replies:

All three operations contain a single in argument of type Messaging::
ExceptionHolder, which contains the exception raised by the original client
invocation. You access this exception using get_exception(). The call
returns an Any* from which the exception can be extracted.

Implementing a Client with Reply Handlers

As shown earlier, the reply handler AMI_LoanRatesHandler for interface
LoanRates contains two operations to handle normal and exceptional replies
to sendc_get_loan_rate(). The client implementation of this reply handler
might look like this:

class MyLoanRatesHandler :
LoanRates::AMI_LoanRatesHandler{

public:
// handler constructor
MyLoanRatesHandler(const char *bank_name, loan_type) :

bank_name_(CORBA::string_dup(bank_name),
loan_type_(CORBA::string_dup(loan_type))

{ }
~MyLoanRatesHandler(void)

Table 16: Reply Handler Operation Types for Exceptional Replies

For invocations on... The reply handler uses...

Operation void op-name_excep(
in Messaging::ExceptionHolder
ami_holder);

Read-only attribute void get_attr-name_excep(
in Messaging::ExceptionHolder
ami_holder);

Read/write attribute void set_attr-name_excep(
in Messaging::ExceptionHolder
ami_holder);
273

Chapter 12 | Asynchronous Method Invocations
{ }

// process normal replies
virtual void get_loan_rate_complete(CORBA::Float reply_val)

throw(CORBA::SystemException)
{
cout << loan_type_

<< "loan: from "
<< bank_name_
<< " Current rate is "
<< reply_val;

// Decrement the number of replies still pending
replies_left--;
}

// process exceptional replies
virtual void get_loan_rate_excep(

Messaging::ExceptionHolder* ami_holder)
throw(CORBA::SystemException, LoanRates::InvalidBank,

LoanRates::InvalidLoanType)
{
CORBA::Any* tmp = ami_holder->get_exception();
if(LoanSearch::IT_Gen_InvalidBankStreamable::

extract_from(tmp)) {
cerr << bank_name_
cerr << " is not a valid bank name."
throw(LoanRates::InvalidBank);

}
else if(LoanSearch::IT_Gen_InvalidLoanStreamable::

extract_from(tmp)) {
cerr << loan_type_
cerr << " is not a valid loan type."
throw(LoanRates::InvalidBank);

}
else {

cerr << "get_loan_rate() raised exception "
<< tmp
<< " for "
<< bank_name_
<< " and "
<< bank_type_

throw(CORBA:SystemException tmp);
 274

Calling Back to Reply Handlers
}
// Decrement the number of replies still pending
replies_left--;

}

private:
CORBA::String_var bank_name_, bank_type_ ;

}

In the following client implementation, the client performs these actions:

1. Calls get_latest_rates() and supplies it with three arguments: a
pointer to the client ORB, an object reference to the LoanSearch object,
and the desired loan type.

2. Calls the callback operation sendc_get_loan_rates() repeatedly, once
for each bank. Each call to sendc_get_loan_rates() supplies an
AMI_LoanRatesHandler reply handler argument:

void get_latest_rates(
CORBA::ORB_ptr,
LoanSearch::LoanRates_ref,
CORBA::String loan_type)

{
// array of pointers to bank reply handlers
MyLoanRatesHandler *handlers[MAX_BANKS];

// create object references for each reply handler
LoanRates::AMI_LoanRatesHandler_ptr *handler_refs[MAX_BANKS];

int i;

// instantiate reply handler servants
for(i = 0; i < MAX_BANKS; i++)

handlers[i] = new MyLoanRatesHandler(
banks[i], loan_types[i]);

// get object references to reply handlers
for(i = 0; i < MAX_BANKS; i++)

handler_refs[i] = handlers[i]->_this();

// Issue asynchronous calls via callbacks
for(i = 0; i < MAX_BANKS; i++)

LoanRates_ref->sendc_get_loan_rates(
275

Chapter 12 | Asynchronous Method Invocations
handler_refs[i], banks[i], loan_type);

After all synchronous calls are invoked, the client can await replies within the
ORB’s event loop:

// iterate within ORB event loop until all replies
// are processed
while(replies_left > 0)

if(orb->work_pending())
orb->perform_work();

}

 276

Exceptions
Implementations of IDL operations and attributes throw
exceptions to indicate when a processing error occurs.

An IDL operation can throw two types of exceptions:

• User-defined exceptions are defined explicitly in your IDL definitions.
• System exceptions are predefined exceptions that all operations can

throw.

While IDL operations can throw user-defined and system exceptions, acces-
sor methods for IDL attributes can only throw system-defined exceptions.

This chapter shows how to throw and catch both types of exceptions. The
Bank interface is modified to include two user-defined exceptions:

AccountNotFound is defined by find_account().

AccountAlreadyExists is defined by create_account().

The account_id member in both exceptions indicates an invalid account ID:

module BankDemo
{

...
interface Bank {

exception AccountAlreadyExists { AccountId account_id; };
exception AccountNotFound { AccountId account_id; };

Account find_account(in AccountId account_id)
raises(AccountNotFound);

Account create_account(
in AccountId account_id,
in CashAmount initial_balance

) raises (AccountAlreadyExists);
};

};
277

Chapter 13 | Exceptions
Exception Code Mapping
The C++ mapping arranges CORBA exceptions into the hierarchy shown in
Figure 27. Abstract base class CORBA::Exception is the root of the hierarchy
tree. Base abstract classes SystemException and UserException derive from
CORBA::Exception and provide the base for all concrete system and user
exceptions:

Given this hierarchy, you can catch all CORBA exceptions in a single catch
handler. Alternatively, you can catch system and user exceptions separately,
or handle specific exceptions individually.

Figure 27: The C++ mapping arranges exceptions into a hierarchy

CORBA::Exception

CORBA::SystemException

CORBA::TRANSIENT

CORBA::OBJ_ADAPTER

CORBA::BAD_PARAM

CORBA::UserException

Bank::AccountAlreadyExists

Bank::AccountNotFound
 278

User-Defined Exceptions
User-Defined Exceptions
Operations are defined to raise one or more user exceptions to indicate
application-specific error conditions. An exception definition can contain
multiple data members to convey specific information about the error, if
desired. For example, you might include a graphic image in the exception
data in order to display an error icon.

Exception Design Guidelines

When you define exceptions, be sure to follow these guidelines:

Exceptions are thrown only for exceptional conditions

Do not throw exceptions for expected outcomes. For example, a database
lookup operation should not throw an exception if a lookup does not locate
anything; it is normal for clients to occasionally look for things that are not
there. It is harder for the caller to deal with exceptions than return values,
because exceptions break the normal flow of control. Do not force the caller
to handle an exception when a return value is sufficient.

Exceptions carry complete information

Ensure that exceptions carry all the data the caller requires to handle an
error. If an exception carries insufficient information, the caller must make a
second call to retrieve the missing information. However, if the first call fails,
it is likely that subsequent calls will also fail.

Exceptions only carry useful information

Do not add exception members that are irrelevant to the caller.

Exceptions carry precise information

Do not lump multiple error conditions into a single exception type. Instead,
use a different exception for each semantic error condition; otherwise, the
caller cannot distinguish between different causes for an error.
279

Chapter 13 | Exceptions
C++ Mapping for User Exceptions

When you run the IDL compiler on IDL interface Bank, it translates user
exceptions into C++ classes. For example, the compiler translates Bank::
AccountAlreadyExists into a C++ class of the same name:

class Bank : public virtual CORBA::Object
{
public:
...

class AccountAlreadyExists: public CORBA::UserException
{
public:

AccountAlreadyExists();
AccountAlreadyExists(const char* _itfld_account_id);
...
// string manager
ITGenAccountId_mgr account_id;

static AccountAlreadyExists* _downcast(
CORBA::Exception* exc

);
static const AccountAlreadyExists* _downcast(

const CORBA::Exception* exc
);
...
virtual void _raise() const;
...

};
...

};

The AccountAlreadyExists class is nested within class Bank. Each C++
class that corresponds to a IDL exception has a constructor that takes a
parameter for each exception member. Because the AccountAlreadyExists
exception has one AccountId member, class Bank::AccountAlreadyExists
has a constructor that allows it to be initialized.
 280

Handling Exceptions
Handling Exceptions
Client code uses standard try and catch blocks to isolate processing logic
from exception handling code. You can associate multiple catch blocks with
each try block. You should write the code so that handling for specific
exceptions takes precedence over handling for other unspecified exceptions.

User Exceptions

If an operation might throw a user exception, its caller should be prepared to
handle that exception with an appropriate catch clause.

The following code shows how you might program a client to catch
exceptions. In it, the handler for the AccountAlreadyExists exception
outputs an error message and exits the program. The code follows standard
C++ practice by passing the parameter to the catch clause by reference.
The operator<<() that is defined on class SystemException outputs a text
description of the individual system exception that was thrown.

// C++
void
BankMenu::do_create()

throw(CORBA::SystemException)
{

cout << "Enter account name: " << flush;
char name[1024];
cin >> name;
cout << "Enter starting balance: " << flush;
BankDemo::CashAmount amount;
cin >> amount;

// try/catch to handle user exception, system exceptions are
// handled in the main menu loop
try
{

BankDemo::Account_var account =
m_bank->create_account(name, amount);

// start a sub-menu with the returned account reference
AccountMenu sub_menu(account);
sub_menu.run();
281

Chapter 13 | Exceptions
// _var types automatically clean up on return
// or exception

}
catch (
const BankDemo::Bank::AccountAlreadyExists& already_exists)

{
cout << "Account already exists: "

<< already_exists.account_id << endl;
}

}

System Exceptions

A client often provides a handler for a limited set of anticipated system
exceptions. It also must provide a way to handle all other unanticipated
system exceptions that might occur.

The handler for a specific system exception must appear before the handler
for CORBA::SystemException. C++ catch clauses are attempted in the order
specified, and the first matching handler is called. Because of implicit
casting, a handler for CORBA::SystemException matches all system
exceptions (all system exception classes are derived from class CORBA::
SystemException), so it should appear after all handlers for specific system
exceptions.

If you want to know the type of system exception that occurred, use the
message output by the proprietary operator<<() function on class CORBA::
SystemException. Handlers for individual system exceptions are necessary
only when they require a specific action.

The following client code specifically tests for a COMM_FAILURE exception; it
can also handle any other system exceptions:

void
BankMenu::run() {

// make sure bank reference is valid
if (CORBA::is_nil(m_bank)) {

cout << "Cannot proceed - bank reference is nil";
}
else {
// loop printing the menu and executing selections
 282

Handling Exceptions
for (; ;) {
cout << endl;
cout << "0 - quit" << endl;
cout << "1 - create_account" << endl;
cout << "2 - find_account" << endl;
cout << "Selection [0-2]: " << flush;
int selection;
cin >> selection;

try {
switch(selection)
{

case 0: return;
case 1: do_create(); break;
case 2: do_find(); break;

}
catch (CORBA::COMM_FAILURE& e) {
cout << "Communication failure exception: "

<< e << endl;
return;

}
catch (const CORBA::SystemException& e) {

cout << "Unexpected exception: " << e << endl;
return;

}
}

}
}

Evaluating System Exceptions

System exceptions have two member methods, completed() and minor(),
that let a client evaluate the status of an invocation:

• completed() returns an enumerator that indicates how far the operation
or attribute call progressed.

• minor() returns an IDL unsigned long that offers more detail about the
particular system exception that was thrown.
283

Chapter 13 | Exceptions
Obtaining Invocation Completion Status
Each standard exception includes a completion_status code that takes one
of the following integer values:

COMPLETED_NO: The system exception was thrown before the operation or
attribute call began to execute.

COMPLETED_YES: The system exception was thrown after the operation or
attribute call completed execution.

COMPLETED_MAYBE: It is uncertain whether or not the operation or
attribute call started to execute, and if so, whether execution completed. For
example, the status is COMPLETED_MAYBE if a client’s host receives no
indication of success or failure after transmitting a request to a target object
on another host.

Evaluating Minor Codes
minor() returns an IDL unsigned long that offers more detail about the
particular system exception thrown. For example, if a client catches a
COMM_FAILURE system exception, it can access the system exception’s minor
field to determine why this occurred

All standard exceptions have an associated minor code that provides more
specific information about the exception in question. Given these minor
codes, the ORB is not required to maintain an exhaustive list of all possible
exceptions that might arise at runtime.

Minor exception codes are defined as an unsigned long that contains two
components:

• 20-bit vendor minor code ID (VMCID)
• Minor code that occupies the 12 low order bits

Each ORB vendor has a unique VMCID assigned by the OMG. The VMCID
assigned to IONA is 0x49540000; this space is reserved for use by IONA
exception minor codes.
 284

Handling Exceptions
The VMCID assigned to OMG standard exceptions is 0x4f4d000. You can
obtain the minor code value for any exception by OR'ing the VMCID with the
minor code for the exception in question. All minor code definitions are
associated with readable strings.

Orbix 2000 defines minor codes within each subsystem. When an exception
is thrown, the current subsystem associates the exception with a valid minor
code that maps to a unique error condition. Table 17 lists Orbix 2000
subsystems and base values for their minor codes:

Table 17: Base minor code values for Orbix subsystems

Subsystem Base Minor Code ID

Core 0x49540100

GIOP 0x49540200

IIOP 0x49540300

IIOP_PROFILE 0x49540400

POA 0x49540500

PSS 0x49540600

DAL_DB 0x49540700

PSS 0x49540800

OTS 0x49540900

OTS_LITE 0x49540A00

Locator 0x49540B00

POA locator 0x49540C00

Activator 0x49540D00

Generic server 0x49540E00

Naming 0x49540F00

IFR 0x49541000
285

Chapter 13 | Exceptions
For example, the locator subsystem defines a number of minor codes for the
BAD_PARAM standard exception. These distinguish among the various
conditions under which the locator might throw the BAD_PARAM exception,
and are defined as follows:

// IDL: in location_minor_codes.idl
module IT_LOCATOR_MinorCodes
{

const unsigned long SMCID = IT_ErrorCodes::IONA_VMCID + 0x0B00;

module BAD_PARAM
{

const unsigned long NO_ACTIVATOR_NAME = SMCID;
const unsigned long NO_ACTIVATOR_INFO = SMCID + 1;
const unsigned long ACTIVATOR_REG_NO_NAME = SMCID + 2;
const unsigned long ACTIVATOR_REG_NO_REF = SMCID + 3;
const unsigned long ACTIVATOR_UNREG_NO_NAME = SMCID + 4;
const unsigned long UNEXPECTED_NULL = SMCID + 5;
const unsigned long PROCESS_NOT_EXIST = SMCID + 6;

};
...

};

Configuration repository. 0x49541100

Threads package 0x49541200

PSS/R ODBC 0x49541300

ATLI-IOP none 0x49541400

Table 17: Base minor code values for Orbix subsystems

Subsystem Base Minor Code ID
 286

Throwing Exceptions
These equate to the following minor code IDs:

For example, an exception with a minor code of 0x49540B06 indicates that
the locator is looking for a process that does not exist.

Definitions for all subsystem minor codes can be found in the idl/orbix_sys
directory.

Note: OMG minor code constants are Orbix-specific mappings to minor
codes that are set by the OMG. If you define minor codes for your own
application, make sure that they do not overlap the ranges that are reserved
for IONA-defined minor codes.

Throwing Exceptions
Client code uses standard C++ syntax to initialize and throw both
user-defined and system exceptions.

This section modifies BankImpl::create_account() to throw an exception.
You can implement create_account() as follows:

// create a new account given an id and initial balance
// throw AccountAlreadyExists if account already in database

Table 18: BAD_PARAM minor codes

Minor code string Minor code ID

NO_ACTIVATOR_NAME 0x49540B00

NO_ACTIVATOR_INFO 0x49540B01

ACTIVATOR_REG_NO_NAME 0x49540B02

ACTIVATOR_REG_NO_REF 0x49540B03

ACTIVATOR_UNREG_NO_NAME 0x49540B04

UNEXPECTED_NULL 0x49540B05

PROCESS_NOT_EXIST 0x49540B06
287

Chapter 13 | Exceptions
BankDemo::Account_ptr BankImpl::create_account(
const char* account_id,
CashAmount initial_balance) throw(
CORBA::SystemException, BankDemo::Bank::AccountAlreadyExists)

{
// create new account in database, then return a new
// reference to that account
if (!m_account_db.create_account(account_id, initial_balance))
{

throw BankDemo::Bank::AccountAlreadyExists(account_id);
}

return create_account_ref(account_id);
}

Exception Safety
You should be careful that your code does not throw user exceptions that are
not part of the operation’s raises expression. Doing so can throw an UNKNOWN
exception, or cause the program to terminate abruptly.

For example, the following IDL defines operations some_operation() and
some_helper():

exception Failed {};
interface Example {

void some_operation() raises(Failed);
};

exception DidntWork {};
interface Helper {

void some_helper() raises(Failed, DidntWork);
};

The following implementation of some_operation() incorrectly calls
some_helper():

void ExampleImpl::some_operation()
throw(CORBA::SystemException, Failed) {
// do some work...
// call helper operation.
 288

Exception Safety
Helper_var help = ...;
help->some_helper(); // BAD!
// do remainder of work...

}

At some point during runtime, some_helper() is liable to throw an exception
of DidntWork back to some_operation(), which is unable to handle it, and
causing the server process to die.

If an operation calls helper operations on other objects, make sure that it can
handle illegal exceptions. For example, the following example modifies
some_operation() so that it can translate DidntWork into a legal exception:

void ExampleImpl::some_operation()
throw(CORBA::SystemException, Failed) {
// do some work...
// call helper operation.
Helper_var help = ...;
try {

help->some_helper();
}
catch (const DidntWork &) {

throw Failed; // translate into legal exception
}
// do remainder of work...
return;

}

You should also be careful to avoid resource leaks in the presence of
exceptions. For example, the IDL for some_operation() is modified here to
return a string as an out parameter:

exception Failed {};
interface Example {

void some_operation(out string s) raises(Failed);
};

The following implementation incorrectly leaks the string that is allocated to
the out parameter:

void ExampleImpl::some_operation(CORBA::String_out s)
throw(CORBA::SystemException, Failed) {

// do some work to get the string value to be returned...
char * str = some_function();
289

Chapter 13 | Exceptions
s = CORBA::string_dup(str); // assign out param

// call helper operation to do something else
Helper_var help = ...;
try {

help->some_helper(); // memory leak!
}
catch (const DidntWork &) {

throw Failed; // memory leak!
}
// do remainder of work...

}

You can correct this problem by explicitly deallocating the parameter again,
as in the following example:

void ExampleImpl::some_operation(CORBA::String_out s)
throw(CORBA::SystemException, Failed) {

// do some work to get the string value to be returned...
char * str = some_function();
s = CORBA::string_dup(str); // assign out param

// call helper operation to do something else
Helper_var help = ...;
try {

help->some_helper();
}
catch (const DidntWork &) {

CORBA::string_free(s.ptr()); // clean up
throw Failed; // translate

}
catch (const CORBA::Exception & e) {

CORBA::string_free(s.ptr()); // clean up
throw; // rethrow

}
// do remainder of work...

}

 290

Throwing System Exceptions
Throwing System Exceptions
Occasionally, a server program might need to throw a system exception.
Specific system exceptions such as COMM_FAILURE inherit the
SystemException constructor:

// C++
class SystemException : public Exception {

public:
SystemException();
SystemException(const SystemException &);
SystemException(

ULong minor_id, CompletionStatus completed_status);

class COMM_FAILURE : public SystemException { ... };

The following code uses this constructor to throw a COMM_FAILURE exception
with minor code SOCKET_WRITE_FAILED and completion status COMPLETED_NO:

// C++
throw CORBA::COMM_FAILURE(HOST_LOOKUP_FAILED, COMPLETED_NO);
291

Chapter 13 | Exceptions
 292

Using Type Codes
Orbix uses type codes to describe IDL types. The IDL pseudo
interface CORBA::TypeCode lets you describe and
manipulate type code values.

Type codes are essential for the DII and DSI, to specify argument types. The
interface repository also relies on type codes to describe types in IDL
declarations. In general, type codes figure importantly in any application that
handles CORBA::Any data types.

Type Code Components
Type codes are encapsulated in CORBA::TypeCode pseudo objects. Each
TypeCode has two components:

kind: A CORBA::TCKind enumerator that associates the type code with an IDL
type. For example, enumerators tk_short, tk_boolean, and tk_sequence
correspond to IDL types short, boolean, and sequence, respectively.

description: One or more parameters that supply information related to the
type code’s kind. The number and contents of parameters varies according to
the type code.

• The type code description for IDL type fixed<5,3> contains two
parameters, which specify the number of digits and the scale.

• The type code description for a string or wstring contains a single
parameter that specifies the string’s bound, if any.

• Type codes for primitive types require no description, and so have no
parameters associated with them—for example, tk_short and tk_long.
293

Chapter 14 | Using Type Codes
TCKind Enumerators

The CORBA::TCKind enumeration defines all built-in IDL types:

// In module CORBA
enum TCKind {

tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char, tk_octet, tk_any,
tk_TypeCode, tk_Principal, tk_objref, tk_struct, tk_union,
tk_enum, tk_string, tk_sequence, tk_array, tk_alias,
tk_except, tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar,
tk_wstring, tk_fixed, tk_value, tk_value_box, tk_native,
tk_abstract_interface

};

Most of these are self-explanatory—for example, a type code with a TCKind of
tk_boolean describes the IDL type boolean. Some, however, have no direct
association with an IDL type:

tk_alias describes an IDL type definition such as typedef string.

tk_null describes an empty value condition. For example, if you construct an
Any with the default constructor, the Any’s type code is initially set to
tk_null.

tk_Principal is deprecated for applications that are compliant with CORBA
2.3 and later; retained for backward compatibility with earlier applications
that use the BOA.

tk_TypeCode describes another type code value.

tk_value describes a value type.

tk_value_box describes a value box type.

tk_void is used by the interface repository to describe an operation that
returns no value.
 294

Type Code Components
Table 19 shows type code parameters. The table omits type codes with an
empty parameter list.

Table 19: Type Codes and Parameters

TCKind Parameters

tk_abstract_interface repository-id, name

tk_alias repository-id, name, type-code

tk_array type-code, length...

tk_enum repository-id, name, { member-name }...

tk_except repository-id, name,
{ member-name, member-type-code }...

tk_fixed digits, scale

tk_native repository-id, name

tk_objref repository-id, name

tk_sequence element-type-code, max-lengtha

tk_string
tk_wstring

max-lengtha

tk_struct repository-id, name,
{ member-name, member-type-code }...

tk_union repository-id, name, switch-type-code, default-index,
{ member-label, member-name, member-type-code }...

tk_value repository-id, name, type-modifier, type-code,
{ member-name, member-type-code, visibility }...

tk_value_box repository-id, name,
{ member-name, member-type-code} ...

a.For unbounded sequences, strings, and wstrings, this value is 0.
295

Chapter 14 | Using Type Codes
Type Code Operations
The CORBA::TypeCode interface provides a number of operations that you can
use to evaluate and compare TypeCode objects. Some of these can be
invoked on all TypeCode objects; the rest are associated with TypeCode
objects of a specific TCKind, and raise a BadKind exception if invoked on the
wrong type code.

General Type Code Operations

The following operations are valid for all TypeCode objects:

kind()
TCKind kind();

kind() returns the TCKind of the target type code. You can call kind() on a
TypeCode to determine what other operations can be called for further
processing—for example, use the TCKind return as a switch discriminator:

//C++
CORBA::Any another_any = ...;
CORBA::TypeCode_var t = another_any.type();

switch(t->kind()){
case CORBA::tk_short:
...
case CORBA::tk_long:
...
// continue for all tk_ values
default:
...
}

equal(), equivalent()
boolean equal(in TypeCode tc);
boolean equivalent(in TypeCode tc);

equal() and equivalent() let you evaluate a type code for equality with the
specified type code, returning true if they are the same:
 296

Type Code Operations
equal() requires that the two type codes be identical in their TCKind and all
parameters—member names, type names, repository IDs, and aliases.

equivalent() resolves an aliased type code (TCKind = tk_alias) to its base,
or unaliased type code before it compares the two type codes’ TCKind
parameters. This also applies to aliased type codes of members that are
defined for type codes such as tk_struct.

For both operations, the following parameters are always significant and
must be the same to return true:

• Number of members for TCKinds of tk_enum, tk_excep, tk_struct, and
tk_union.

• Digits and scale for tk_fixed type codes.
• The value of the bound for type codes that have a bound parameter—

tk_array, tk_sequence, tk_string and tk_wstring.
• Default index for tk_union type codes.
• Member labels for tk_union type codes. Union members must also be

defined in the same order.

Both equal() and equivalent() can take a type code constant as an
argument—for example, _tc_short or _tc_float for IDL types short or
float respectively. For more information about type code constants, see
page 301.

You must use equal() and equivalent() to evaluate a type code. For
example, the following code is illegal:

CORBA::Any another_any;
another_any <<= "Hello world";
CORBA::TypeCode_ptr t = another_any.type();

if (t == CORBA::_tc_string) { ... } // Bad code!!

You can correct this code as follows:

CORBA::Any another_any;
another_any <<= "Hello world";
CORBA::TypeCode_ptr t = another_any.type();

// use equal or equivalent to evaluate type code
if (t->equivalent(CORBA::_tc_string)) { ... }
if (t->equal(CORBA::_tc_string)) { ... }
297

Chapter 14 | Using Type Codes
get_compact_typecode()
TypeCode get_compact_typecode();

get_compact_typecode() removes type and member names from a type
code. This operation is generally useful only to applications that must
minimize the size of type codes that are sent over the wire.

Type-Specific Operations

Table 20 shows operations that can be invoked only on certain type codes. In
general, each operation gets information about a specific type-code
parameter. If invoked on the wrong type code, these operations raise an
exception of BadKind.

Table 20: Type-Specific Operations

TCKind Operations

tk_alias id()
name()
content_type()

tk_array length()
content_type()

tk_enum id()
name()
member_count()
member_name()

tk_except id()
name()
member_count()
member_name()
member_type()

tk_fixed fixed_digits()
fixed_scale()

tk_native id()
name()
 298

Type Code Operations
tk_objref id()
name()

tk_sequence length()
content_type()

tk_string
tk_wstring

length()

tk_struct id()
name()
member_count()
member_name()
member_type()

tk_union id()
name()
member_count()
member_name()
member_label()
discriminator_type()
default_index()

tk_value id()
name()
member_count()
member_name()
member_type()
type_modifier()
concerte_base_type()
member_visibility()

tk_value_box id()
name()
member_name()

Table 20: Type-Specific Operations

TCKind Operations
299

Chapter 14 | Using Type Codes
Table 21 briefly describes the information that you can access through type
code-specific operations. For detailed information about these operations, see
the Orbix 2000 Programmer’s Reference.

Table 21: Information Obtained by Type-Specific Operations

Operation Returns:

concrete_base_type() Type code of the concrete base for the target
type code; applies only to value types.

content_type() For aliases, the original type. For sequences
and arrays, the specified member’s type.

default_index() Index to a union’s default member. If no default
is specified, the operation returns -1.

discriminator_type() Type code of the union’s discriminator.

fixed_digits() Number of digits in a fixed-point type code.

fixed_scale() Scale of a fixed-point type code.

id() Type code’s repository ID.

length() Value of the bound for a type code with TCKind
of tk_string, tk_wstring, tk_sequence, or
tk_array.

member_count() Number of members in the type code.

member_label() An Any value that contains the value of the
union case label for the specified member.

member_name() Name of the specified member. If the supplied
index is out of bounds (greater than the
number of members), the function raises the
TypeCode::Bounds exception.

member_type() Type code of the specified member. If the
supplied index is out of bounds (greater than
the number of members), the function raises
the TypeCode::Bounds exception.
 300

Type Code Constants
Type Code Constants
Orbix provides type code constants that you can use to evaluate and compare
type code objects. Built-in type code constants are provided for each TCKind
enumerator (see page 293). The IDL compiler also generates type code
constants for IDL types that you declare in your application code.

Built-In Type Codes

Orbix provides predefined CORBA::TypeCode object reference constants that
let you access type codes for standard types.

member_visibility() The Visibility (PRIVATE_MEMBER or
PUBLIC_MEMBER) of the specified member.

name() Type code’s user-assigned unscoped name.

type_modifier() Value modifier that applies to the value type
that the target type code represents.

Table 21: Information Obtained by Type-Specific Operations

Operation Returns:

CORBA::_tc_any
CORBA::_tc_boolean
CORBA::_tc_char
CORBA::_tc_double
CORBA::_tc_float
CORBA::_tc_long
CORBA::_tc_longdouble
CORBA::_tc_longlong
CORBA::_tc_null
CORBA::_tc_octet
CORBA::_tc_short

CORBA::_tc_string
CORBA::_tc_ulong
CORBA::_tc_ulonglong
CORBA::_tc_ushort
CORBA::_tc_void
CORBA::_tc_wchar
CORBA::_tc_wstring
CORBA::_tc_Object
CORBA::_tc_TypeCode
CORBA::_tc_ValueBase
301

Chapter 14 | Using Type Codes
User-Defined Type Codes

The IDL compiler generates type code constants for declarations of these
types:

interface
typedef
struct
union
enum
valuetype
valuebox

For each user-defined type that is declared in an IDL file, the IDL compiler
generates a CORBA::TypeCode_ptr that points to a type code constant. These
constants have the format _tc_type where type is the user-defined type. For
example, given the following IDL:

interface Interesting {
typedef long longType;
struct Useful
{

longType l;
};

};

the IDL compiler generates the following CORBA::TypeCode_ptr constants:

_tc_Interesting
Interesting::_tc_longType
Interesting::_tc_Useful
 302

Using the Any Data Type
IDL’s any type lets you specify values that can express any
IDL type. This allows a program to handle values whose
types are not known at compile time. The any type is most
often used in code that uses the Interface Repository or the
Dynamic Invocation Interface (DII).

The IDL any type maps to the C++ CORBA::Any class. Conceptually, this
class contains the following two instance variables:

type is a TypeCode object that provides full type information for the value
contained in the any. The Any class provides a type() method to return the
TypeCode object.

value is the internal representation used to store Any values and is accessible
via standard insertion and extraction methods.

For example, the following interface, AnyDemo, contains an operation that
defines an any parameter:

// IDL
interface AnyDemo {

// Takes in any type that can be specified in IDL
void passSomethingIn (in any any_type_parameter);

// Passes out any type specified in IDL
any getSomethingBack();

...
};

Given this interface, a client that calls passSomethingIn()constructs an any
that specifies the desired IDL type and value, and supplies this as an
argument to the call. On the server side, the AnyDemo implementation that
processes this call can determine the type of value the any stores and extract
its value.
303

Chapter 15 | Using the Any Data Type
This chapter covers the following topics:

• Inserting values into an any data type.
• Querying an any data type for its data.
• Using DynAny objects to construct and interpret any data types

dynamically.

Inserting Typed Values Into Any
The insertion operator <<= lets you set an any’s value and data type. The
insertion operator sets a CORBA::Any value and its data type property (CORBA:
:TypeCode). Thus set, you can extract an any’s value and data type through
the corresponding extraction operator (see page 306).

The C++ class CORBA::Any contains predefined overloaded versions of the
insertion operator function operator<<=(). Orbix provides insertion operator
functions for all IDL types that map unambiguously to C++ types, such as
long, float, or unbounded string. For a full listing of these functions and
their data types, refer to CORBA::Any::operator<<=(). The IDL compiler also
generates an insertion operator for each user-defined type.

For example, CORBA::Any contains the following insertion operator function
for short data types:

void operator<<=(CORBA::Short s);

Given this function, you can use the insertion operator to supply a short data
type to passSomethingIn() as follows:

//C++
void AnyDemo::do_send_short() {

try {
AnyDemo_var x = ...;
CORBA::Any a;
CORBA::Short toPass;
toPass = 26;
a <<= toPass;
x->passSomethingIn(a);

}
catch (CORBA::SystemException &sysEx) {
...

}

 304

Inserting Typed Values Into Any
Insertion operators provide a type-safe mechanism for inserting data into an
any. The type of value to insert determines which insertion operator is used.
Attempts to insert a value that has no corresponding IDL type yield
compile-time errors.

Memory Management of Inserted Data

Depending on the type of the data, insertion using an operator<<=() has one
of the following effects:

• _duplicate() is called on an object reference.
• _add_ref() is called on a valuetype.
• a deep copy is made for all other data types.

When the Any is subsequently destroyed, the Any destructor performs one of
the following actions, depending on the Any.type() field:

• CORBA::release() is called on an object reference.
• _remove_ref() is called on a valuetype.
• delete is called on all other data types.

Inserting User-Defined Types

The IDL shown earlier can be modified to include this typedef declaration:

// IDL
typedef sequence<long> LongSequence;

Given this statement, the IDL compiler generates the following insertion
operator function for LongSequence data types:

void operator<<=(CORBA::Any& a, const LongSequence& t);

Clients that call passSomethingIn() can use the insertion operator to insert
LongSequence data into the function’s any parameter:

// C++
void AnyDemo::do_send_sequence() {

try {
CORBA::Any a;

// Build a sequence of length 2
LongSequence sequence_to_insert(2);
305

Chapter 15 | Using the Any Data Type
sequence_to_insert.length(2);

// Initialize the sequence values
sequence_to_insert[0] = 1;
sequence_to_insert[1] = 2;

// Insert sequence into the any
a <<= sequence_to_insert;
...
// Call passSomethingIn and supply any data as argument
m_any_demo->passSomethingIn (a);

}
catch (CORBA::SystemException &sysEx) {
...
}

}

Extracting Typed Values From Any
The extraction operator >>= lets you get the value that a CORBA::Any contains
and returns a CORBA::Boolean: true (1) if the any’s TypeCode matches the
extraction operation’s target operand, or false (0) if a mismatch occurs.

The C++ class CORBA::Any contains predefined overloaded versions of the
extraction operator function operator>>=(). Orbix provides extraction
operator functions for all IDL types that map unambiguously to C++ types,
such as long, float, or unbounded string. For a full listing of these
functions and their data types, refer to CORBA::Any::operator>>=(). The IDL
compiler also generates an extraction operator for each user-defined type.

For example, CORBA::Any contains the following extraction operator function
for short data types:

//C++
CORBA::Boolean operator>>=(CORBA::Short& s) const;

Given this function, a server implementation of passSomethingIn() can use
the extraction operator to extract a short from the function’s parameter
anyIn:
 306

Extracting Typed Values From Any
// C++
void AnyDemo_i::passSomethingIn(const CORBA::Any& anyIn) {

CORBA::Short toExtract = 0;

if (anyIn >>= toExtract) {
// Print the value
cout << "passSomethingIn() returned a string:"

<< toExtract << endl << endl;
}
else {

cerr << "Unexpected value contained in any" << endl;
}

}

Memory Management of Extracted Data

When a user-defined type is extracted from an Any, the data is not copied or
duplicated in any way. The extracted data is, therefore, subject to the
following restrictions:

• No modifications to the extracted data are allowed. The extracted data is
read-only.

• Deallocation of the extracted data is not allowed. The Any retains
ownership of the data.

To overcome the restrictions on extracted data, you must explicitly make a
copy of the data and modify the new copy instead.

Extracting User-Defined Types

More complex, user-defined types can be extracted with the extraction
operators generated by the IDL compiler. For example, the IDL shown earlier
can be modified to include this typedef declaration:

// IDL
typedef sequence<long> LongSequence;

Given this statement, the IDL compiler generates the following extraction
operator function for LongSequence data types:
307

Chapter 15 | Using the Any Data Type
CORBA::Boolean operator>>=
(CORBA::Any& a, LongSequence*& t) const;

The generated extraction operator for user-defined types takes a pointer to
the generated type as the second parameter. If the call to the operator
succeeds, this pointer points to the memory managed by the CORBA::Any.
Because a CORBA::Any manages this memory, it is not appropriate to extract
its value into a _var variable—attempting to do so results in a compile-time
error.

You can extract a LongSequence from a CORBA::Any as follows:

void AnyDemo::do_get_any() {
CORBA::Any_var a;
cout << "Call getSomethingBack" << endl;
a = m_any_demo->getSomethingBack();

LongSequence* extracted_sequence = 0;

if (a >>= extracted_sequence) {
cout << "returned any contains sequence with value :"

<< endl;
print_sequence(extracted_sequence);

}

else {
cout << "unexpected value contained in any" << endl;

}
}

Note: It is an error to attempt to access the storage associated with a
CORBA::Any after the CORBA::Any variable has been deallocated.
 308

Inserting and Extracting Booleans, Octets, Chars and WChars
Inserting and Extracting Booleans, Octets,
Chars and WChars

Orbix’s IDL to C++ mapping for IDL types char, wchar, boolean and octet
prevents the overloaded insertion and extraction operators from
distinguishing between these four data types. Consequently, you cannot use
these operators directly to insert and extract data for these three IDL types.

The CORBA::Any class contains a set of insertion and extraction operator
functions that use helper types for char, wchar, boolean, and octet types:

void operator<<=(CORBA::Any::from_char c);
void operator<<=(CORBA::Any::from_wchar wc);
void operator<<=(CORBA::Any::from_boolean b);
void operator<<=(CORBA::Any::from_octet o);

Boolean operator>>=(CORBA::Any::to_char c) const;
Boolean operator>>=(CORBA::Any::to_wchar wc) const;
Boolean operator>>=(CORBA::Any::to_boolean b) const;
Boolean operator>>=(CORBA::Any::to_octet o) const;

You can use these helper types as in the following example:

// C++
CORBA::Any a;

// Insert a boolean into CORBA::Any a
CORBA::Boolean b = 1;
a <<= CORBA::Any::from_boolean(b);

// Extract the boolean
CORBA::Boolean extractedValue;
if (a >>= CORBA::Any::to_boolean(extractedValue)){

cout << "Success!" << endl;
}

309

Chapter 15 | Using the Any Data Type
Inserting and Extracting Array Data
IDL arrays map to regular C++ arrays. Because arrays can have different
lengths and an array variable points only to the array’s first element, the IDL
compiler generates a distinct C++ type for each IDL array. The type name is
concatenated from the array name and the suffix _forany.

For example, the IDL shown earlier can be modified to include this
two-dimensional array definition:

// IDL
typedef long longArray[2][2];

Given this typedef statement, the IDL compiler generates a
longArray_forany type. The following example shows how to use insertion
and extraction operators to move data between this type and a CORBA::Any:

// C++
longArray m_array = { {14, 15}, {24, 25} };

// Insertion
CORBA::Any a;
a <<= longArray_forany(m_array);

// Extraction
longArray_forany extractedValue;
if (a >>= extractedValue) {

cout << "Element [1][2] is "
<< extractedValue[1][2] << endl;

}

Like array _var types, _forany types provide an operator[]() function to
access array members. However, when a _forany type is destroyed the
storage that is associated with the array remains intact. This is consistent
with the behavior of the extraction operator >>=, where the CORBA::Any
retains ownership of the memory that the operator returns. Thus, the
previous code is safe from memory leaks.
 310

Inserting and Extracting String Data
Inserting and Extracting String Data
Helper types are also provided for insertion and extraction of string and
wstring types.

Inserting Strings

The from_string and from_wstring struct types are used in combination
with the insertion operator >>= to insert strings and wide strings. Two
constructors are provided for the from_string type:

CORBA::Any::from_string(
char* s,
CORBA::ULong b,
CORBA::Boolean nocopy = 0

)
CORBA::Any::from_string(const char* s, CORBA::ULong b)

The constructor parameters can be explained as follows:

• The s parameter is a pointer to the string to be inserted.
• The b parameter specifies the bound of a bounded string (0 implies

unbounded).
• The nocopy parameter specifies whether the string is copied before

insertion (0 implies copying, 1 implies no copying and adoption).

Analogous constructors are provided for the from_wstring type:

CORBA::Any::from_wstring(
CORBA::WChar* s,
CORBA::ULong b,
CORBA::Boolean nocopy = 0

)
CORBA::Any::from_wstring(const CORBA::WChar* s, CORBA::ULong b)

Examples of inserting bounded and unbounded string types are shown in the
following code:

// C++
// Insert a copy of an unbounded string, ’string’.
CORBA::Any a1;
a1 <<= CORBA::Any::from_string("Unbounded string", 0);
...
311

Chapter 15 | Using the Any Data Type
// Insert a copy of a bounded string, ’string<100>’.
CORBA::Any a2;
a2 <<= CORBA::Any::from_string("Bounded string", 100);
...
// Insert an unbounded string, ’string’, passing
// ownership to the ’CORBA::Any’.
CORBA::Any a3;
char * unbounded = CORBA::string_dup("Unbounded string");
a3 <<= CORBA::Any::from_string(unbounded, 0, 1);
...
// Insert a bounded string, ’string<100>’, passing
// ownership to the ’CORBA::Any’.
CORBA::Any a4;
char * bounded = CORBA::string_dup("Bounded string");
a3 <<= CORBA::Any::from_string(bounded, 100, 1);

Insertion of wide strings is performed in an analogous manner using the
CORBA::Any::from_wstring type.

Extracting Strings

The to_string and to_wstring struct types are used in combination with the
extraction operator >>= to extract strings and wide strings. One constructor is
provided for the to_string type:

CORBA::Any::to_string(const char*& s, CORBA::ULong b);

The constructor parameters can be explained as follows:

• The s parameter is a place holder that will point to the extracted string
after a successful extraction is made.

• The b parameter specifies the bound of a bounded string (0 implies
unbounded).

An analogous constructor is provided for the to_wstring type:

CORBA::Any::to_wstring(const CORBA::WChar*& s, CORBA::ULong b);

Examples of extracting bounded and unbounded string types are shown in
the following code:

// C++
// Extract an unbounded string, ’string’.
CORBA::Any a1;
const char * readonly_s;
 312

Inserting and Extracting Alias Types
if (a1 >>= CORBA::Any::to_string(readonly_s, 0)) {
// process string, ’readonly_s’

}
...
// Extract a bounded string, ’string<100>’.
CORBA::Any a2;
const char * readonly_bs;
if (a2 >>= CORBA::Any::to_string(readonly_bs, 100)) {

// process bounded string, ’readonly_bs’
}

Extraction of wide strings is performed in an analogous manner using the
CORBA::Any::to_wstring type.

Inserting and Extracting Alias Types
The insertion and extraction operators <<= and >>= are invalid for alias types.
An alias type is a type defined using a typedef.

For example, a bounded string alias is a type defined by making a typedef of
a bounded string:

//IDL
typedef string<100> BoundedString;

This is mapped by the IDL compiler to a C++ typedef as follows:

// C++
// Stub code generated by the IDL compiler.
typedef char* BoundedString;
...

A C++ alias, such as BoundedString, cannot be used to distinguish an
overloaded operator because it is not a distinct C++ type. This is the reason
why the <<= and >>= operators cannot be used with alias types.

Inserting Alias Types

The BoundedString alias type can be inserted into an Any as follows:

// C++
CORBA::Any a;
BoundedString bs = "Less than 100 characters.";
313

Chapter 15 | Using the Any Data Type
1 a <<= CORBA::Any::from_string(bs, 100);

2 a.type(_tc_BoundedString); // Correct the type code!

The code executes as follows:

1. The data is inserted using the <<= operator and the from_string helper
type. Initially, the Any’s type code is set equal to that of a bounded string
with bound 100 (the type code for string<100>). There is no type code
constant available for the string<100> type—the <<= operator creates
one on the fly and uses it.

2. CORBA::Any::type() corrects the Any’s type code, setting it equal to the
_tc_BoundedString type code.

It is not permissible to use type() to reset the type code to arbitrary
values—the new type code must be equivalent to the old one.
Attempting to reset the type code to a non-equivalent value raises the
BAD_TYPECODE system exception.

For example, calling type() with the _tc_BoundedString argument
succeeds because the BoundedString type is equivalent to the
string<100> type.

Extracting Alias Types

The BoundedString alias type can be extracted from an Any as follows:

// C++
CORBA::Any a;
// The any ’a’ is initialized with a ’BoundedString’ alias
// (as shown previously)
...
// Extract the ’BoundedString’ type

1 const char * bs;

2 if (a >>= CORBA::Any::to_string(bs, 100)) {
cout << "Bounded string is: \"" << bs << "\"" << endl;

}

1. The pointer to receive the extracted value, bs, is declared as const
char*. You cannot declare bs as const BoundedString because that
means a const pointer to char, or char* const which is not the same as
const char* (pointer to const char).
 314

Querying a CORBA::Any’s Type Code
2. The to_string constructor manufactures a type code for a string<100>
bounded string and compares this type with the Any’s type code. If the
type codes are equivalent, the extraction succeeds.

Querying a CORBA::Any’s Type Code
Type code operations are commonly used to query a CORBA::Any for its type.
For example, given this interface definition:

// IDL
struct Example {

long l;
};

the IDL compiler generates the CORBA::TypeCode_ptr constant
_tc_Example.

Assume that a client program invokes the IDL operation op():

// IDL
interface Bar {

void op(in any a);
};

as follows:

// C++
// Client code
Bar_var bVar;
CORBA::Any a = ... ; // somehow initialize
...
bVar->op(a);

The server can query the actual type of the parameter to op() as follows:

// C++
// Server code
void Bar_i::op(const CORBA::Any& a) {

CORBA::TypeCode_var t(a->type());
if(t->equivalent(_tc_Example)) {

cerr << "Don’t like struct Example!" << endl;
}
else... // Continue processing here.

}

315

Chapter 15 | Using the Any Data Type
This is one of the most common uses of TypeCodes—namely, the runtime
querying of type information from a CORBA::Any.

Using DynAny Objects
The DynAny interface allows applications to compose and decompose any
type values dynamically. With DynAny, you can compose a value at runtime
whose type was unknown when the application was compiled, and transmit
that value as an any. Conversely, an application can receive a value of type
any from an operation, and interpret its type and extract its value without
compile-time knowledge of its IDL type.

Interface Hierarchy

The DynAny API consists of nine interfaces. One of these, interface
DynAnyFactory, lets you create DynAny objects. The rest of the DynAny API
consists of the DynAny interface itself and derived interfaces, as shown in
Figure 28.

The derived interfaces correspond to complex, or constructed IDL types such
as array and struct. Each of these interfaces contains operations that are
specific to the applicable type.

The DynAny interface contains a number of operations that apply to all DynAny
objects; it also contains operations that apply to basic IDL types such as long
and string.

The DynStruct interface is used for both IDL struct and exception types.

Figure 28: Interfaces that derive from the DynAny interface

DynAny::

DynFixed
DynStruct
DynSequence
DynArray
DynUnion
DynEnum
DynValue
DynValueBox
 316

Using DynAny Objects
Generic Operations

The DynAny interface contains a number of operations that can be invoked on
any basic or constructed DynAny object:

interface DynAny {
exception InvalidValue{};
exception TypeMisMatch {};
// ...

void assign(in DynAny dyn_any) raises (TypeMismatch);
DynAny copy();
void destroy();

boolean equal(in DynAny da);

void from_any(
in any value) raises(TypeMismatch, InvalidValue);

any to_any();

CORBA::TypeCode type();
// ...

};

assign() initializes one DynAny object’s value from another. The value must be
compatible with the target DynAny’s type code; otherwise, the operation
raises an exception of TypeMismatch.

copy() creates a DynAny whose value is a deep copy of the source DynAny’s
value.

destroy() destroys a DynAny and its components.

equal() returns true if the type codes of the two DynAny objects are equivalent
and if (recursively) all component DynAny objects have identical values.

from_any() initializes a DynAny object from an existing any object. The source
any must contain a value and its type code must be compatible with that of
the target DynAny; otherwise, the operation raises an exception of
TypeMismatch.
317

Chapter 15 | Using the Any Data Type
to_any() initializes an any with the DynAny’s value and type code.

type() obtains the type code associated with the DynAny object. A DynAny
object’s type code is set at the time of creation and remains constant during
the object’s lifetime.

Creating a DynAny

The DynAnyFactory interface provides two creation operations for DynAny
objects:

module DynamicAny {
interface DynAny; // Forward declaration

//...
interface DynAnyFactory
{
exception InconsistentTypeCode {};

DynAny create_dyn_any(in any value)
raises (InconsistentTypeCode);

DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises (InconsistentTypeCode);

};
};

The create operations return a DynAny object that can be used to manipulate
any objects:

create_dyn_any() is a generic create operation that creates a DynAny from an
existing any and initializes it from the any’s type code and value.

The type of the returned DynAny object depends on the any’s type code. For
example: if the any contains a struct, create_dyn_any() returns a DynStruct
object.

create_dyn_any_from_type_code() creates a DynAny from a type code. The
value of the DynAny is initialized to an appropriate default value for the given
type code. For example, if the DynAny is initialized from a string type code the
value of the DynAny is initialized to "" (empty string).
 318

Using DynAny Objects
The type of the returned DynAny object depends on the type code used to
initialize it. For example: if a struct type code is passed to
create_dyn_any_from_type_code(), a DynStruct object is returned.

If the returned DynAny type is one of the constructed types, such as a
DynStruct, you can narrow the returned DynAny before processing it further.

Using create_dyn_any()
create_dyn_any() is typically used when you need to parse an any to
analyse its contents. For example, given an any that contains an enum type,
you can extract its contents as follows:

//C++
#include <omg/DynamicAny.hh>
//...
void get_any_val(const CORBA::Any& a){

1 // Get a reference to a ’DynamicAny::DynAnyFactory’ object
CORBA::Object_var obj

= global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact

= DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {

// error: throw exception
}

// Get the Any’s type code
CORBA::TypeCode_var tc = a.type();

2 switch (tc->kind()){
// ...
case CORBA::tk_enum: {

3 DynamicAny::DynAny_var da = dyn_fact->create_dyn_any(a);
DynamicAny::DynEnum_var de =

DynamicAny::DynEnum::_narrow(da);
// ...

4 de->destroy();
}
break;

}
}

The code executes as follows:
319

Chapter 15 | Using the Any Data Type
1. Call resolve_initial_references("DynAnyFactory") to obtain an
initial reference to the DynAnyFactory object.

It is assumed that global_orb refers to an existing CORBA::ORB object
that has been initialized prior to this code fragment.

Narrow the CORBA::Object_ptr object reference to the DynamicAny::
DynAnyFactory_ptr type before it is used.

2. Analysis of a type code is begun by branching according to the value of
its kind field. A general purpose subroutine for processing DynAnys would
require case statements for every possible IDL construct. Only the case
statement for an enum is shown here.

3. The DynAny created in this step is initialized with the same type and
value as the given CORBA::Any data type.

Because the any argument of create_dyn_any() contains an enum, the
return type of create_dyn_any() is DynamicAny::DynEnum_ptr. The
return value can therefore be narrowed to this type.

4. destroy() must be invoked on the DynAny object when you are finished
with it.

Using create_dyn_any_from_type_code()
create_dyn_any_from_type_code() is typically used to create an any when
stub code is not available for the particular type.

For example, consider the IDL string<128> bounded string type. In C++
you can insert this anonymous bounded string using the CORBA::Any::
from_string helper type. Alternatively, you can use the DynamicAny
programming interface as follows:

//C++
#include <omg/DynamicAny.hh>
//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object

1 CORBA::Object_var obj
= global_orb->resolve_initial_references("DynAnyFactory");

DynamicAny::DynAnyFactory_var dyn_fact
= DynamicAny::DynAnyFactory::_narrow(obj);

if (CORBA::is_nil(dyn_fact)) {
// error: throw exception

}

 320

Using DynAny Objects
// Create type code for an anonymous bounded string type
CORBA::ULong bound = 128;

2 CORBA::TypeCode_var tc_v = global_orb->create_string_tc(bound);

// Initialize a ’DynAny’ containing a bounded string
3 DynamicAny::DynAny_var dyn_bounded_str

= dyn_fact->create_dyn_any_from_type_code(tc_v);
4 dyn_bounded_str->insert_string("Less than 128 characters.");

// Convert ’DynAny’ to a plain ’any’
5 CORBA::Any_var a = dyn_bounded_str->to_any();

//...
// Cleanup ’DynAny’

6 dyn_bounded_str->destroy();

The code can be explained as follows:

1. The initialization service gets an initial reference to the DynAnyFactory
object by calling resolve_initial_references("DynAnyFactory").

It is assumed that global_orb refers to an existing CORBA::ORB object
that has been initialized prior to this code fragment.

The plain CORBA::Object_ptr object reference must be narrowed to the
DynamicAny::DynAnyFactory_ptr type before it is used.

2. The CORBA::ORB class supports a complete set of functions for the
dynamic creation of type codes. For example, create_string_tc()
creates bounded or unbounded string type codes. The argument of
create_string_tc() can be non-zero, to specify the bound of a
bounded string, or zero, for unbounded strings.

3. A DynAny object, called dyn_bounded_str, is created using
create_dyn_any_from_type_code(). The dyn_bounded_str is initialized
with its type equal to the given bounded string type code, and its value
equal to a blank string.

4. The value of dyn_bounded_str is set equal to the given argument of the
insert_string() operation. Insertion operations, of the form
insert_BasicType, are defined for all basic types as described in
“Accessing Basic DynAny Values” on page 322.

5. The dyn_bounded_str object is converted to a plain any that is initialized
with the same type and value as the DynAny.
321

Chapter 15 | Using the Any Data Type
6. destroy() must be invoked on the DynAny object when you are finished
with it.

Note: A DynAny object’s type code is established at its creation and cannot
be changed thereafter.

Inserting and Extracting DynAny Values

The interfaces that derive from DynAny such as DynArray and DynStruct
handle insertion and extraction of any values for the corresponding IDL types.
The DynAny interface contains insertion and extraction operations for all other
basic IDL types such as string and long.

Accessing Basic DynAny Values
The DynAny interface contains two operations for each basic type code, to
insert and extract basic DynAny values:

• An insert operation is used to set the value of the DynAny. The data being
inserted must match the DynAny’s type code.

The TypeMismatch exception is raised if the value to insert does not
match the DynAny’s type code.

The InvalidValue exception is raised if the value to insert is
unacceptable—for example, attempting to insert a bounded string that is
longer than the acceptable bound. The InvalidValue exception is also
raised if you attempt to insert a value into a DynAny that has components
when the current position is equal to -1. See “Iterating Over DynAny
Components” on page 327.

• Each extraction operation returns the corresponding IDL type.

The DynamicAny::DynAny::TypeMismatch exception is raised if the value
to extract does not match the DynAny’s type code.

The DynamicAny::DynAny::InvalidValue exception is raised if you
attempt to extract a value from a DynAny that has components when the
current position is equal to -1. See “Iterating Over DynAny Components”
on page 327.
 322

Using DynAny Objects
It is generally unnecessary to use a DynAny object in order to access any
values, as it is always possible to access these values directly (see page 304
and see page 306). Insertion and extraction operations for basic DynAny
types are typically used in code that iterates over components of a
constructed DynAny, in order to compose and decompose its values in a
uniform way (see page 329).

The IDL for insertion and extraction operations is shown in the following
sections.

Insertion Operations

The IDL insertion operations supported by the DynAny interface are:

void insert_boolean(in boolean value)
raises (TypeMismatch, InvalidValue);

void insert_octet(in octet value)
raises (TypeMismatch, InvalidValue);

void insert_char(in char value)
raises (TypeMismatch, InvalidValue);

void insert_short(in short value)
raises (TypeMismatch, InvalidValue);

void insert_ushort(in unsigned short value)
raises (TypeMismatch, InvalidValue);

void insert_long(in long value)
raises (TypeMismatch, InvalidValue);

void insert_ulong(in unsigned long value)
raises (TypeMismatch, InvalidValue);

void insert_float(in float value)
raises (TypeMismatch, InvalidValue);

void insert_double(in double value)
raises (TypeMismatch, InvalidValue);

void insert_string(in string value)
raises (TypeMismatch, InvalidValue);

void insert_reference(in Object value)
raises (TypeMismatch, InvalidValue);

void insert_typecode(in CORBA::TypeCode value)
raises (TypeMismatch, InvalidValue);

void insert_longlong(in long long value)
raises (TypeMismatch, InvalidValue);

void insert_ulonglong(in unsigned long long value)
raises (TypeMismatch, InvalidValue);

void insert_longdouble(in long double value)
323

Chapter 15 | Using the Any Data Type
raises (TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)

raises (TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)

raises (TypeMismatch, InvalidValue);
void insert_any(in any value)

raises (TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)

raises (TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)

raises (TypeMismatch, InvalidValue);

For example, the following code fragment invokes insert_string() on a
DynAny to create an any value that contains a string:

//C++
#include <omg/DynamicAny.hh>
//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
CORBA::Object_var obj

= global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact

= DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {

// error: throw exception
}

// create DynAny with a string value
DynamicAny::DynAny_var dyn_a;
dyn_a = dyn_fact->create_dyn_any_from_type_code(

CORBA::_tc_string
);

dyn_a->insert_string("not to worry!");

// convert DynAny to any
CORBA::Any_var a;
a = dyn_a->to_any();
//...
// destroy the DynAny
dyn_a->destroy();

Extraction Operations

The IDL extraction operations supported by the DynAny interface are:
 324

Using DynAny Objects
boolean get_boolean()
raises (TypeMismatch, InvalidValue);

octet get_octet()
raises (TypeMismatch, InvalidValue);

char get_char()
raises (TypeMismatch, InvalidValue);

short get_short()
raises (TypeMismatch, InvalidValue);

unsigned short get_ushort()
raises (TypeMismatch, InvalidValue);

long get_long()
raises (TypeMismatch, InvalidValue);

unsigned long get_ulong()
raises (TypeMismatch, InvalidValue);

float get_float()
raises (TypeMismatch, InvalidValue);

double get_double()
raises (TypeMismatch, InvalidValue);

string get_string()
raises (TypeMismatch, InvalidValue);

Object get_reference()
raises (TypeMismatch, InvalidValue);

CORBA::TypeCode get_typecode()
raises (TypeMismatch, InvalidValue);

long long get_longlong()
raises (TypeMismatch, InvalidValue);

unsigned long long get_ulonglong()
raises (InvalidValue,TypeMismatch);

long double get_longdouble()
raises (TypeMismatch, InvalidValue);

wchar get_wchar()
raises (TypeMismatch, InvalidValue);

wstring get_wstring()
raises (TypeMismatch, InvalidValue);

any get_any()
raises (TypeMismatch, InvalidValue);

DynAny get_dyn_any()
raises (TypeMismatch, InvalidValue);

ValueBase get_val()
raises (TypeMismatch, InvalidValue);
325

Chapter 15 | Using the Any Data Type
For example, the following code converts a basic any to a DynAny. It then
evaluates the DynAny’s type code in a switch statement and calls the
appropriate get_ operation to obtain its value:

//C++
#include <omg/DynamicAny.hh>
//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
CORBA::Object_var obj

= global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact

= DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {

// error: throw exception
}

CORBA::Any a = ...; // get Any from somewhere

// create DynAny from Any
DynamicAny::DynAny_var dyn_a = dyn_fact->create_dyn_any(a);

// get DynAny’s type code
CORBA::TypeCode_var tcode = dyn_a->type();

// evaluate type code
switch(tcode->kind()){
case CORBA::tk_short:

{
CORBA::Short s = dyn_a->get_short();
cout << "any contains short value of " << s << endl;
break;

}
case CORBA::tk_long:

{
CORBA::Long l = dyn_a->get_long();
cout << "any contains long value of " << l << endl;
break;

}
// other cases follow
...
} // end of switch statement

dyn_a->destroy(); // cleanup
 326

Using DynAny Objects
Iterating Over DynAny Components
Five types of DynAny objects contain components that must be accessed to
insert or extract values: DynStruct, DynSequence, DynArray, DynUnion, and
DynValue. On creation, a DynAny object holds a current position equal to the
offset of its first component. The DynAny interface has five operations that let
you manipulate the current position to iterate over the components of a
complex DynAny object:

module DynamicAny {
//...
interface DynAny{

// ...
// Iteration operations
unsigned long component_count();
DynAny current_component() raises (TypeMismatch);
boolean seek(in long index);
boolean next();
void rewind();

};
};

component_count() returns the number of components of a DynAny. For
simple types such as long, and for enumerated and fixed-point types, this
operation returns 0. For other types, it returns as follows:

• sequence: number of elements in the sequence.
• struct, exception and valuetype: number of members.
• array: number of elements.
• union: 2 if a member is active; otherwise 1.

current_component() returns the DynAny for the current component:

DynAny current_component()

You can access each of the DynAny’s components by invoking this operation
in alternation with the next() operation. An invocation of
current_component() alone does not advance the current position.

If an invocation of current_component() returns a derived type of DynAny, for
example, DynStruct, you can narrow the DynAny to this type.
327

Chapter 15 | Using the Any Data Type
If you call current_component() on a type that has no components, such as
a long, it raises the TypeMismatch exception.

If you call current_component() when the current position of the DynAny is
-1, it returns a nil object reference.

next() advances the DynAny’s current position to the next component, if there
is one:

boolean next();

The operation returns true if another component is available; otherwise, it
returns false. Thus, invoking next() on a DynAny that represents a basic type
always returns false.

seek() advances the current position to the specified component:

boolean seek (in long index);

Like next(), this operation returns true if the specified component is
available; otherwise, it returns false.

rewind() resets the current position to the DynAny object’s first component:

void rewind();

It is equivalent to calling seek() with a zero argument.

Undefined Current Position

In some circumstances the current position can be undefined. For example, if
a DynSequence object contains a zero length sequence, both the current
component and the value of the DynAny’s current position are undefined.

The special value -1 is used to represent an undefined current position.

When the current position is -1, an invocation of current_component()
yields a nil object reference.

The current position becomes undefined (equal to -1) under the following
circumstances:

• When the DynAny object has no components.

For example, a DynAny containing a zero-length sequence or array would
have no components.

• Immediately after next() returns false.
 328

Using DynAny Objects
• If seek() is called with a negative integer argument, or with a positive
integer argument greater than the largest valid index.

Accessing Constructed DynAny Values
Each interface that derives from DynAny, such as DynArray and DynStruct,
contains its own operations which enable access to values of the following
DynAny types:

• DynEnum

• DynStruct

• DynUnion

• DynSequence

• DynArray

• DynFixed

• DynValue

• DynValueBox

DynEnum

module DynamicAny {
//...
interface DynEnum : DynAny {

string get_as_string();
void set_as_string(in string val) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long val)

raises(InvalidValue);
};

};

• Operations get_as_string() and set_as_string() let you access an
enumerated value by its IDL string identifier or its ordinal value. For
example, given this enumeration:
enum Exchange{ NYSE, NASD, AMEX, CHGO, DAX, FTSE };

set_as_string("NASD") sets the enum’s value as NASD, while you can
get its current string value by calling get_as_string().

• Operations get_as_ulong() and set_as_ulong() provide access to an
enumerated value by its ordinal value.

The following code uses a DynEnum to decompose an any value that contains
an enumeration:
329

Chapter 15 | Using the Any Data Type
//C++
void extract_any(const CORBA::Any * a){

//...
// Get a reference to a ’DynamicAny::DynAnyFactory’ object
CORBA::Object_var obj

= global_orb->resolve_initial_references("DynAnyFactory");
DynamicAny::DynAnyFactory_var dyn_fact

= DynamicAny::DynAnyFactory::_narrow(obj);
if (CORBA::is_nil(dyn_fact)) {

// error: throw exception
}

DynamicAny::DynAny_var dyn_a = dyn_fact->create_dyn_any(*a);
CORBA::TypeCode_var tcode = dyn_a->type();

switch(tcode->kind()){
case CORBA::tk_enum:
{

DynamicAny::DynEnum_var dyn_e =
DynamicAny::DynEnum::_narrow(dyn_a);

CORBA::String_var s = dyn_e->get_as_string();
cout << s << endl;
dyn_e->destroy();

}
// other cases follow
// ...

}
}

DynStruct

The DynStruct interface is used for struct and exception types. The
interface is defined as follows:

module DynamicAny {
// ...

typedef string FieldName;

struct NameValuePair{
FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;
 330

Using DynAny Objects
struct NameDynAnyPair {
FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny{
FieldName current_member_name()

raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()

raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();
void set_members (in NameValuePairSeq value)

raises(TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(

in NameDynAnyPairSeq value
) raises(TypeMismatch, InvalidValue);

};
};

The DynStruct interface defines the following operations:

• set_members() and get_members() are used to get and set member
values in a DynStruct. Members are defined as a NameValuePairSeq
sequence of name-value pairs, where each name-value pair consists of
the member’s name as a string, and an any that contains its value.

• current_member_name() returns the name of the member at the current
position, as established by DynAny base interface operations. Because
member names are optional in type codes, current_member_name()
might return an empty string.

• current_member_kind() returns the TCKind value of the current
DynStruct member’s type code.

• get_members_as_dyn_any() and set_members_as_dyn_any() are
functionally equivalent to get_members() and set_members(),
respectively. They operate on sequences of name-DynAny pairs. Use
these operations if you work extensively with DynStruct objects; doing
so allows you to avoid converting a constructed DynAny into an any
before using the operations to get or set struct members.
331

Chapter 15 | Using the Any Data Type
The following code iterates over members in a DynStruct and passes each
member over to the eval_member() helper function for further
decomposition:

//C++
DynamicAny::DynStruct_var dyn_s = ...;
CORBA::TypeCode_var tcode = dyn_s->type();
int counter = tcode->member_count();

for (int i = 0; i < counter; i++) {
DynamicAny::DynAny_var member = dyn_s->current_component();
eval_member(member);
dyn_s->next();

}

DynUnion

The DynUnion interface enables access to any values of union type:

module DynamicAny {
//...
typedef string FieldName;

interface DynUnion : DynAny {
DynAny get_discriminator();
void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);
void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member() raises(InvalidValue);
CORBA::TCKind discriminator_kind();
DynAny member() raises(InvalidValue);
FieldName member_name() raises(InvalidValue);
CORBA::TCKind member_kind() raises(InvalidValue);

};
};

The DynUnion interface defines the following operations:

get_discriminator() returns the current discriminator value of the DynUnion.

set_discriminator() sets the discriminator of the DynUnion to the specified
value. If the type code of the parameter is not equivalent to the type code of
the union’s discriminator, the operation raises TypeMismatch.
 332

Using DynAny Objects
set_to_default_member() sets the discriminator to a value that is consistent
with the value of the default case of a union; it sets the current position to
zero and causes component_count to return 2. Calling
set_to_default_member() on a union that does not have an explicit default
case raises TypeMismatch.

set_to_no_active_member() sets the discriminator to a value that does not
correspond to any of the union’s case labels; it sets the current position to
zero and causes component_count to return 1. Calling
set_to_no_active_member() on a union that has an explicit default case or
on a union that uses the entire range of discriminator values for explicit case
labels raises TypeMismatch.

has_no_active_member() returns true if the union has no active member
(that is, the union’s value consists solely of its discriminator, because the
discriminator has a value that is not listed as an explicit case label). Calling
this operation on a union that has a default case returns false. Calling this
operation on a union that uses the entire range of discriminator values for
explicit case labels returns false.

discriminator_kind() returns the TCKind value of the discriminator’s
TypeCode.

member() returns the currently active member. If the union has no active
member, the operation raises InvalidValue. Note that the returned reference
remains valid only as long as the currently active member does not change.
Using the returned reference beyond the life time of the currently active
member raises OBJECT_NOT_EXIST.

member_name() returns the name of the currently active member. If the
union’s type code does not contain a member name for the currently active
member, the operation returns an empty string. Calling member_name() on a
union that does not have an active member raises InvalidValue.

member_kind() returns the TCKind value of the currently active member’s
TypeCode. Calling this operation on a union that does not have a currently
active member raises InvalidValue.
333

Chapter 15 | Using the Any Data Type
DynSequence and DynArray

The interfaces for DynSequence and DynArray are virtually identical:

module DynamicAny {
//...
typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)

raises (TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises (TypeMismatch, InvalidValue);
};

interface DynSequence : DynAny {
unsigned long get_length();
void set_length(in unsigned long len)

raises(InvalidValue);

// remaining operations same as for DynArray
// ...

};
};

You can get and set element values in a DynSequence or DynArray with
operations get_elements() and set_elements(), respectively. Members are
defined as an AnySeq sequence of any objects.

Operations get_elements_as_dyn_any() and set_elements_as_dyn_any()
are functionally equivalent to get_elements() and set_elements(); unlike
their counterparts, they return and accept sequences of DynAny elements.

DynSequence has two of its own operations:

get_length() returns the number of elements in the sequence.

set_length() sets the number of elements in the sequence.
 334

Using DynAny Objects
If you increase the length of a sequence, new elements are appended to the
sequence and default-initialized. If the sequence’s current position is unde-
fined (equal to -1), increasing the sequence length sets the current position to
the first of the new elements. Otherwise, the current position is not affected.

If you decrease the length of a sequence, set_length() removes the
elements from its end.

You can access elements with the iteration operations described in “Iterating
Over DynAny Components” on page 327. For example, the following code
iterates over elements in a DynArray:

DynamicAny::DynArray_var dyn_array = ...;
CORBA::TypeCode_var tcode = dyn_array->type();
int counter = tcode->length();

for (int i = 0; i < counter; i++){
DynamicAny::DynAny_var elem = dyn_array->current_component();
eval_member(member);
dyn_array->next();

}

DynFixed

The DynFixed interface lets you manipulate an any that contains fixed-point
values.

interface DynAny{
...

interface DynFixed : DynAny{
string get_value();
void set_value(in string val)

raises (TypeMismatch, InvalidValue);
};

};

The DynFixed interface defines the following operations:

get_value() returns the value of a DynFixed as a string.

set_value() sets the value of a DynFixed. If val is an uninitialized string or
contains a fixed point literal that exceeds the scale of DynFixed, the
InvalidValue exception is raised. If val is not a valid fixed point literal, the
TypeMismatch exception is raised.
335

Chapter 15 | Using the Any Data Type
DynValue

The DynValue interface lets you manipulate an any that contains a value type
(excluding boxed value types):

module DynamicAny {
//...
typedef string FieldName;

struct NameValuePair
{

FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair
{

FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynValue : DynAny
{

FieldName current_member_name()
raises (TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises (TypeMismatch, InvalidValue);

NameValuePairSeq get_members();
void set_members(in NameValuePairSeq values)

raises (TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises (TypeMismatch, InvalidValue);
};

};

The DynValue interface defines the following operations:

current_member_name() returns the name of the value type member
indexed by the current position.
 336

Using DynAny Objects
current_member_kind() returns the type code kind for the value type
member indexed by the current position.

get_members() returns the complete list of value type members in the form
of a NameValuePairSeq.

set_members() sets the contents of the value type members using a
NameValuePairSeq.

get_members_as_dyn_any() is similar to get_members(), except that the
result is returned in the form of a NameDynAnyPairSeq.

set_members_as_dyn_any() is similar to set_members(), except that the
contents are set using a NameDynAnyPairSeq.

DynValueBox

The DynValueBox interface lets you manipulate an any that contains a boxed
value type:

module DynamicAny {
//...
interface DynValueBox : DynAny
{

any get_boxed_value();
void set_boxed_value(in any val)

raises (TypeMismatch);
DynAny get_boxed_value_as_dyn_any();
void set_boxed_value_as_dyn_any(in DynAny val)

raises (TypeMismatch);
};

};

The DynValue interface defines the following operations:

get_boxed_value() returns the boxed value as an any.

set_boxed_value() sets the boxed value as an any.

get_boxed_value_as_dyn_any() returns the boxed value as a DynAny.

set_boxed_value_as_dyn_any() sets the boxed value as a DynAny.
337

Chapter 15 | Using the Any Data Type
 338

Generating Interfaces at
Runtime
The dynamic invocation interface lets a client invoke on
objects whose interfaces are known only at runtime;
similarly, the dynamic skeleton interface lets a server
process requests on objects whose interfaces are known
only at runtime.

An application’s IDL usually describes interfaces to all the CORBA objects
that it requires at runtime. Accordingly, the IDL compiler generates the stub
and skeleton code that clients and servers need in order to issue and process
requests. The client can issue requests only on those objects whose
interfaces are known when the client program is compiled; similarly, the
server can process requests only on those objects that are known when the
server program is compiled.

Some applications cannot know ahead of time which objects might be
required at runtime. In this case, Orbix provides two interfaces that let you
construct stub and skeleton code at runtime, so clients and servers can issue
and process requests on those objects:

• The dynamic invocation interface (DII) builds stub code for a client so it
can call operations on IDL interfaces that were unknown at compile
time.

• The dynamic skeleton interface (DSI) builds skeleton code for a server, so
it can receive operation or attribute invocations on an object whose IDL
interface is unknown at compile time.
339

Chapter 16 | Generating Interfaces at Runtime
Using the DII
Some application programs and tools must be able to invoke on objects
whose interfaces cannot be determined ahead of time—for example,
browsers, gateways, management support tools, and distributed debuggers.

With DII, invocations can be constructed at runtime by specifying the target
object reference, the operation or attribute name, and the parameters to
pass. A server that receives a dynamically constructed invocation request
does not differentiate between it and static requests.

Two types of client programs commonly use the DII:

• A client interacts with the interface repository to determine a target
object’s interface, including the name and parameters of one or all of its
operations, then uses this information to construct DII requests.

• A client such as a gateway receives the details of a request. In the case
of a gateway, this might arrive as part of a network package. The
gateway can then translate this into a DII call without checking the
details with the interface repository. If a mismatch occurs, Orbix raises
an exception to the gateway, which in turn can report an error to the
caller.

To invoke on an object with DII, follow these steps:

1. Construct a Request object with the operation’s signature.

2. Invoke the request.

3. Retrieve results of the operation.

The bank example is modified here to show how to use the DII. The Bank::
newAccount() operation now takes an inout parameter that sets a new
account’s initial balance:

// IDL
interface Account {

readonly attribute float balance;

void makeDeposit(in float f);
void makeWithdrawal(in float f);

};

interface Bank {
exception Reject {
 340

Using the DII
string reason;
};

// Create an account
Account newAccount(

in string owner, inout float initialBalance)
raises (Reject);

// Delete an account
void deleteAccount(in Account a);

};

The following section shows how to construct a Request object that can
deliver client requests for newAccount() operations such as this one:

bankVar->newAccount(ownerName, initialBalance);

Constructing a Request Object

To construct a Request object and set its data, you must first obtain a
reference to the target object. You then create a request object by invoking
one of these methods on the object reference:

• _request() returns an empty request object whose signature—return
type and parameters—must be set.

• _create_request() returns with a request object that can contain all
the data required to invoke the desired request.

Using _request()
You can use _request() to create a Request object in these steps:

1. Create a Request object and set the name of its operation.

2. Set the operation’s return type.

3. Set operation parameters and supply the corresponding arguments.

Create a Request Object

Call _request() on the target object and specify the name of the operation to
invoke:

// Get object reference
CORBA::Object_var target = ... ;
341

Chapter 16 | Generating Interfaces at Runtime
// Create Request object for operation newAccount()
CORBA::Request_var newAcctRequest =

target->_request("newAccount");

Set the Operation’s Return Type

After you create a Request object, set the TypeCode of the operation’s return
value by calling set_return_type() on the Request object.
set_return_type() takes a single argument, the TypeCode constant of the
return type. For example, given the Request object newAcctRequest, set the
return type of its newAccount() operation to Account as follows:

newAcctRequest->set_return_type(_tc_Account);

For information about supported TypeCode constants, refer to “Type Code
Constants” on page 301.

For information about supported TypeCodes, see Chapter 14 on page 293.

Set Operation Parameters

A request object uses an NVList to store the data for an operation’s
parameters. You set the NVList by either specifying each parameter, or
reading an operation definition from the interface repository. For information
on both methods, see “Setting Request Object Parameters” on page 343.

Using _create_request()
You can create a Request object by calling _create_request() on an object
reference and passing the request details as arguments. At a minimum, you
must provide two arguments:

• The name of the operation
• A pointer to a NamedValue that holds the operation’s return value

You can also supply an NVList that is already populated with the operation’s
parameter data. If you supply null for the NVList argument,
_create_request() creates an empty NVList for the returned Request
object.

In either case, you set the NVList’s parameters one at a time, or by reading
an operation definition from the interface repository. For information on both
methods, see “Setting Request Object Parameters”.
 342

Using the DII
For example, the following code constructs a Request object for invoking
operation newAccount():

// get an object reference
CORBA::Object_var target = ... ;

CORBA::Request_ptr newAcctRequest;
CORBA::NamedValue_ptr result;

// Construct the Request object
target->_create_request(

CORBA::Context::_nil(), "newAccount", CORBA::NVList::_nil(),
result, newAcctRequest, 0);

Setting Request Object Parameters
A request object uses an NVList to store the data for an operation’s
parameters, where each NVList element—a NamedValue object—holds the
data for a single parameter—its direction (in, out, or inout) and the argument
that it passes.

You can set an operation’s parameters in one of two ways:

• Add each parameter individually.
• Build the NVList from the interface repository.

Adding Parameters

You add each parameter to a Request object’s NVList in one of two ways:

• Invoke arguments() on the Request object to obtain its NVList; then
populate the NVList with one of its methods:
add()
add_item()
add_item_consume()
add_value()
add_value_consume()

• Use one of several shortcut methods provided by the Request object that
let you populate the Request object’s NVList with the desired parameter
information. Request objects contain methods for each direction type:
add_in_arg();
add_inout_arg();
add_out_arg();
343

Chapter 16 | Generating Interfaces at Runtime
For example, you can populate the empty NVList of request object
newAcctRequest as follows:

// C++
req->add_in_arg() <<= "Chris";
CORBA::NamedValue_ptr 1000.00;

Note: You can use these shortcut methods only if you create a Request
object whose NVList is initially empty.

Setting Parameters From the Interface Repository

A client can use an operation definition in the interface repository to build a
Request object’s NVList. The interface repository describes operations
through CORBA::OperationDef objects.You can read an operation’s
parameters into a Request object’s empty NVList as follows:

1. Call arguments() on the request object to get a pointer to its NVList.

2. Call create_operation_list() on the ORB and supply it a reference to
the desired OperationDef object and the empty NVList.

When create_operation_list() returns, the NVList contains one
NamedValue object for each operation parameter. Each NamedValue
object contains the parameter’s passing mode, name, and initial value of
type Any.

3. Supply arguments to the operation parameters by iterating over the
NVList elements with NVList::item(). Use the insertion operator <<= to
set each NamedValue’s value member.

Invoking a Request

After you set a Request object’s data, you can use one of several methods to
invoke the request on the target object. The following methods are invoked
on a Request object:

invoke() blocks the client until the operation returns with a reply. Exceptions
are handled the same as static function invocations.
 344

Using the DII
send_deferred() sends the request to the target object and allows the client
to continue processing while it awaits a reply. The client must poll for the
request’s reply (see “Invoking Deferred Synchronous Requests” on
page 346).

send_oneway() invokes one-way operations. Because no reply is expected,
the client resumes processing immediately after the invocation.

The following methods are invoked on the ORB, and take a sequence of
requests:

send_multiple_requests_deferred() calls multiple deferred synchronous
operations.

send_multiple_requests_oneway() calls multiple oneway operations
simultaneously.

For example:

// C++
try {

if (request->invoke())
// Call to invoke() succeeded

else
// Call to invoke() failed.

}
catch (CORBA::SystemException& se) {

cout << "Unexpected exception" << &se << endl;
}

Retrieving Request Results

When a request returns, Orbix updates out and inout parameters in the
Request object’s NVList. To get an operation’s output values:

1. Call arguments() on the Request object to get a pointer to its NVList.

2. Iterate over the NamedValue items in the Request object’s NVList by
successively calling item() on the NVList. Each call to this methods
returns a NamedValue pointer.

3. Call value() on the NamedValue to get a pointer to the Any value for
each parameter.
345

Chapter 16 | Generating Interfaces at Runtime
4. Extract the parameter values from the Any.

To get an operation’s return value, call return_value() on the request
object. This operation returns the request’s return value as an any.

For example, the following code gets an object reference to the new account
returned by the newAccount() operation:

CORBA::Object_var newAccount;
request->return_value() >>= newAccount;
// narrow account object ...

Getting Information about a Request Object

Given a Request object, you can get its operation name and target object
reference by calling operation() and target() on it, respectively.

Invoking Deferred Synchronous Requests

You can use the DII to make deferred synchronous operation calls. A client
can call an operation, continue processing in parallel with the operation, then
retrieve the operation results when required.

You can invoke a request as a deferred synchronous operation as follows:

1. Construct a Request object and call send_deferred() on it.

2. Continue processing in parallel with the operation.

3. Check whether the operation has returned by calling poll_response()
on the Request object. This methods returns a non-zero value if a
response has been received.

4. To get the result of the operation, call get_response() on the Request
object.

You can also invoke methods asynchronously. For more information, see
Chapter 12.
 346

Using the DSI
Using the DSI
A server uses the dynamic skeleton interface (DSI) to receive operations or
attribute invocations on an object whose IDL interface is unknown to it at
compile time. With DSI, a server can build the skeleton code that it needs to
accept these invocations.

The server defines a function that determines the identity of the requested
object; the name of the operation and the types and values of each argument
are provided by the user. The function carries out the task that is being
requested by the client, and constructs and returns the result. Clients are
unaware that a server is implemented with the DSI.

DSI Applications

The DSI is designed to help write gateways that accept operation or attribute
invocations on any specified set of interfaces and pass them to another
system. A gateway can be written to interface between CORBA and some
non-CORBA system. This gateway is the only part of the CORBA system that
must know the non-CORBA system’s protocol; the rest of the CORBA system
simply issues IDL calls as usual.

The IIOP protocol lets an object invoke on objects in another ORB. If a
non-CORBA system does not support IIOP, you can use DSI to provide a
gateway between the CORBA and non-CORBA systems. To the CORBA
system, this gateway appears as a CORBA-compliant server that contains
CORBA objects. In reality, the server uses DSI to trap incoming invocations
and translate them into calls that the non-CORBA system can understand.

You can use DSI and DII together to construct a bidirectional gateway. This
gateway receives messages from the non-CORBA system and uses the DII to
make CORBA client calls. It uses DSI to receive requests from clients on a
CORBA system and translate these into messages in the non-CORBA system.

DSI has other uses. For example, a server might contain many non-CORBA
objects that it wants to make available to its clients. In an application that
uses DSI, clients invoke on only one CORBA object for each non-CORBA
object. The server indicates that it uses DSI to accept invocations on the IDL
347

Chapter 16 | Generating Interfaces at Runtime
interface. When it receives an invocation, it identifies the target object, the
operation or attribute to call, and its parameters. It then makes the call on
the non-CORBA object. When it receives the result, it returns it to the client.

Programming a Server to Use DSI

The DSI is implemented by servants that instantiate dynamic skeleton
classes. All dynamic skeleton classes are derived from PortableServer::
DynamicImplementation:

namespace Portable Server{
class DynamicImplementation : public virtual ServantBase{

public:
Object_ptr _this();
virtual void invoke(ServerRequest_ptr request) = 0;
virtual RepositoryId _primary interface(

const ObjectId& oid, POA_ptr poa) = 0;
};

}

A server program uses DSI as follows:

1. Instantiates one or more DSI servants and obtains object references to
them, which it makes available to clients.

2. Associates each DSI servant with a POA—for example, through a
servant manager, or by registering it as the default servant.

When a client invokes on a DSI-generated object reference, the POA delivers
the client request as an argument to the DSI servant’s invoke() method—
also known as the dynamic implementation routine (DIR). invoke() takes a
single argument, a CORBA::ServerRequest pseudo-object, which
encapsulates all data that pertains to the client request—the operation’s
signature and arguments. CORBA::ServerRequest maps to the following
C++ class:

class ServerRequest{
public:

const char* operation() cont;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);

};
 348

Using the DSI
invoke() processing varies across different implementations, but it always
includes the following steps:

1. Obtains the operation’s name by calling operation() on the
ServerRequest object.

2. Builds an NVList that contains definitions for the operation’s
parameters—often, from an interface definition obtained from the
interface repository. Then, invoke() populates the NVList with the
operation’s input arguments by calling arguments() on the
ServerRequest object.

3. Reconstructs the client invocation and processes it.

4. If required, sets the operation’s output in one of two ways:

♦ If the operation’s signature defines output parameters, invoke()
sets the NVList as needed. If the operation’s signature defines a
return value, invoke() calls set_result() on the ServerRequest
object.

♦ If the operation’s signature defines an exception, invoke() calls
set_exception() on the ServerRequest object.

Note: invoke() can either set the operation’s output by initializing its
output parameters and setting its return value, or by setting an exception;
however, it cannot do both.
349

Chapter 16 | Generating Interfaces at Runtime
 350

Using the Interface
Repository
An Orbix application uses the interface repository for
persistent storage of IDL interfaces and types. The runtime
ORB and Orbix applications query this repository at runtime
to obtain IDL definitions.

The interface repository maintains full information about the IDL definitions
that have been passed to it. The interface repository provides a set of IDL
interfaces to browse and list its contents, and to determine the type
information for a given object. For example, given an object reference, you
can use the interface repository to obtain all aspects of the object’s interface:
its enclosing module, interface name, attribute and operation definitions, and
so on.

These facilities are important for a number of tools:

• Browsers that allow designers and code writers to determine what types
have been defined in the system, and to list the details of chosen types.

• CASE tools that aid software design, writing, and debugging.
• Application level code that uses the dynamic invocation interface (DII) to

invoke on objects whose types were not known to it at compile time.
This code might need to determine the details of the object being
invoked in order to construct the request using the DII.

• A gateway that requires runtime information about the type of an object
being invoked.

In order to populate the interface repository with IDL definitions, run the IDL
compiler with the -R option. For example, the following command populates
the interface repository with the IDL definitions in bank.idl:

idl -R bank.idl
351

Chapter 17 | Using the Interface Repository
Interface Repository Data
Interface repository data can be viewed as a set of CORBA objects, where the
repository stores one object for each IDL type definition. All interface
repository objects are derived from the abstract base interface IRObject.,
which is defined as follows:

// In module CORBA
enum DefinitionKind
{

dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember, dk_Native

};

...
interface IRObject
{

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void
destroy();

};

Attribute def_kind identifies a repository object’s type. For example, the
def_kind attribute of an interfaceDef object is dk_interface. The
enumerate constants dk_none and dk_all are used to search for objects in a
repository. All other enumerate constants identify one of the repository object
types in Table 22, and correspond to an IDL type or group of types.

destroy() deletes an interface repository object and any objects contained
within it. You cannot call destroy() on the interface repository object itself or
any PrimitiveDef object.
 352

Interface Repository Data
Abstract Base Interfaces

Besides IRObject, the interface repository defines four other abstract base
interfaces, all of which inherit directly or indirectly from IRObject:

Container: The interface for container objects. This interface is inherited by
all interface objects that can contain other objects, such as Repository,
ModuleDef and InterfaceDef. These interfaces inherit from Container. See
“Container Interface” on page 363.

Contained: The interface for contained objects. This interface is inherited by
all objects that can be contained by other objects—for example, attribute
definition (AttributeDef) objects within operation definition (OperationDef)
objects. See “Contained Interface” on page 361.

IDLType: All interface repository interfaces that hold the definition of a type
inherit directly or indirectly from this interface. See “IDL-Type Objects” on
page 356.

TypedefDef: The base interface for the following interface repository types
that have names: StructDef, UnionDef, EnumDef, and AliasDef, which
represents IDL typedef definitions.
353

Chapter 17 | Using the Interface Repository
Repository Object Types

Objects in the interface repository support one of the IDL types in Table 22:

Table 22: Interface Repository OIbject Types

Object type Description

Repository The repository itself, in which all other objects are
nested. A repository definition can contain definitions
of other types such as module and interface. Table 23
lists all possible container components.

ModuleDef A module definition is logical grouping of interfaces
and value types. The definition has a name and can
contain definitions of all types except Repository.
Table 23 on page 360 lists all possible container
components.

InterfaceDef An interface definition has a name, a possible
inheritance declaration, and can contain definitions of
other types such as attribute, operation, and exception.
Table 23 lists all possible container components.

ValueDef A value type definition has a name, a possible
inheritance declaration, and can contain definitions of
other types such as attribute, operation, and exception.
Table 23 lists all possible container components.

ValueBoxDef A value box definition defines a value box type.

ValueMemberDef A value member definition defines a member of a
value.

AttributeDef An attribute definition has a name, a type, and a mode
to indicate whether it is readonly.

OperationDef An operation definition has a name, return value, set of
parameters and, optionally, raises and context
clauses.

ConstantDef A constant definition has a name, type, and value.
 354

Interface Repository Data
ExceptionDef An exception definition has a name and a set of
member definitions.

StructDef A struct definition has a name, and holds the definition
of each of its members.

UnionDef A union definition has a name, and holds a
discriminator type and the definition of each of its
members.

EmumDef An enum definition has a name and a list of member
identifiers.

AliasDef An aliased definition defines a typedef definition,
which has a name and a type that it maps to.

PrimitiveDef A primitive definition defines primitive IDL types such
as short and long, which are predefined in the
interface repository.

StringDef A string definition records its bound. Objects of this
type are unnamed. If they are defined with a typedef
statement, they are associated with an AliasDef
object. Objects of this type correspond to bounded
strings.

SequenceDef Each sequence type definition records its element type
and its bound, where a value of zero indicates an
unbounded sequence type. Objects of this type are
unnamed. If they are defined with a typedef
statement, they have an associated AliasDef object.

ArrayDef Each array definition records its length and its element
type. Objects of this type are unnamed. If they are
defined with a typedef statement, they are associated
with an AliasDef object. Each ArrayDef object
represents one dimension; multiple ArrayDef objects
can represent a multi-dimensional array type.

Table 22: Interface Repository OIbject Types

Object type Description
355

Chapter 17 | Using the Interface Repository
Given an object of any interface repository type, you can obtain its full
interface definition. For example, InterfaceDef defines operations or
attributes to determine an interface’s name, its inheritance hierarchy, and the
description of each operation and each attribute.

Figure 29 shows the hierarchy for all interface repository objects.

IDL-Type Objects
Most repository objects represent IDL types—for example, InterfaceDef
objects represent IDL interfaces, StructDef interfaces represent struct
definitions, and so on. These objects all inherit, directly or indirectly, from the
abstract base interface IDLType:

Figure 29: Hierarchy of interface repository objects

IDLType ContainerContained

TypedefDef

AttributeDef
ConstantDef
OperationDef

AliasDef
EnumDef
NativeDef
StructDef

ExceptionDef

UnionDef

ModuleDef

InterfaceDef
ValueDef

ValueBoxDef

Named types
ArrayDef
FixedDef
PrmitiveDef
SequenceDef
StringDef
WStringDef

Unnamed types

Repository

IRObject
 356

Interface Repository Data
// In module CORBA
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

This base interface defines a single attribute that contains the TypeCode of
the defined type.

IDL-type objects are themselves subdivided into two groups: named and
unnamed types.

Named Types

The interface repository can contain these named IDL types:

For example, the following IDL defines enum type UD and typedef type
AccountName, which the interface repository represents as named object
types EnumDef and AliasDef objects, respectively:

// IDL
enum UD {UP, DOWN};
typedef string AccountName;

The following named object types inherit from the abstract base interface
TypedefDef:

TypedefDef is defined as follows:

// IDL
// In module CORBA.
interface TypedefDef : Contained, IDLType {
};

TypedefDef serves the sole purpose of enabling its derived object types to
inherit Contained and IDLType attributes and operations:

AliasDef
EnumDef
InterfaceDef
NativeDef

StructDef
UnionDef
ValueBoxDef
ValueDef

AliasDef
EnumDef
NativeDef

StructDef
ValueBoxDef
UnionDef
357

Chapter 17 | Using the Interface Repository
• Attribute Contained::name enables access to the object’s name. For
example, the IDL enum definition UD shown earlier is represented by the
repository object EnumDef, whose inherited name attribute is set to UD.

• Operation Contained::describe() gets a detailed description of the
object. For more information about this operation, see “Repository
Object Descriptions” on page 365.

Interfaces InterfaceDef and ValueDef are also named object types that
inherit from three base interfaces: Contained, Container, and IDLType.

Because IDL object and value references can be used like other types,
IntefaceDef and ValueDef inherit from the base interface IDLType. For
example, given the IDL definition of interface Account, the interface
repository creates an InterfaceDef object whose name attribute is set to
Account. This name can be reused as a type.

Unnamed Types

The interface repository can contain the following unnamed object types:

Getting an Object’s IDL Type

Repository objects that inherit the IDLType interface have their own opera-
tions for identifying their type; you can also get an object’s type through the
TypeCode interface. Repository objects such as AttributeDef that do not
inherit from IDLType have their own TypeCode or IDLType attributes that
enable access to their types.

For example the following IDL interface definition defines the return type of
operation getLongAddress as a string sequence:

// IDL
interface Mailer {

string getLongAddress();
};

getLongAddress() maps to an object of type OperationDef in the repository.
You can query this object for its return type’s definition—string—in two
ways:

ArrayDef
FixedDef
PrimitiveDef

SequenceDef
StringDef
WStringDef
 358

Containment in the Interface Repository
Method 1:

1. Get the object’s OperationDef::result_def attribute, which is an
object reference of type IDLType.

2. Get the IDLType’s def_kind attribute, which is inherited from IRObject.
In this example, def_kind resolves to dk_primitive.

3. Narrow the IDLType to PrimtiveDef.

4. Get the PrimtiveDef’s kind attribute, which is a PrimtiveKind of
pk_string.

Method 2:

1. Get the object’s OperationDef::result attribute, which is a TypeCode.

2. Obtain the TypeCode’s TCKind through its kind() operation. In this
example, the TCKind is tk_string.

Containment in the Interface Repository
Most IDL definitions contain or are contained by other definitions, and the
interface repository defines its objects to reflect these relationships. For
example, a module typically contains interface definitions, while interfaces
themselves usually contain attributes, operations, and other definition types.

The interface repository abstracts the properties of containment into two
abstract base interfaces, Container and Contained. These interfaces provide
operations and attributes that let you traverse the hierarchy of relationships in
an interface repository in order to list its contents, or ascertain a given
object’s container. Most repository objects are derived from one or both of
Container or Contained; the exceptions are instances of PrimitiveDef,
StringDef, SequenceDef, and ArrayDef.

In the following IDL, module Finance is defined with two interface
definitions, Bank and Account. In turn, interface Account contains attribute
and operation definitions:

// IDL
module Finance {

interface Account {
readonly attribute float balance;
void makeDeposit(in float amount);
void makeWithdrawal(in float amount);
359

Chapter 17 | Using the Interface Repository
};
interface Bank {

Account newAccount();
};

};

The corresponding interface repository objects for these definitions are each
described as Container or Contained objects. Thus, the interface repository
represents module Finance as a ModuleDef container for InterfaceDef
objects Account and Bank; these, in turn, serve as containers for their
respective attributes and operations. ModuleDef object Finance is also
viewed as a contained object within the container object RepositoryDef.

Table 23 shows the relationship between Container and Contained objects
in the interface repository.

Table 23: Container and Contained Objects in the Interface Repository

Container
object type

Contained Objects

Repository ConstantDef
TypedefDef
ExceptionDef
InterfaceDef*
ModuleDef*
ValueDef*
 360

Containment in the Interface Repository
* Also a Container object

Only a Repository is a pure Container. An interface repository server has
only one Repository object, and it contains all other definitions.

Objects of type ModuleDef, InterfaceDef, and ValueDef are always
contained within a Repository, while InterfaceDef, and ValueDef can also
be within a ModuleDef; these objects usually contain other objects, so they
inherit from both Container and Contained.

All other repository object types inherit only from Contained.

Contained Interface

The Contained interface is defined as follows:

//IDL
typedef string VersionSpec;

ModuleDef ConstantDef
TypedefDef
ExceptionDef
ModuleDef*
InterfaceDef*
ValueDef*

InterfaceDef ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

ValueDef ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef
ValueMemberDef

Table 23: Container and Contained Objects in the Interface Repository

Container
object type

Contained Objects
361

Chapter 17 | Using the Interface Repository
interface Contained : IRObject
{

// read/write interface

attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description
{

DefinitionKind kind;
any value;

};

Description
describe();

// write interface

void
move(

in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

Attribute Contained::name is of type Identifier, a typedef for a string, and
contains the IDL object’s name. For example, module Finance is represented
in the repository by a ModuleDef object. Its inherited ModuleDef::name
attribute resolves to the string Finance. Similarly the makeWithdrawal
operation is represented by an OperationDef object whose OperationDef::
name attribute resolves to makeWithdrawal.

Contained also defines the attribute defined_in, which stores a reference to
an object’s Container. Because IDL definitions within a repository must be
unique, defined_in stores a unique Container reference. However, given
 362

Containment in the Interface Repository
inheritance among interfaces, an object can be contained in multiple
interfaces. For example, the following IDL defines interface CurrentAccount
to inherit from interface Account:

//IDL
// in module Finance
interface CurrentAccount : Account {

readonly attribute overDraftLimit;
};

Given this definition, attribute balance is contained in interfaces Account and
CurrentAccount; however, attribute balance is defined only in the base
interface Account. Thus, if you invoke AttributeDef::defined_in() on
either Account::balance or CurrentAccount::balance, it always returns
Account as the Container object.

A Contained object can include more than containment information. For
example, an OperationDef object has a list of parameters associated with it
and details of the return type. The operation Contained::describe()
provides access to these details by returning a generic Description structure
(see “Repository Object Descriptions” on page 365).

Container Interface

Interface Container is defined as follows:

//IDL
enum DefinitionKind
{

dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember, dk_Native

};
...

typedef sequence<Contained> ContainedSeq;
363

Chapter 17 | Using the Interface Repository
interface Container : IRObject
{

// read interface
...

Contained
lookup(

in ScopedName search_name
);

ContainedSeq
contents(

in DefinitionKind limit_type,
in boolean exclude_inherited

);

ContainedSeq
lookup_name (

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description
{

Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;

DescriptionSeq
describe_contents(

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

// write interface

... // operations to create container objects
};
 364

Repository Object Descriptions
The container interface provides four lookup functions that let you browse a
given container for its contents: lookup(), lookup_name(), contents(), and
describe_contents(). For more information about these operations, see
“Browsing and Listing Repository Contents” on page 368.

Repository Object Descriptions
Each repository object, in addition to identifying itself as a Contained or
Container object, also maintains the details of its IDL definition. For each
contained object type, the repository defines a structure that stores these
details. Thus, a ModuleDef object stores the details of its description in a
ModuleDescription structure, an InterfaceDef object stores its description
in an InterfaceDescription structure, and so on.

You can generally get an object’s description in two ways:

• The interface for each contained object type often defines attributes that
get specific aspects of an object’s description. For example, attribute
OperationDef::result gets an operation’s return type.

• You can obtain all the information stored for a given object through the
inherited operation Contained::describe(), which returns the general
purpose structure Contained::Description. This structure’s value
member is of type any, whose value stores the object type’s structure.

For example, interface OperationDef has the following definition:

interface OperationDef : Contained
{

readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

Interface OperationDef defines a number of attributes that allow direct
access to specific aspects of an operation, such as its parameters (params)
and return type (result_def). In a distributed environment, it is often
desirable to obtain all information about an operation in a single step by
365

Chapter 17 | Using the Interface Repository
invoking describe() on the OperationDef object. This operation returns a
Contained::Description whose two members, kind and value, are set as
follows:

kind is set to dk_Operation.

value is an any whose TypeCode is set to _tc_OperationDescription. The
any’s value is an OperationDescription structure, which contains all the
required information about an operation:

// IDL
struct OperationDescription
{

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

OperationDescription members store the following information:

name The operation’s name. For example, for operation Account::
makeWithdrawal(), name contains makeWithdrawal.

id RepositoryId for the OperationDef object.

defined_in The RepositoryId for the parent Container of the
OperationDef object.

version Currently not supported. When implemented, this member
allows the interface repository to distinguish between multiple
versions of a definition with the same name.

result The TypeCode of the result returned by the defined operation.

mode Specifies whether the operation returns (OP_NORMAL) or is
oneway (OP_ONEWAY).

contexts Lists the context identifiers specified in the operation’s context
clause.
 366

Retrieving Repository Information
Several repository object types use the TypeDescription structure to store
their information: EnumDef, UnionDef, AliasDef, and StructDef.

Interfaces InterfaceDef and ValueDef contain extra description structures,
FullInterfaceDescription and FullValueDescription, respectively. These
structures let you obtain a full description of the interface or value and all its
contents in one step. These structures are returned by operations
InterfaceDef::describe_interface() and ValueDef::describe_value().

Retrieving Repository Information
You can retrieve information from the interface repository in three ways:

• Given an object reference, find its corresponding InterfaceDef object
and query its details.

• Given an object reference to a Repository, browse its contents.
• Given a RepositoryId, obtain a reference to the corresponding object in

the interface repository and query its details.

Getting a CORBA Object’s Interface

Given a reference to a CORBA object, you can obtain its interface from the
interface repository by invoking _get_interface() on it. For example, given
CORBA object objVar, you can get a reference to its corresponding
InterfaceDef object as follows:

// C++
CORBA::InterfaceDef_var ifVar =

objVar->_get_interface();

The member function _get_interface() returns a reference to an object
within the interface repository. You can then use this reference to browse the
repository, and to obtain the details of an interface definition.

parameters A sequence of ParameterDescription structures that contain
details of each operation parameter.

exceptions A sequence of ExceptionDescription structures that contain
details of the exceptions specified in the operation’s raises
clause.
367

Chapter 17 | Using the Interface Repository
Browsing and Listing Repository Contents

After you obtain a reference to a Repository object, you can browse or list its
contents. To obtain a Repository’s object reference, invoke
resolve_initial_references("InterfaceRepository") on the ORB. This
returns an object reference of type CORBA::Object, which you narrow to a
CORBA::Repository reference.

The abstract interface Container has four operations that enable repository
browsing:

• lookup()

• lookup_name()
• contents()

• describe_contents()

Finding Repository Objects
lookup() and lookup_name() are useful for searching the contents of a
repository for one or more objects.

lookup() conducts a search for a single object based on the supplied
ScopedName argument, which contains the entity’s name relative to other
repository objects. A ScopedName that begins with :: is an absolute scoped
name—that is, it uniquely identifies an entity within a repository—for
example, ::Finance::Account::makeWithdrawal. A ScopedName that does
not begin with :: identifies an entity relative to the current one.

For example, if module Finance contains attribute Account::balance, you
can get a reference to the operation’s corresponding AttributeDef object by
invoking the module’s lookup() operation:

CORBA::Contained_var cVar;
cVar = moduleVar->lookup("Account::balance");

The ScopedName argument that you supply can specify to search outside the
cope of the actual container on which you invoke lookup(). For example, the
following statement invokes lookup() on an InterfaceDef in order to start
searching for the newAccount operation from the Repository container:

CORBA::Contained_var cVar;
cVar = ifVar->lookup("::Finance::Bank::newAccount");
 368

Retrieving Repository Information
lookup_name() searches the target container for objects that match a simple
unscoped name. Because the name might yield multiple matches, lookup()
returns a sequence of Contained objects. lookup_name() takes the following
arguments:

Unlike lookup(), lookup_name() searches are confined to the target
container.

Getting Object Descriptions
Container::contents() returns a sequence of Contained objects that
belong to the Container. You can use this operation to search a given
container for a specific object. When it is found, you can call Contained::
describe(), which returns a Contained::Description for the contained
object (see “Repository Object Descriptions” on page 365).

Container::describe_contents() combines operations Container::
contents() and Contained::describe(), and returns a sequence of
Contained::Description structures, one for each of the Contained objects
found.

search_name A string that specifies the name of the objects to find.
You can use asterisks (*) to construct wildcard
searches.

levels_to_search Specifies the number of levels of nested containers to
include in the search. 1 restricts searching to the
current object. -1 specifies an unrestricted search.

limit_type Supply a DefinitionKind enumerator to include a
specific type of repository object in the returned
sequence. For example, set limit_type to
dk_operation to find only operations. To return all
objects, supply dk_all. You can also supply dk_none to
match no repository objects, and dk_Typedef, which
encompasses dk_Alias, dk_Struct, dk_Union, and
dk_Enum.

exclude_inherited Valid only for InterfaceDef and ValueDef objects.
Supply TRUE to exclude inherited definitions, FALSE to
include.
369

Chapter 17 | Using the Interface Repository
You can limit the scope of the search by contents() and
describe_contents() by setting one or more of the following arguments:

Finding an Object Using its Repository ID

You can use a repository ID to find any object in a repository by invoking
Container::lookup_id() on that repository. lookup_id() returns a
reference to a Contained object, which can be narrowed to the appropriate
object reference type.

Sample Usage
This section contains code that uses the interface repository; it prints the list
of operation names and attribute names that are defined in a given object’s
interface.

// C++
int i;
Repository_var rVar;
Contained_var cVar;
InterfaceDef_var interfaceVar;
InterfaceDef::FullInterfaceDescription_var full;
CORBA::Object_var obj;

try {

limit_type Supply a DefinitionKind enumerator to limit the
contents list to a specific type of repository object. To
return all objects, supply dk_all. You can also supply
dk_none to match no repository objects, and
dk_Typedef, which encompasses dk_Alias, dk_Struct,
dk_Union, and dk_Enum.

exclude_inherited Valid only for InterfaceDef and ValueDef objects.
Supply TRUE to exclude inherited definitions from the
contents listing, FALSE to include.

max_returned_objs Available only for describe_contents(), this argument
specifies the maximum length of the sequence
returned.
 370

Sample Usage
// get an object reference to the IFR:
obj = orb->resolve_initial_references("InterfaceRepository");
rVar = Repository::_narrow(obj);

// Get the interface definition:
cVar = rVar->lookup("grid");
interfaceVar = InterfaceDef::_narrow(cVar);

// Get a full interface description:
full = interfaceVar->describe_interface();
// Now print out the operation names:
cout << "The operation names are:" << endl;
for (i=0; i < full->operations.length(); i++)

cout << full->operations[i].name << endl;
// Now print out the attribute names:
cout << "The attribute names are:" << endl;
for (i=0; i < full->attributes.length(); i++)

cout << full->attributes[i].name << endl;
}
catch (...) {

...
}

The example can be extended by finding the OperationDef object for an
operation called doit(). Operation Container::lookup_name() can be used
as follows:

// C++
ContainedSeq_var opSeq;
OperationDef_var doitOpVar;

try {
cout << "Looking up operation doit()"

<< endl;
opSeq = interfaceVar->lookup_name(

"doit", 1, dk_Operation, 0);
if (opSeq->length() != 1) {

cout << "Incorrect result for lookup_name()";
exit(1);
371

Chapter 17 | Using the Interface Repository
} else {
// Narrow the result to be an OperationDef.
doitOpVar =

OperationDef::_narrow(opSeq[0]))
}
...

}
catch (...) {

...
}

Repository IDs and Formats
Each interface repository object that describes an IDL definition has a
repository ID. A repository ID globally identifies an IDL module, interface,
constant, typedef, exception, attribute, or operation definition. A repository ID
is simply a string that identifies the IDL definition.

Three formats for repository IDs are defined by CORBA. However, repository
IDs are not, in general, required to be in one of these formats.

OMG IDL Format

This is the default format that Orbix uses. It is derived from the IDL
definition’s scoped name and contains three colon-delimited components as
follows:

IDL:identifier[/identifier]...:version-number

• The first component identifies the repository ID format as the OMG IDL
format.

• A list of identifiers specifies the scoped name, substituting backslash (/)
for double colon (::).

• version-number contains a version number with the following format:
major.minor

For example, given the following IDL definitions:

// IDL
interface Account {

readonly attribute float balance;
 372

Controlling Repository IDs with Pragma Directives
void makeDeposit(in float amount);
};

The IDL format repository ID for attribute Account::balance looks like this:

IDL:Account/balance:1.0

DCE UUID Format

The DCE UUID has the following format:

DCE:UUID:minor-version-number

LOCAL Format

Local format IDs are for local use within an interface repository and are not
intended to be known outside that repository. They have the following format:

LOCAL:ID

Local format repository IDs can be useful in a development environment as a
way to avoid conflicts with repository IDs that use other formats.

Controlling Repository IDs with Pragma Directives
You can control repository ID formats with pragma directives in an IDL source
file. Specifically, you can use pragmas to set the repository ID for a specific
IDL definition, and to set prefixes and version numbers on repository IDs.

You can insert prefix and version pragma statements at any IDL scope; the
IDL compiler assigns the prefix or version only to objects that are defined
within that scope. Prefixes and version numbers are not applied to definitions
in files that are included at that scope. Typically, prefixes and version
numbers are set at global scope, and are applied to all repository IDs.

ID Pragma
You can explicitly associate an interface repository ID with an IDL definition,
such as an interface name or typedef. The definition can be fully or partially
scoped and must conform with one of the IDL formats approved by the OMG
(see “Repository IDs and Formats” on page 372).
373

Chapter 17 | Using the Interface Repository
For example, the following IDL assigns repository ID idl:test:1.1 to
interface test:

module Y {
interface test {

// ...
};
#pragma ID test "idl:test:1.1"

};

Prefix Pragma
The IDL prefix pragma lets you prepend a unique identifier to repository IDs.
This is especially useful in ensuring against the chance of name conflicts
among different applications. For example, you can modify the IDL for the
Finance module to include a prefix pragma as follows:

// IDL
pragma prefix "USB"
module Finance {

interface Account {
readonly attribute float balance;
...

};
interface Bank {

Account newAccount();
};

};

These definitions yield the following repository IDs:

IDL:USB/Finance:1.0
IDL:USB/Finance/Account:1.0
IDL:USB/Finance/Account/balance:1.0
IDL:USB/Finance/Bank:1.0
IDL:USB/Finance/Bank/newAccount:1.0

Version Pragma
A version number for an IDL definition’s repository ID can be specified with a
version pragma. The version pragma directive uses the following format:

#pragma version name major.minor
 374

Controlling Repository IDs with Pragma Directives
name can be a fully scoped name or an identifier whose scope is interpreted
relative to the scope in which the pragma directive is included. If no version
pragma is specified for an IDL definition, the default version number is 1.0.
For example:

// IDL
module Finance {

#pragma version Account 2.5
interface Account {

// ...
};

};

These definitions yield the following repository IDs:

IDL:Finance:1.0
IDL:Finance/Account:2.5

Version numbers are embedded in the string format of an object reference. A
client can invoke on the corresponding server object only if its interface has a
matching version number, or has no version associated with it.

Note: You cannot populate the interface repository with two IDL interfaces
that share the same name but have different version numbers.
375

Chapter 17 | Using the Interface Repository
 376

Naming Service
The Orbix naming service lets you associate names with
objects. Servers can register object references by name with
the naming service repository, and advertise those names
to clients. Clients, in turn, can resolve the desired objects
in the naming service by supplying the appropriate name.

The Orbix naming service implements the OMG COS Interoperable Naming
Service, which describes how applications can map object references to
names. Using the naming service can offer the following benefits:

• Clients can locate objects through standard names that are independent
of the corresponding object references. This affords greater flexibility to
developers and administrators, who can direct client requests to the
most appropriate implementation. For example, you can make changes
to an object’s implementation or its location that are transparent to the
client.

• The naming service provides a single repository for object references.
Thus, application components can rely on it to obtain an application’s
initial references.

This chapter describes how to build and maintain naming graphs
programmatically. It also shows how to use object groups to achieve load
balancing. Many operations that are discussed here can also be executed
administratively with Orbix tools. For more information about these and
related configuration options, refer to the Orbix 2000 Administrator’s Guide.

Overview
The naming service is organized into a naming graph, which is equivalent to a
directory system. A naming graph consists of one or more naming contexts,
which correspond to directories. Each naming context contains zero or more
name-reference associations, or name bindings, each of which refers to
377

Chapter 18 | Naming Service
another node within the naming graph. A name binding can refer either to
another naming context or to an object reference. Thus, any path within a
naming graph finally resolves to either a naming context or an object
reference. All bindings in a naming graph can usually be resolved via an initial
naming context.

Figure 30 shows how the Account interface described in earlier chapters
might be extended (through inheritance) into multiple objects, and organized
into a hierarchy of naming contexts. In this graph, hollow nodes are naming
contexts and solid nodes are application objects. Naming contexts are
typically intermediate nodes, although they can also be leaf nodes;
application objects can only be leaf nodes.

Each leaf node in this naming graph associates a name with a reference to an
account object such as a basic checking account or a personal loan account.
Given the full path from the initial naming context—for example, Savings/
Regular—a client can obtain the associated reference and invoke requests on
it.

Figure 30: A naming graph is a hierarchy of naming contexts

Initial naming context

Checking

Savings

NOW

Basic

Premium

Regular
UTMA

Pension

Mortgage

Loans

Personal

Auto
 378

Defining Names
The operations and types that the naming service requires are defined in the
IDL file CosNaming.idl. This file contains a single module, CosNaming, which
in turn contains three interfaces: NamingContext, NamingContextExt, and
BindingIterator.

Defining Names
A naming graph is composed of Name sequences of NameComponent
structures, defined in the CosNaming module:

module CosNaming{
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

}
typedef sequence<NameComponent> Name;
...

};

A Name sequence specifies the path from a naming context to another naming
context or application object. Each name component specifies a single node
along that path.

Each name component has two string members:

• The id field acts as a name component’s principle identifier. This field
must be set.

• The kind member is optional; use it to further differentiate name
components, if necessary.

Both id and kind members of a name component are used in name
resolution. So, the naming service differentiates between two name
components that have the same ids but different kinds.
379

Chapter 18 | Naming Service
For example, in the naming graph shown in Figure 30 on page 378, the path
to a Personal loan account object is specified by a Name sequence in which
only the id fields are set:

In order to bind another Personal account object to the same Loan naming
context, you must differentiate it from the existing one. You might do so by
setting their kind fields as follows:

Note: If the kind field is unused, it must be set to an empty string.

Representing Names as Strings

The CosNaming::NamingContextExt interface defines a StringName type,
which can represent a Name as a string with the following syntax:

id[.kind][/id[.kind]] ...

Name components are delimited by a forward slash (/); id and kind
members are delimited by a period (.). If the name component contains only
the id string, the kind member is assumed to be an empty string.

StringName syntax reserves the use of three characters: forward slash (/),
period (.), and backslash (\). If a name component includes these
characters, you can use them in a StringFormat by prefixing them with a
backslash (\) character.

The CosNaming::NamingContextExt interface provides several operations
that allow conversion between StringName and Name data:

Index id kind

0 Loans

1 Personal

Index id kind

0 Loans

1 Personal unsecured

1 Personal secured
 380

Defining Names
• to_name() converts a StringName to a Name (see page 381).
• to_string() converts a Name to a StringName (see page 382).
• resolve_str() uses a StringName to find a Name in a naming graph and

returns an object reference (see page 389).

Note: You can invoke these and other CosNaming::NamingContextExt
operations only on an initial naming context that is narrowed to CosNaming::
NamingContextExt.

Initializing a Name

You can initialize a CosNaming::Name sequence in one of two ways:

• Set the members of each name component.
• Call to_name() on the initial naming context and supply a StringName

argument. This operation converts the supplied string to a Name
sequence.

Setting Name Component Members
Given the loan account objects shown earlier, you can set the name for an
unsecured personal loan as follows:

CosNaming::Name name(2);
name.length(2);
name[0].id = CORBA::string_dup("Loans");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("Personal");
name[1].kind = CORBA::string_dup("unsecured");

Converting a StringName to a Name
The name shown in the previous example can also be set in a more
straightforward way by calling to_name() on the initial naming context (see
“Obtaining the Initial Naming Context” on page 382):
381

Chapter 18 | Naming Service
// get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

CosNaming::Name_var name;
name = root_cxt->to_name("Loans/Personal.unsecured");

The to_name() operation takes a string argument and returns a CosNaming::
Name, which the previous example sets as follows:

Converting a Name to a StringName

You can convert a CosNaming::Name to a CosNamingExt::StringName by
calling to_string() on the initial naming context. This lets server programs
to advertise human-readable object names to clients.

For example, the following code converts Name sequence name to a
StringName:

// get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;
CosNaming::NamingContextExt::StringName str_n;

// initialize name
CosNaming::Name_var name = ...;
...
str_n = root_cxt->to_string(name);

Obtaining the Initial Naming Context
Clients and servers access a naming service through its initial naming
context, which provides the standard entry point for building, modifying, and
traversing a naming graph. To obtain the naming service’s initial naming
context, call resolve_initial_references() on the ORB. For example:

Index id kind

0 Loans

1 Personal unsecured
 382

Building a Naming Graph
...
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get reference to initial naming context
CORBA::Object obj =

orb_var->resolve_initial_references("NameService");

To obtain a reference to the naming context, narrow the result with
CosNaming::NamingContextExt::_narrow():

CosNaming::NamingContextExt_var root_cxt;
if (root_cxt =

CosNaming::NamingContextExt::_narrow(obj)) {

} else {...} // Deal with failure to _narrow()
...

A naming graph’s initial naming context is equivalent to the root directory.
Later sections show how you use the initial naming context to build and
modify a naming graph, and to resolve names to object references.

Note: The NamingContextExt interface provides extra functionality over the
NamingContext interface; therefore, the code in this chapter assumes that an
initial naming context is narrowed to the NamingContextExt interface

Building a Naming Graph
A name binding can reference either an object reference or another naming
context. By binding one naming context to another, you can organize
application objects into logical categories. However complex the hierarchy,
almost all paths within a naming graph hierarchy typically resolve to object
references.

In an application that uses a naming service, a server program often builds a
multi-tiered naming graph on startup. This process consists of two repetitive
operations:

• Bind naming contexts into the desired hierarchy.
• Bind objects into the appropriate naming contexts.
383

Chapter 18 | Naming Service
Binding Naming Contexts

A server that builds a hierarchy of naming contexts contains the following
steps:

1. Gets the initial naming context (see page 382).

2. Creates the first tier of naming contexts from the initial naming context.

3. Binds the new naming contexts to the initial naming context.

4. Adds naming contexts that are subordinate to the first tier:

♦ Creates a naming context from any existing one.

♦ Binds the new naming context to its designated parent.

The naming graph shown in Figure 30 on page 378 contains three naming
contexts that are directly subordinate to the initial naming context: Checking,
Loans, and Savings. The following code binds the Checking naming context
to the initial naming context, as shown in Figure 31:

//get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

CosNaming::NamingContext_var checking_cxt;

// create naming context
checking_cxt = root_cxt->new_context();

// initialize name
CosNaming::Name_var name;
name.length(1);
name[0].id = CORBA::string_dup("Checking");
name[0].kind = CORBA::string_dup("");

// bind new context
root_cxt->bind_context(name, checking_cxt);
 384

Building a Naming Graph
Similarly, you can bind the Savings and Loans naming contexts to the initial
naming context. The following code uses the shortcut operation
bind_new_context(), which combines new_context() and bind(). It also
uses the to_name() operation to set the Name variable.

CosNaming::NamingContext_var savings_cxt, loan_cxt;

// create naming contexts
name = root_cxt->to_name("Savings");
savings_cxt = root_cxt->bind_new_context(name);

name = root_cxt->to_name("Loan");
loan_cxt = root_cxt->bind_new_context(name);

Figure 31: Checking context bound to initial naming context

Initial naming context

Checking

Figure 32: Savings and Loans naming contexts bound to initial naming context

Initial naming context

Checking

Savings

Loans
385

Chapter 18 | Naming Service
Orphaned Naming Contexts
The naming service can contain naming contexts that are unbound to any
other context. Because these naming contexts have no parent context, they
are regarded as orphaned. Any naming context that you create with
new_context() is orphaned until you bind it to another context. Although it
has no parent context, the initial naming context is not orphaned inasmuch
as it is always accessible through resolve_initial_references(), while
orphan naming contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for example, you
are in the process of constructing a new branch of naming contexts but wish
to test it before binding it into the naming graph. Other naming contexts
might appear to be orphaned within the context of the current naming
service; however, they might actually be bound to a federated naming graph
in another naming service (see “Federating Naming Graphs” on page 396).

Orphaned contexts can also occur inadvertently, often as a result of carelessly
written code. For example, you can create orphaned contexts as a result of
calling rebind() or rebind_context() to replace one name binding with
another (see “Rebinding” on page 388). The following code shows how you
might orphan the Savings naming context:

//get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

CosNaming::NamingContext_var savings_cxt;

// initialize name
CosNaming::Name_var name;
name.length(1);
name[0].id = CORBA::string_dup("Savings");
name[0].kind = CORBA::string_dup("");

// create and bind checking_cxt
savings_cxt = root_cxt->bind_new_context(name);

// make another context
CosNaming::NamingContext_var savings_cxt2;
savings_cxt2 = root_cxt->new_context();

// bind savings_cxt2 to root context, savings_cxt now orphaned!
root_cxt->rebind_context(name, savings_cxt2);
 386

Building a Naming Graph
An application can also create an orphan context by calling unbind() on a
context without calling destroy() on the same context object (see
“Maintaining the Naming Service” on page 395).

In both cases, if the application exits without destroying the context objects,
they remain in the naming service but are inaccessible and cannot be
deleted.

Binding Object References

After you construct the desired hierarchy of naming contexts, you can bind
object references to them with the bind() operation. The following example
builds on earlier code to bind a Basic checking account object to the
Checking naming context:

// object reference "basic_check" obtained earlier
...

name->length(1);
name[0].id = CORBA::string_dup("Basic");
name[0].kind = CORBA::string_dup("");
checking_cxt->bind(name, basic_check);

Figure 33: Binding an object reference to a naming context

Initial naming context

Checking

Savings

Basic

Loans
387

Chapter 18 | Naming Service
The previous code assumes the existence of a NamingContext variable for the
Checking naming context on which you can invoke bind(). Alternatively, you
can invoke bind() on the initial naming context in order to bind Basic into
the naming graph:

name = root_cxt->to_name("Checking/Basic");
root_cxt->bind(name, basic_check);

Note: Because the initial naming context is always available, it is the most
reliable way to access all other contexts within a naming graph.

Rebinding

If you call bind() or bind_context() on a naming context that already
contains the specified binding, the naming service throws an exception of
AlreadyBound. To ensure the success of a binding operation whether or not
the desired binding already exists, call one of the following naming context
operations:

• rebind() rebinds an application object.
• rebind_context() rebinds a naming context.

Either operation replaces an existing binding of the same name with the new
binding. Calls to rebind() in particular can be useful on server startup, to
ensure that the naming service has the latest object references.

Note: Calls to rebind_context() or rebind() can have the undesired effect
of creating orphaned naming contexts (see page 386). In general, exercise
caution when calling either function.

Using Names to Access Objects
A client application can use the naming service to obtain object references in
three steps:

1. Obtain a reference to the initial naming context (see page 382).
 388

Using Names to Access Objects
2. Set a CosNaming::Name structure with the full path of the name
associated with the desired object.

3. Resolve the name to the desired object reference.

Setting Object Names

You specify the path to the desired object reference in a CosNaming::Name.
You can set this name in one of two ways:

• Explicitly set the id and kind members of each Name element. For
example, the following code sets the name of a Basic checking account
object:
CosNaming::Name_var name;
name.length(2);
name[0].id = CORBA::string_dup("Checking");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("Basic");
name[1].kind = CORBA::string_dup("");

• If the client code narrows the initial naming context to the
NamingContextExt interface, it can call to_name() on the initial naming
context. This operation takes a CosNaming::CosNamingExt::StringName
argument and returns a CosNaming::Name as follows:
CosNaming::Name_var name;
name = root_cxt->to_name("Checking/Basic");

For more about using a StringName with to_name(), see “Converting a
StringName to a Name” on page 381.

Resolving Names

Clients call resolve() on the initial naming context to obtain the object
associated with the supplied name:

CORBA::Object_var obj;
...
obj = root_cxt->resolve(name);

Alternatively, the client can call resolve_str() on the initial naming context
to resolve the same name using its StringName equivalent:
389

Chapter 18 | Naming Service
CORBA::Object_var obj;
...
obj = root_cxt->resolve_str("Checking/Basic");

In both cases, the object returned in obj is an application object that
implements the IDL interface BasicChecking, so the client narrows the
returned object accordingly:

BasicChecking_var checking_var;
...
try {

checking_var = BasicChecking::_narrow(obj)) {
// perform some operation on basic checking object
...

} // end of try clause, catch clauses not shown

Resolving Names with corbaname

You can resolve names with a corbaname URL, which is similar to a
corbaloc URL (see “Using corbaloc URL Strings” on page 162). However, a
corbaname URL also contains a stringified name that identifies a binding in a
naming context. For example, the following code uses a corbaname URL to
obtain a reference to a BasicChecking object:

CORBA::Object_var obj;
obj = orb->string_to_object(

"corbaname:rir:/NameService#Checking/Basic"
);

A corbaname URL has the following syntax:

corbaname:rir:[/NameService]#string-name

string-name is a string that conforms to the format allowed by a CosNaming:
:CosNamingExt::StringName (see “Representing Names as Strings” on
page 380). A corbaname can omit the NameService specifier. For example,
the following call to string_to_object() is equivalent to the call shown
earlier:

obj = orb->string_to_object("corbaname:rir:#Checking/Basic");
 390

Listing Naming Context Bindings
Exceptions Returned to Clients

Invocations on the naming service can result in the following exceptions:

NotFound The specified name does not resolve to an existing binding. This
exception contains two data members:

InvalidName The specified name is empty or contains invalid characters.

CannotProceed The operation fails for reasons not described by other
exceptions. For example, the naming service’s internal repository might be in
an inconsistent state.

AlreadyBound Attempts to create a binding in a context throw this exception
if the context already contains a binding of the same name.

Not Empty Attempts to delete a context that contains bindings throw this
exception. Contexts must be empty before you delete them.

Listing Naming Context Bindings
In order to find an object reference, a client might need to iterate over the
bindings in one or more naming contexts. You can invoke the list()
operation on a naming context to obtain a list of its name bindings. This
operation has the following signature:

why Explains why a lookup failed with one of the following
values:

• missing_node: one of the name components
specifies a non-existent binding.

• not_context: one of the intermediate name
components specifies a binding to an application
object instead of a naming context.

• not_object: one of the name components points
to a non-existent object.

rest_of_name Contains the trailing part of the name that could not
be resolved.
391

Chapter 18 | Naming Service
void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator it);

list() returns with a BindingList, which is a sequence of Binding
structures:

enum BindingType{ nobject, ncontext };

struct Binding{
Name binding_name
BindingType binding_type;

}
typedef sequence<Binding> BindingList

Given a binding list, the client can iterate over its elements to obtain their
binding name and type. Given a Binding element’s name, the client
application can call resolve() to obtain an object reference; it can use the
binding type information to determine whether the object is a naming context
or an application object.

For example, given the naming graph in Figure 30, a client application can
invoke list() on the initial naming context and return a binding list with
three Binding elements:

Using a Binding Iterator

In the previous example, list() returns a small binding list. However, an
enterprise application is likely to require naming contexts with a large
number of bindings. list() therefore provides two parameters that let a
client obtain all bindings from a naming context without overrunning
available memory:

Index Name BindingType

0 Checking ncontext

1 Savings ncontext

2 Loan ncontext
 392

Listing Naming Context Bindings
how_many sets the maximum number of elements to return in the binding
list. If the number of bindings in a naming context is greater than how_many,
list() returns with its BindingIterator parameter set.

it is a BindingIterator object that can be used to retrieve the remaining
bindings in a naming context. If list() returns with all bindings in its
BindingList, this parameter is set to nil.

A BindingIterator object has the following IDL interface definition:

interface BindingIterator{
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();

}

If list() returns with a BindingIterator object, the client can invoke on it
either next_n() to retrieve the next specified number of remaining bindings,
or next_one() to retrieve one remaining binding at a time. Both functions
return true if the naming context contains more bindings to fetch. Together,
these BindingIterator operations and list() let a client safely obtain all
bindings in a context.

Note: The client is responsible for destroying an iterator. It also must be
able to handle exceptions that might return when it calls an iterator
operation, inasmuch as the naming service can destroy an iterator at any
time before the client retrieves all naming context bindings.

The following client code gets a binding list from a naming context and prints
each element’s binding name and type:

// printing function
void
print_binding_list(const CosNaming::BindingList &bl)
{

for(CORBA::Ulong i = 0; i < bl.length(); i++){
cout << bl[i].binding_name[0].id;
if(bl[i].binding_name[0].kind != ’\0’)

cout << "(" << bl[i].binding_name[0].kind << ")";
if(bl[i].binding_type == CosNaming::ncontext)

cout << ": naming context" << endl;
393

Chapter 18 | Naming Service
else
cout << ": object reference" << endl;

}
}

void
get_context_bindings(CosNaming::NamingContext_ptr cxt)
{

CosNaming::BindingList_var b_list;
CosNaming::BindingIterator_var b_iter;
const CORBA::ULong MAX_BINDINGS = 50;

if (!CORBA::is_nil(cxt)) {

// get first set of bindings from cxt
root_cxt->list(MAX_BINDINGS, b_list, b_iter);

//print first set of bindings
print_binding_list(b_list);

// look for remaining bindings
if(!CORBA::is_nil(b_iter)) {

CORBA::Boolean more;
do {

is_nil(b_iter)) {
more = b_iter->next_n(MAX_BINDINGS, b_list);
// print next set of bindings
print_binding_list(b_list);

} while (more);
}
// get rid of iterator
b_iter->destroy();

}
}

When you run this code on the initial naming context shown earlier, it yields
the following output:

Checking: naming context
Savings: naming context
Loan: naming context
 394

Maintaining the Naming Service
Maintaining the Naming Service
Destruction of a context and its bindings is a two-step procedure:

• Remove bindings to the target context from its parent contexts by calling
unbind() on them.

• Destroy the context by calling the destroy() operation on it. If the
context contains bindings, these must be destroyed first; otherwise,
destroy() returns with a NotEmpty exception.

These operations can be called in any order; but it is important to call both. If
you remove the bindings to a context without destroying it, you leave an
orphaned context within the naming graph that might be impossible to
access and destroy later (see “Orphaned Naming Contexts” on page 386). If
you destroy a context but do not remove its bindings to other contexts, you
leave behind bindings that point nowhere, or dangling bindings.

For example, given the partial naming graph in Figure 34, you can destroy
the Loans context and its bindings to the loan account objects as follows:

CosNaming::Name_var name;

// get initial naming context
CosNaming::NamingContextExt_var root_cxt = ...;

// assume availability of Loans naming context variable
CosNaming::NamingContext_var loans_cxt = ... ;

// remove bindings to Loans context
name = root_cxt->to_name("Loans/Mortgage");
root_cxt->unbind(name);
name = root_cxt->to_name("Loans/Auto");
root_cxt->unbind(name);
name = root_cxt->to_name("Loans/Personal");
root_cxt->unbind(name);

// remove binding from Loans context to initial naming context
name = root_cxt->to_name("Loans");
root_cxt->unbind(name);

// destroy orphaned Loans context
loans_cxt->destroy();
395

Chapter 18 | Naming Service

Note: Orbix provides administrative tools to destroy contexts and remove
bindings. These are described in the Orbix 2000 Administrator’s Guide.

Federating Naming Graphs
A naming graph can span multiple naming services, which can themselves
reside on different hosts. Given the initial naming context of an external
naming service, a naming context can transparently bind itself to that naming
service’s naming graph. A naming graph that spans multiple naming services
is said to be federated.

A federated naming graph offers the following benefits:

• Reliability: By spanning a naming graph across multiple servers, you can
minimize the impact of a single server’s failure.

Figure 34: Destroying a naming context and removing related bindings

Initial naming

Before After

context
Initial naming
context

Loans

Mortgage

Auto

Personal
 396

Federating Naming Graphs
• Load balancing: You can distribute processing according to logical
groups. Multiple servers can share the work load of resolving bindings
for different clients.

• Scalability: Persistent storage for a naming graph is spread across
multiple servers.

• Decentralized administration: Logical groups within a naming graph can
be maintained separately through different administrative domains,
while they are collectively visible to all clients across the network.

Federation Structures

Each naming graph in a federation must obtain the initial naming context of
other members in order to bind itself to them. The binding possibilities are
virtually infinite; however, two federation models are widely used:

• Fully-connected federation — Each naming graph directly binds itself to
all other naming graphs. Typically, each naming graph binds the initial
naming contexts of all other naming graphs into its own initial naming
context. Clients can access all objects via the initial naming context of
their local naming service.

• Hierarchical federation — All naming graphs are bound to a root server’s
naming graph. Clients access objects via the initial naming context of
the root server.

Figure 35 shows a hierarchal naming service federation that comprises three
servers. The Deposits server maintains naming contexts for checking and
savings accounts, while the Loans server maintains naming contexts for loan
accounts. A single root server serves as the logical starting point for all
naming contexts.
397

Chapter 18 | Naming Service
In this hierarchical structure, the naming graphs in the Deposits and Loans

servers are federated through an intermediary root server. The initial naming
contexts of the Deposits and Loans servers are bound to the root server’s
initial naming context. Thus, clients gain access to either naming graph
through the root server’s initial naming context.

The following code binds the initial naming contexts of the Deposits and
Loans servers to the root server’s initial naming context:

// Root server
#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {

CosNaming::NamingContextExt_var
root_inc, deposits_inc, loans,_inc;

Figure 35: A naming graph that spans multiple servers

Initial naming context

Checking

Savings

NOW

Basic

Premium

Regular
UTMA

Pension

Initial naming context

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Personal

Auto

Mortgage
 398

Federating Naming Graphs
CosNaming::Name_var name;
CORBA::Object_var obj;
CORBA::ORB_var orb_var;
char *loans_inc_ior, deposits_inc_ior

...
try {

orb_var = CORBA::ORB_init(argc, argv, "Orbix");

// code to obtain stringified IORs of initial naming
// contexts for Loans and Deposits servers (not shown)
...

obj = orb_var->string_to_object (loans_inc_ior);
loans_inc ==

CosNaming::NamingContextExt::_narrow(obj);
obj = orb_var->string_to_object (deposits_inc_ior);
deposits_inc ==

CosNaming::NamingContextExt::_narrow(obj);

// get initial naming context for Root server
root_inc = ... ;

// bind Deposits initial naming context to root server
// initial naming context
name = root_inc->to_name("Deposits");
root_inc->bind_context(name, deposits_inc);

// bind Loans initial naming context to root server’s
// initial naming context
name = root_inc->to_name("Loans");
root_inc->bind_context(name, deposits_inc);

}
}

399

Chapter 18 | Naming Service
This yields the following bindings between the three naming graphs:

In a purely hierarchical model like the naming graph just shown, clients
obtain their initial naming context from the root server, and the root server
acts as the sole gateway into all federated naming services. To avoid
bottlenecks, it is possible to modify this model so that clients can gain access
to a federated naming graph via the initial naming context of any member
naming service.

The next code example shows how the Deposits and Loans servers can bind
the root server’s initial naming context into their respective initial naming
contexts. Clients can use this binding to locate the root server’s initial naming
context, and then use root-relative names to locate objects.

Figure 36: Multiple naming graphs are linked by binding initial naming contexts of
several servers to a root server.

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Initial naming contextInitial naming context
 400

Federating Naming Graphs
Figure 37 shows how this federates the three naming graphs:

The code for both Deposits and Loans server processes is virtually identical:

#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {

CosNaming::NamingContextExt_var
root_inc, this_inc;

CosNaming::Name_var name;
CORBA::Object_var obj;
CORBA::ORB_var orb_var;
char *root_inc_ior;
...
try {

orb_var = CORBA::ORB_init (argc, argv, "Orbix");

// code to obtain stringified IORs of root server’s
// initial naming context (not shown)
...

obj = orb_var->string_to_object (root_inc_ior);
root_inc ==

CosNaming::NamingContextExt::_narrow(obj);

Figure 37: The root server’s initial naming context is bound to the initial naming
contexts of other servers, allowing clients to locate the root naming
context.

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Initial naming contextInitial naming context

parent parent
401

Chapter 18 | Naming Service
// get initial naming context for this server
this_inc = ... ;

name = this_inc->to_name("parent");

// bind root server’s initial naming context to
// this server’s initial naming context
this_inc->bind_context(name, root_inc);
...

}

Sample Code
The following sections show the server and client code that is discussed in
previous sections of this chapter.

Server Code
// C++
#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {

CosNaming::NamingContextExt_var root_cxt;
CosNaming::NamingContext_var

checking_cxt, savings_cxt, loan_cxt;
CosNaming::Name_var name;
CORBA::ORB_var orb;
CORBA::Object_var obj;
Checking_var basic_check, now_check, premium_check;
// Checking_var objects initialized from
// persistent data (not shown)

try {
// Initialize the ORB
orb = CORBA::ORB_init(argc, argv, "Orbix");

// Get reference to initial naming context
obj =

orb_var->resolve_initial_references("NameService");
root_cxt = CosNaming::NamingContextExt::_narrow(obj))
 402

Sample Code
if(!CORBA::is_nil(root_cxt)){
// build naming graph

// initialize name
name = root_cxt->to_name("Checking");
// bind new naming context to root
checking_cxt = root_cxt->bind_new_context(name);

// bind checking objects to Checking context
name = root_cxt->to_name("Checking/Basic");
checking_cxt->bind(name, basic_check);
name = root_cxt->to_name("Checking/Premium");
checking_cxt->bind(name, premium_check);
name = root_cxt->to_name("Checking/NOW");
checking_cxt->bind(name, now_check);

name = root_cxt->to_name("Savings");
savings_cxt = root_cxt->bind_new_context(name);

// bind savings objects to savings context
...

name = root_cxt->to_name("Loan");
loan_cxt = root_cxt->bind_new_context(name);

// bind loan objects to loan context
...

}
else {...} // deal with failure to _narrow()
...

} // end of try clause, catch clauses not shown
...

}

Client Code
// C++
#include <omg/CosNaming.hh>
...
int main (int argc, char** argv) {

CosNaming::NamingContextExt_var root_cxt;
CosNaming::Name_var name;
403

Chapter 18 | Naming Service
BasicChecking_var checking_var;
CORBA::Object_var obj;
CORBA::ORB_var orb_var;

try {
orb_var = CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context
obj =

orb_var->resolve_initial_references("NameService");
if (root_cxt ==

CosNaming::NamingContextExt::_narrow(obj)) {
obj = root_cxt->resolve_str("Checking/Basic");
if (checking_var == BasicChecking::_narrow(obj)) {

// perform some operation on basic checking object
...

}
else { ... } // Deal with failure to _narrow()

} else { ... } // Deal with failure to _narrow()

} // end of try clause, catch clauses not shown
...

}

Object Groups and Load Balancing
The naming service defines a repository of names that map to objects. A
name maps to one object only. Orbix extends the naming service model to
allow a name to map to a group of objects. An object group is a collection of
objects that can increase or decrease in size dynamically.

Each object group has a selection algorithm, which is set on the object
group’s creation (see page 408). This algorithm is applied when a client
resolves the name associated with the object group. Three algorithms are
supported:

• Round-robin selection
• Random selection
• Active load balancing selection
 404

Object Groups and Load Balancing
Object groups provide a way to replicate frequently requested objects, and
thereby distribute the request processing load. The naming service directs
client requests to the various replicated objects according to the object
group’s selection algorithm. The existence of an object group is transparent to
the client, which resolves the object group name in the same way that it
resolves any other name.

If you choose the active load balancing algorithm, each object in an object
group is assigned a load count that is periodically updated by servers. The
naming service directs client requests to the object with the lowest load
count.

Figure 38 shows how a name can bind to multiple objects through an object
group.

Orbix supports object groups through its own IDL interfaces. These interfaces
let you create object groups and manipulate them: add objects to and remove
objects from groups, and find out which objects are members of a particular
group. Object groups are transparent to clients.

Figure 38: Associating a name with an object group

 Name

 Name
bind_object_group()

 Object 1

 Object

 Object 3

 Object 2

Object Group

Pure CORBA
naming service

Optional
Orbix
extension

bind()
405

Chapter 18 | Naming Service
Load Balancing Interfaces

IDL modules IT_LoadBalancing and IT_Naming, defined in orbix/
load_balancing.idl and orbix/naming.idl, respectively, provide
operations that allow access to Orbix load balancing:

module IT_LoadBalancing
{

exception NoSuchMember{};
exception DuplicateMember{};
exception DuplicateGroup{};
exception NoSuchGroup{};

typedef string MemberId;
typedef sequence<MemberId> MemberIdList;

enum SelectionMethod
{ ROUND_ROBIN_METHOD, RANDOM_METHOD, ACTIVE_METHOD };

struct Member
{

Object obj;
MemberId id;

};

typedef string GroupId;
typedef sequence<GroupId> GroupList;

interface ObjectGroup
{

readonly attribute string id;
attribute SelectionMethod selection_method;
Object pick();
void add_member (in Member mem)

raises (DuplicateMember);
void remove_member (in MemberId id)

raises (NoSuchMember);
Object get_member (in MemberId id)

raises (NoSuchMember);
MemberIdList members();
void destroy();
void update_member_load(

in MemberIdList ids,
 406

Object Groups and Load Balancing
in double curr_load
) raises (NoSuchMember);
double get_member_load(

in MemberId id
) raises (NoSuchMember);
void set_member_timeout(

in MemberIdList ids,
in long timeout_sec

) raises (NoSuchMember);
long get_member_timeout(

in MemberId id
) raises (NoSuchMember);

};

interface ObjectGroupFactory
{

ObjectGroup create_round_robin (in GroupId id)
raises (DuplicateGroup);

ObjectGroup create_random (in GroupId id)
raises (DuplicateGroup);

ObjectGroup create_active (in GroupId id)
raises (DuplicateGroup);

ObjectGroup find_group (in GroupId id)
raises (NoSuchGroup);

GroupList rr_groups();
GroupList random_groups();
GroupList active_groups();

};
};

For detailed information about these interfaces, see the Orbix 2000
Programmer’s Reference.

Using Object Groups in Orbix
The IT_LoadBalancing module lets servers perform the following tasks:

• Create an object group and add objects to it.
• Add objects to an existing object group.
• Remove objects from an object group.
• Remove an object group.
407

Chapter 18 | Naming Service
Creating an Object Group
You create an object group and add objects to it in the following steps:

1. Get a reference to a naming context such as the initial naming context
and narrow to IT_NamingContextExt.

2. Create an object group factory by calling og_factory() on the naming
context object. This returns a reference to an IT_LoadBalancing::
ObjectGroupFactory object.

3. Create an object group by calling create_random(),
create_round_robin(), or create_active() on the object group
factory. These operations return a reference to an object group of
interface IT_LoadBalancing::ObjectGroup that uses the desired
selection algorithm.

4. Add application objects to the newly created object group by calling
add_member() on it.

5. Bind a name to the object group by calling bind_object_group() on the
naming context object created in step 1.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is unique among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. This identifier
is a string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. Orbix does not
interpret these identifiers.

Adding Objects to an Existing Object Group
Before you add objects to an existing object group, you must get a reference
to the corresponding IT_LoadBalancing::ObjectGroup object. You can do
this by using either the group identifier or the name that is bound to the
object group. This section uses the group identifier.

To add objects to an existing object group:

1. Get a reference to a naming context such as the initial naming context.

2. Narrow the reference to IT_NamingContextExt.
 408

Object Groups and Load Balancing
3. Call og_factory() on the naming context object. This returns a
reference to an ObjectGroupFactory object.

4. Call find_group() on the object group factory, passing the identifier for
the group as a parameter. This returns a reference to the object group.

5. Add application objects to the object group by calling add_member() on
it.

Removing Objects from an Object Group
Removing an object from a group is straightforward if you know the object
group identifier and the member identifier for the object:

1. Get a reference to a naming context such as the initial naming context
and narrow to IT_NamingContextExt.

2. Call og_factory() on the naming context object. This returns a
reference to an ObjectGroupFactory object.

3. On the object group factory, call find_group(), passing the identifier for
the target object group as a parameter. This operation returns a
reference to the object group.

4. Call remove_member() on the object group to remove the required object
from the group. You must specify the member identifier for the object as
a parameter to this operation.

If you already have a reference to the object group, the first three steps are
unnecessary.

Removing an Object Group
To remove an object group for which you have no reference:

1. Call unbind() on the initial naming context to unbind the name
associated with the object group.

2. Call og_factory() on the initial naming context object. This returns a
reference to an ObjectGroupFactory object.

3. Call find_group() on the object group factory, passing the identifier for
the target object group as a parameter. This operation returns a
reference to the object group.

4. Call destroy() on the object group to remove it from the naming
service.
409

Chapter 18 | Naming Service
If you already have a reference to the target object group, steps 2 and 3 are
unnecessary.

Load Balancing Example
This section uses a simple stock market system to show how to use object
groups in CORBA applications. In this example, a CORBA object has access
to all current stock prices. Clients request stock prices from this CORBA
object and display those prices to the end user.

A realistic stock market application needs to make available many stock
prices, and provide many clients with price updates immediately. Given such
a high processing load, one CORBA object might be unable to satisfy client
requirements. You can solve this problem by replicating the CORBA object,
invisibly to the client, through object groups.

Figure 39 shows the architecture for the stock market system, where a single
server creates two CORBA objects from the same interface. These objects
process client requests for stock price information.

Figure 39: Architecture of the stock market example

StockMarketFeed object 1

StockMarketFeed object 2

Naming Service

Object Group

Create group1

Bind name to group2

Add objects to group

3

Client

Resolve group name

4 Get stock price

5 StockMarketFeed object 3

StockMarketFeed object 4

Servers
 410

Load Balancing Example
Defining the IDL for the Application

The IDL for the load balancing example consists of a single interface
StockMarketFeed, which is defined in module ObjectGroupDemo:

// IDL
module ObjectGroupDemo
{

exception StockSymbolNotFound{};
interface StockMarketFeed
{

double read_stock (in string stock_symbol)
raises(StockSymbolNotfound);

};
};

StockMarketFeed has one operation, read_stock(). This operation returns
the current price of the stock associated with string identifier stock_name,
which identifies the desired stock.

Creating an Object Group and Adding Objects

After you define the IDL, you can implement the interfaces. Using object
groups has no effect on how you do this, so this section assumes that you
define class StockMarketFeedServant, which implements interface
StockMarketFeed.

After you implement the IDL interfaces, you develop a server program that
contains and manages implementation objects. The application can have one
or more servers that perform these tasks:

• Creates two StockMarketFeed implementation objects.
• Creates an object group in the naming service.
• Adds the implementation objects to this group.

The server’s main() routine can be written as follows:

#include <stdlib.h>
#include <string.h>
#include <iostream.h>
#include <omg/orb.hh>
#include <omg/PortableServer.hh>
#include <it_ts/termination_handler.h>
411

Chapter 18 | Naming Service
#include <orbix/naming.hh>
#include "stock_i.h"

static CORBA::ORB_var global_orb = CORBA::ORB::_nil();
static PortableServer::POA_var the_poa;

// Needed in global scope so it's available to
termination_handler():

IT_LoadBalancing::ObjectGroup_var rr_og_var;
IT_Naming::IT_NamingContextExt_var it_ins_var;
CosNaming::Name_var nm;
char id1[100], id2[100];

static void
termination_handler(long sig)
{

try
{

cout << "Removing members: " << id1 << " and "
<< id2 << endl;

rr_og_var->remove_member(id1);
rr_og_var->remove_member(id2);

}
catch (...)
{

cerr << "Could not remove members." << endl;
}
IT_LoadBalancing::MemberIdList_var members =

rr_og_var->members();
if (members->length() == 0) // Last one to remove members
{

try
{

cout << "Unbinding object group..." << endl;
it_ins_var->unbind(nm);
cout << "Destroying group..." << endl;
rr_og_var->destroy();

}
catch (...)
{

cerr << "Unbind/destroy failed." << endl;
}

}

 412

Load Balancing Example
cout << "Shutting down the ORB." << endl;
global_orb->shutdown(0);

}

int
main(

int argc,
char *argv[]

)
{

if (argc != 2)
{

cerr << "Usage: ./server <name>" << endl;
return 1;

}

CORBA::String_var server_name = CORBA::string_dup(argv[1]);

try
{

global_orb = CORBA::ORB_init(argc, argv);
}
catch (CORBA::Exception &ex)
{

cerr << "Could not initialize the ORB." << endl;
cerr << "Exception info: " << ex << endl;
return 1;

}
IT_TerminationHandler::set_signal_handler(

termination_handler);

// Initialize the POA and POA Manager:
//
PortableServer::POAManager_var poa_manager;
try
{

CORBA::Object_var poa_obj =
global_orb->resolve_initial_references("RootPOA");

the_poa = PortableServer::POA::_narrow(poa_obj);
poa_manager = the_poa->the_POAManager();

}
catch (CORBA::Exception &ex)
413

Chapter 18 | Naming Service
{
cerr << "Could not obtain the RootPOA or the POAManager."

<< endl;
cerr << "Exception info: " << ex << endl;
return 1;

}

1 // Create 2 StockMarketFeed objects <server_name>:RR_Member1
// and<server_name>:RR_Member2.
strcpy(id1,server_name.in());
strcat(id1,":");
strcat(id1,"RR_Member1");
strcpy(id2,server_name.in());
strcat(id2,":");
strcat(id2,"RR_Member2");
StockServantFeedServant *stk_svnt1 =

new StockServantFeedServant(id1);
StockServantFeedServant *stk_svnt2 =

new StockServantFeedServant(id2);

2 // Resolve naming service and narrow to the interface with IONA
// load balancing extensions, and get the object group factory
//
CORBA::Object_var ins_obj;
IT_LoadBalancing::ObjectGroupFactory_var ogf_var;
try
{

ins_obj =
global_orb->resolve_initial_references("NameService");

it_ins_var =
IT_Naming::IT_NamingContextExt::_narrow(ins_obj);

3 ogf_var = it_ins_var->og_factory();
}
catch (CORBA::Exception &ex)
{

cerr << "Could not obtain or _narrow() reference to "
<< "IT_Naming::IT_NamingContextExt " << endl

<< "interface. Is the Naming Service running?" << endl;
cerr << "Exception info: " << ex << endl;
return 1;

}

 414

Load Balancing Example
// Create a round robin object group and bind it in the
// naming service
CORBA::String_var rr_id_str =

CORBA::string_dup("StockFeedGroup");
try
{

4 rr_og_var = ogf_var->create_round_robin(rr_id_str);
nm = it_ins_var->to_name("StockSvc");

5 it_ins_var->bind_object_group(nm,rr_og_var);
}
catch (...)
{

// OK: assume other server created object group and
// bound it in NS
rr_og_var = ogf_var->find_group(rr_id_str);

}

// Add the StockMarketFeed objects to the Object Group:
6 try

{
IT_LoadBalancing::Member member_info;

member_info.id = CORBA::string_dup(id1);
member_info.obj = stk_svnt1->_this();
rr_og_var->add_member(member_info);

member_info.id = CORBA::string_dup(id2);
member_info.obj = stk_svnt2->_this();
rr_og_var->add_member(member_info);

}
catch (CORBA::Exception &ex)
{

cerr << "Could not add members " << id1 << " , "
<< id2 << endl;

cerr << "Exception info: " << ex << endl;
return 1;

}

// Start accepting requests
try
{

poa_manager->activate();
415

Chapter 18 | Naming Service
cout << "Server ready..." << endl;
7 global_orb->run();

}
catch (CORBA::Exception &ex)
{

cerr << "Could not activate the POAManager,
or orb->run() failed."

<< endl;
cerr << "Exception info: " << ex << endl;
return 1;

}

return 0;
}

This server executes as follows:

1. Instantiates two StockServantFeedServant servants that implement the
StockMarketFeed interface.

2. Obtains a reference to the initial naming context and narrows it to
IT_Naming::IT_NamingContextExt.

3. Obtains an object group factory by calling og_factory() on the naming
context.

4. Calls create_round_robin() on the object group factory to create a new
group with the specified identifier. create_round_robin() returns a new
object group in which objects are selected on a round-robin basis.

5. Calls bind_object_group() on the naming context and binds a specified
naming service name to this group. When a client resolves this name, it
receives a reference to one of the group’s member objects, selected by
the naming service in accordance with the group selection algorithm.

The enclosing try block should allow for the possibility that the group
already exists, where bind_object_group() throws an exception of
CosNaming::NamingContext::AlreadyBound. In this case, the catch
clause calls find_group() in order to obtain the desired object group.
find_group() is also useful in a distributed system, where objects must
be added to an existing object group.

6. Activates two StockMarketFeed objects in the POA and adds them as
members to the object group:
 416

Load Balancing Example
♦ The server creates an IDL struct of type IT_LoadBalancing::
member, and initializes its two members: a string that identifies the
object within the group; and a StockMarketFeed object reference,
created by invoking _this() on each servant.

♦ The server adds the new member to the object group by calling
add_member().

7. Prepares to receive client requests by calling run() on the ORB.

Accessing Objects from a Client

All objects in an object group provide the same service to clients. A client that
resolves a name in the naming service does not know whether the name is
bound to an object group or a single object. The client receives a reference to
one object only. A client program resolves an object group name just as it
resolves a name bound to one object, using standard CORBA-compliant
interfaces.

For example, the stock market client’s main() routine might look like this:

#include <iostream.h>
#include <omg/orb.hh>
#include <orbix/naming.hh>
#include "stock_demo.hh"

static CORBA::ORB_var global_orb = CORBA::ORB::_nil();

int
main(

int argc,
char *argv[]

)
{

if (argc != 2) {
cerr << "Usage: ./client <stock_symbol>" << endl;
return 1;

}

CosNaming::NamingContextExt_var ins;

try {
global_orb = CORBA::ORB_init(argc, argv);
417

Chapter 18 | Naming Service
CORBA::Object_var ins_obj =
global_orb->resolve_initial_references("NameService");

ins = CosNaming::NamingContextExt::_narrow(ins_obj);
}
catch (CORBA::Exception &ex){

cerr << "Cannot resolve/narrow the NameService IOR."
<< endl;

cerr << "Exception info: " << ex << endl;
return 1;

}

StockDemo::StockMarketFeed_var stk_ref;
try {

CORBA::Object_var stk_obj = ins->resolve_str("StockSvc");
stk_ref = StockDemo::StockMarketFeed::_narrow(stk_obj);

}
catch (CORBA::Exception &ex) {

cerr << "Could not resolve/narrow the stock_svc IOR from "
<< "the Naming Service." << endl;

cerr << "Exception info: " << ex << endl;
return 1;

}

double curr_price;

try {
curr_price = stk_ref->read_stock(argv[1]);

}
catch (StockDemo::StockSymbolNotFound &ex) {

cerr << "Stock symbol not found: " << argv[1] << endl;
cerr << "Try another stock symbol." << endl;
return 1;

}
catch (CORBA::Exception &ex) {

cerr << "Exception received: " << ex << endl;
return 1;

}

cout << argv[1] << " stock price is " << curr_price << endl;
return 0;

}

 418

Persistent State Service
The persistent state service (PSS) is a CORBA service for
building CORBA servers that access persistent data.

PSS is tightly integrated with the IDL type system and the object transaction
service (OTS). Orbix PSS implements the standard CosPersistentState
module, and adds proprietary extensions in the IT_PSS module. PSS’s close
integration with OTS facilitates the development of portable applications that
offer transactional access to persistent data such as a database system.

Writing a CORBA application that uses PSS is a three-step process:

• Define the data in PSDL (persistent state data language), which is an
extension of IDL, then run the IDL compiler on the PSDL files to
generate C++ code.

• Write a server program that uses PSS to access and manipulate
persistent data.

• Set PSS plug-in variables in the application’s configuration as required.

Defining Persistent Data
When you develop an application with PSS, you describe datastore
components in the persistent state definition language—PSDL—and save
these in a file with a .psdl extension.

PSDL is a superset of IDL. Like IDL, PSDL is a declarative language, and not
a programming language. It adds new keywords but otherwise conforms to
IDL syntax conventions. A PSDL file can contain any IDL construct; and any
local IDL operation can accept parameters of PSDL types.
419

Chapter 19 | Persistent State Service
Reserved Keywords

The file CosPersistentState.psdl contains all PSDL type definitions, and is
implicitly included in any PSDL specification. The following identifiers are
reserved for use as PSDL keywords (asterisks indicate keywords reserved for
use in future PSS implementations). Avoid using any of the following
keywords as user-defined identifiers:

as*
catalog*
factory
implements
key
of
primary
provides*
ref
scope*
storagehome
storagetype
stores*
strong*

Datastore Model

PSDL contains several constructs that you use to describe datastore
components. These include:

• storagetype describes how data is organized in storage objects of that
type.

• storagehome describes a container for storage objects. Each storage
home is defined by a storage type and can only contain storage objects
of that type. Storage homes are themselves contained by a datastore,
which manages the data—for example a database, a set of files, or a
schema in a relational database. A datastore can contain only one
storage home of a given storage type.

Within a datastore, a storage home manages its own storage objects and the
storage objects of all derived storage homes.

For example, the following two PSDL files describe a simple datastore with a
single Account storage type and its Bank storage home:
 420

Defining Persistent Data
// in bank_demo_store_base.psdl
#include<BankDemo.idl>

module BankDemoStoreBase {
abstract storagetype AccountBase {

state BankDemo::AccountId account_id;
state BankDemo::CashAmount balance;

};

abstract storagehome BankBase of AccountBase {
key account_id;
factory create(account_id, balance);

};
};

// in bank_demo_store.psdl

#include <BankDemo.idl>
#include <BankDemoStoreBase.psdl>

module BankDemoStore {
storagetype Account implements BankDemoStoreBase::AccountBase
{

ref(account_id);
};

storagehome Bank of Account
implements BankDemoStoreBase::BankBase

{};
};

Abstract Types and Implementations

In the PSDL definitions shown previously, abstract types and their
implementations are defined separately in two files:

• BankDemoStoreBase.psdl file defines the abstract storage type
AccountBase and abstract storage home BankBase. Abstract storage
types and abstract storage homes are abstract specifications, like IDL
interfaces.
421

Chapter 19 | Persistent State Service
• BankDemoStore.psdl defines the storage type and storage home
implementations for AccountBase and BankBase in Account storage type
and Bank storage home, respectively.

A storage type implements one or more abstract storage types. Similarly, a
storage home can implement any number of abstract storage homes. By
differentiating abstract types and their implementations, it is possible to
generate application code that is independent of any PSS implementation.
Thus, it is possible to switch from one implementation to another one without
recompiling and relinking.

Given the separation between abstract types and their implementations, the
IDL compiler provides two switches for processing abstract and concrete
definitions:

• The -psdl switch compiles abstract definitions. For example:
idl -psdl bank_demo_store_base.psdl

The IDL compiler generates a C++ abstract base class for each
abstract storagetype and abstract storagehome that is defined in
this file.

• The -pss_r switch generates C++ code that maps concrete PSDL
constructs to relational and relational-like database back-end drivers.
For example:
idl -pss_r bank_demo_store.psdl

The IDL compiler generates C++ classes for each storagetype and
storagehome that is defined in this file.

Note: If you maintain all PSDL code in a single file, you should compile it
only with the -pss_r switch.

Defining Storage Objects

A storage object can have both state and behavior. A storage object’s abstract
storage type defines both with state members and operations, respectively.
 422

Defining Persistent Data
Syntax
The syntax for an abstract storage type definition is similar to the syntax for
an IDL interface; unlike an interface, however, an abstract storage type
definition cannot contain constants or type definitions.

You define an abstract storage type with this syntax:

abstract storagetype abstract-storagetype-name
[: base-abstract-storage-type[,...]

{
[operation-spec;]...
[state-member-spec;]...

};

For example:

abstract storagetype AccountBase {
state BankDemo::AccountId account_id;
state BankDemo::CashAmount balance;

};

The following sections discuss syntax components in greater detail.

Inheritance

As with interfaces, abstract storage types support multiple inheritance from
base abstract storage types, including diamond-shape inheritance. It is illegal
to inherit two members (state or operation) with the same name.

State Members

A storage object’s state members describe the object’s data; you can qualify a
state member with the readonly keyword. You define a state member with
the following syntax:

[readonly] state type-spec member-name;

For each state member, the C++ mapping provides accessor functions that
get and set the state member’s value (see page 459).

A state member’s type can be any IDL type, or an abstract storage type
reference.
423

Chapter 19 | Persistent State Service
Operations

Operations in an abstract storage type are defined in the same way as in IDL
interfaces. Parameters can be any valid IDL parameter type or abstract
storage type reference.

Inherited Operations
All abstract storagetypes implicitly inherit from CosPersistentState::
StorageObject

module CosPersistentState {

// ...
native StorageObjectBase;

abstract storagetype StorageObject {
void destroy_object();
boolean object_exists();
Pid get_pid();
ShortPid get_short_pid();
StorageHomeBase get_storage_home();

};
};

You can invoke StorageObject operations on any incarnation of a storage
object; they are applied to the storage object itself:

destroy_object() destroys the storage object.

object_exists() returns true if the incarnation represents an actual storage
object.

get_pid() and get_short_pid() return the storage object’s pid and short-pid,
respectively.

get_storage_home() returns the storage home instance that manages the
target storage object instance.
 424

Defining Persistent Data
Forward Declarations
As with IDL interface definitions, PSDL can contain forward declarations of
abstract storage types. The actual definition must follow later in the PSDL
specification.

Defining Storage Homes

You define an abstract storage home with an abstract storagehome
definition

abstract storagehome storagehome-name of abstract-storage-type
{

[key-specification]
[factory operation-name(state-member[,...]);]

};

For example, the following PSDL defines abstract storage home BankBase of
storage type AccountBase:

abstract storagehome BankBase of AccountBase
{

key account_id;
factory create(account_id, balance);

};

A storage home lacks state but it can have behavior, which is described by
operations that are defined in its abstract storage homes. For example, you
locate and create a storage object by calling operations on the storage home
where this object is stored.

All storage home instances implicitly derive from local interface
CosPersistentState::StorageHomeBase:

module CosPersistentState {
exception NotFound {};
native StorageObjectBase;

// ...
local interface StorageHomeBase {

StorageObjectBase
find_by_short_pid(

in ShortPid short_pid
425

Chapter 19 | Persistent State Service
) raises (NotFound);
};

};

find_by_short_pid() looks for a storage object with the given short pid in
the target storage home. If the search fails, the operation raises exception
CosPersistentState::NotFound.

Keys
An abstract storage home can define one key. A key is composed from one or
more state members that belong to the storage home’s abstract storage type,
either directly or through inheritance. This key gives the storage home a
unique identifier for the storage objects that it manages.

Two IDL types are not valid for use as key members: valuetype and struct.

A key declaration implicitly declares a pair of finder operations; for more
information, see page 427.

Simple Keys

A simple key is composed of a single state member. You declare a simple key
as follows:

key key-name (state-member);

For example, the PSDL shown earlier defines abstract storage home
BankBase for storage objects of abstract type AccountBase. This definition
can use state member account_id to define a simple key as follows:

key accno(account-id);

If the key’s name is the same as its state member, you can declare it in this
abbreviated form:

key account-id;

Composite Keys

A composite key is composed of multiple state members. You declare a
composite key as follows:

key key-name (state-member, state-member[,...)

A composite key declaration must specify a key name. The types of all state
members must be comparable. The following types are comparable:
 426

Defining Persistent Data
• integral types: octet, short, unsigned short, long, unsigned long,
long long, unsigned long long

• fixed types
• char, wchar, string, wstring
• sequence<octet>

• struct with only comparable members

Finder Operations

A key declaration is equivalent to the declaration of two PSDL finder
operations that use a given key to search for a storage object among the
storage objects that are managed directly or indirectly by the target storage
home:

find_by_key-name() returns an incarnation of the abstract storage home’s
abstract storage type:

abstract-storagetype find_by_key-name(parameter-list)
raises (CosPersistentState::NotFound);

find_ref_by_key_name() •returns a reference to this storage object:
ref<abstract-storage-type> find_ref_by_key_name(parameter-list);

Both operations supply a parameter-list that is composed of in parameters
that correspond to each state member in the key declaration, listed in the
same order. If a storage object with the given key is not found,
find_by_key_name() raises the CosPersistentState::NotFound exception,
and find_ref_by_key_name() returns a NULL reference.

For example, given the following abstract storage type and storage home
definitions:

abstract storagetype AccountBase {
state BankDemo::AccountId account_id;
state BankDemo::CashAmount balance;

};

abstract storagehome Bank of AccountBase {
key accno(account_id);
// ...

};

The accno key declaration implicitly yields these two PSDL operations:
427

Chapter 19 | Persistent State Service
Account find_by_accno(in BankDemo::AccountId)
raises (CosPersistentState::NotFound);

ref<Account> find_ref_by_accno(in BankDemo::AccountId);

Finder operations are polymorphic. For example, the find_by_accno
operation can return a CheckingAccount that is derived from Account.

Operations
Each parameter of a local operation can be of a valid IDL parameter type, or
of an abstract PSDL type.

Factory Operations
In the PSDL shown earlier, abstract storage home BankBase is defined with
the factory create operation. This operation provides a way to create
Account objects in a bank, given values for account_id and balance.

abstract storagehome Bank of AccountBase {
key accno(account_id);
factory create(account_id, balance);

};

Each parameter that you supply to a factory create operation must be the
name of a state member of the abstract storage home’s abstract storage type,
including inherited state members.

The definition of a factory operation is equivalent to the definition of the
following operation:

abstract-storage-type factory-op-name(parameter-list);

where parameter-list is composed of in parameters that correspond to
each state member in the factory operation declaration, listed in the same
order.

For example, given this factory declaration:

abstract storagetype AccountBase {
state BankDemo::AccountId account_id;
state BankDemo::CashAmount balance;

};

abstract storagehome Bank of AccountBase {
 428

Defining Persistent Data
// ...
factory create(account_id, balance);

};

The create factory declaration implicitly yields this operation, which uses
conventional IDL-to-C++ mapping rules:

Account create(
in BankDemo::AccountId account_id,
in BankDemo::CashAmount balance

);

Inheritance
An abstract storage home can inherit from one or more abstract storage
homes, and support diamond-shape inheritance. The following constraints
apply to a base abstract storage home:

• The base abstract storage homes must already be defined.
• The base abstract storage homes must use the same abstract storage

type or base abstract storage type as the derived abstract storage home.
• An abstract storage home cannot inherit two operations with the same

name.

Forward Declarations
As with IDL interface definitions, PSDL can contain forward declarations of
abstract storage homes.

Implementing Storage Objects

A storage type implements one or more abstract storage types, and can
inherit from one other storage type. Storage type implementations are defined
as follows:

storagetype storagetype-name [: storagetype-name]
implements abstract-storagetype[, abstract-storagetype]...

{
[state-member-spec;]...
[ref(state-member[, state-member]...)]

};
429

Chapter 19 | Persistent State Service
The implemented abstract storage type abstract_storagetype must specify
a previously defined abstract storage type.

State Members

A storage type can define state members; these state members supplement
any state members in the abstract storage types that it implements, or that it
inherits from other implementations. You define a state member with the
following syntax:

[readonly] state type-spec member-name;

Reference Representation

A storage type can define a reference representation that serves as a unique
identifier for storage objects in a storage home of that storage type. A storage
type without any base storage type can define a single reference
representation, which is composed of one or more state members. For
example:

storagetype Account implements BankDemoStoreBase::AccountBase
{

ref(account_id);
};

The state members that compose a reference representation must be defined
either in:

• One of the abstract storagetypes that this storage type directly
implements

• The current storage type

Implementing Storage Homes

A storage home implements one or more previously defined abstract storage
homes with this syntax:

storage-home storagehome-name[: storagehome-name]
of storagetype [implements abstract-storagehome[,...]]

{
[primary-key-spec];

};

A storage home specification must include these elements:
 430

Defining Persistent Data
• A storage type that derives from the base storage home’s storage type.
The storage home’s storage type must implement the abstract storage
type of each of the implemented abstract storage homes.

• Either inherits an existing storage home, or implements one or more
existing abstract storage home.

Inheritance
A storage home can inherit form a previously defined storage home. The
following constraints apply:

• The storage type of the base storage home must be a base of the storage
home’s own storage type.

• Two storage homes in a storage home inheritance tree cannot have the
same storage type.

For example, the following specification is not legal:

storagetype A {/* ... */};
storagetype B : A {/* ... */};
storagehome H of A {};
storagehome H2 of B : H {};
storagehome H3 of B : H {}; // error -- B is already storagetype

// of another sub-storage-home of H

Primary Key Declaration
A primary key declaration specifies a distinguished key, as implemented in
relational systems. You can define a primary key in any storage home without
a base storage home.

You can define a primary key in two ways:

• primary key key-spec

key-spec denotes a key that is declared in one of the implemented
abstract storagehomes.

• primary key ref

This statement tells the PSS implementation to use the state members
of the reference representation as the primary key.
431

Chapter 19 | Persistent State Service
Accessing Storage Objects
You access a storage object through its language-specific implementation, or
storage object incarnation. A storage object incarnation is bound to a storage
object in the datastore and provides direct access to the storage object’s
state. Thus, updating a storage object incarnation also updates the
corresponding storage object in the datastore.

Likewise, to use a storage home, you need a programming language object,
or storage home instance.

To access a storage object, a server first obtains a logical connection between
itself and the datastore that contains this storage home’s storage object. This
logical connection, or session, can offer access to one or more datastores.

Figure 40: A server process uses sessions to establish a logical connection with a
datastore and its contents

Process B

Process A

Storage object
incarnations

Storage home instances

Datastore

Storage
homes

Storage
objects

Sessions

Storage home instances
 432

Accessing Storage Objects
Creating Transactional Sessions

PSS provides a local connector object that you use to create sessions.
Because PSS is designed for use in transactional servers, Orbix provides its
own session manager, which automatically creates transactional sessions
that can be associated with transactions. You can also manage transactional
sessions explicitly.

In either case, you create transactional sessions in these steps:

1. Get a reference to the transaction service’s current object by calling
resolve_initial_references("TransactionCurrent") on the ORB,
then narrow the returned reference to a CosTransactions::Current
object.

2. Get a reference to a connector object by calling
resolve_initial_references("PSS") on the ORB, then narrow the
returned reference to a connector object:

♦ IT_PSS::Connector object to use an Orbix SessionManager.

♦ CosPersistentState::Connector to use standard PSS
transactional sessions.

3. Create storage object and storage home factories and register them with
a Connector object. This allows PSS to create storage object incarnations
and storage home instances in the server process, and thereby enable
access to the corresponding datastore objects.

For each PSDL storage home and storage object implementation, the
IDL compiler, using the -pss_r switch, generates a factory creation and
registration operation.For example, given a PSDL storage home
definition of BankDemoStore::Bank, you can instantiate its storage home
factory as follows:

CosPersistentState::StorageHomeFactory* bank_factory =
new IT_PSS_StorageHomeFactory<BankDemoStore::Bank>;

4. After registering factories with the connector, the connector assumes
ownership of the factories, so the server code should call _remove_ref()
on each factory object reference to avoid memory leaks.

5. Create transactional sessions. You can do this in two ways:
433

Chapter 19 | Persistent State Service
♦ Create an Orbix SessionManager, which creates and manages the
desired number of sessions.

♦ Create standard PSS TransactionalSession objects.

6. Associate sessions with transactions. How you do so depends on
whether you create sessions with a SessionManager or with standard
PSS operations:

♦ You associate a SessionManager’s sessions with transactions
through IT_PSS::TxSessionAssociation objects.

♦ You associate standard transactional sessions with transactions
through the TransactionalSession object’s start() operation.

The following example shows how a server can implement steps 1-4. This
code is valid whether you use an Orbix SessionManager or standard PSS
transactional sessions.

int
main(int argc, char** argv)
{

// ...
try
{

// Initialise the ORB as configured in the IMR

cout << "Initializing the ORB" << endl;
global_orb = CORBA::ORB_init(argc, argv, "demos.pss.bank");

1 CORBA::Object_var obj =
global_orb->resolve_initial_references("TransactionCurrent");

CosTransactions::Current_var tx_current =
IT_PSS::Connector::_narrow(obj);

assert(!CORBA::is_nil(tx_current));
2 CORBA::Object_var obj =

global_orb->resolve_initial_references("PSS");

IT_PSS::connector_var connector =
IT_PSS::Connector::_narrow(obj);

assert(!CORBA::is_nil(connector));

3 // Create and register storage object and
// storage home factories
 434

Accessing Storage Objects
CosPersistentState::StorageObjectFactory *acct_factory =
new IT_PSS::StorageObjectFactory<BankDemoStore::Account>;

CosPersistentState::StorageHomeFactory *bank_factory =
new IT_PSS::StorageHomeFactory<BankDemoStore::Bank>;

connector->register_storage_object_factory(
BankDemoStore::_tc_Account->id(),
acct_factory

);

connector->register_storage_home_factory(
BankDemoStore::_tc_Bank->id(),
bank_factory

);

4 // after registration, connector owns factory objects,
// so remove factory references from memory

acct_factory->_remove_ref();
bank_factory->_remove_ref();

// ...
// continuation depends on whether you use Orbix SessionManager
// or PSS TransactionalSessions
//...

The sections that follow describe the different ways to continue this code,
depending on whether you use a SessionManager or standard PSS
transactional sessions.

Using the SessionManager

After you create and register storage object and storage home factories, you
create a SessionManager and associate transactions with its sessions as
follows:

1. Set a list of parameters for the SessionManager to be created, in a
CosPersistentState::ParameterList. At a minimum, the parameter
list specifies the Resource that sessions connect to—for example, a
Berkeley DB environment name. It can also specify the number of
435

Chapter 19 | Persistent State Service
sessions that are initially created for the SessionManager, and whether
to add sessions when all sessions are busy with requests.Table 24
describes all parameter settings.

2. Create a SessionManager by calling it_create_session_manager() on
the Orbix connector. The SessionManager always creates at least two
transactional sessions:

♦ A shared read-only session for read-only non-transactional requests.

♦ A pool of read-write serializable transactional sessions for write
requests, and for any request that is executed in the context of a
distributed transaction.

3. Create an association object IT_PSS::TxSessionAssociation to
associate the SessionManager and the transaction.

4. Use the association object to perform transactional operations on the
datastore’s storage objects.

The following code implements these steps:

// Create SessionManager with one read-only read-committed
// multi-threaded transactional session and one read-write
// serializable single-threaded transactional session

1 CosPersistentState::ParameterList parameters(2);
parameters.length(2);
parameters[0].name = CORBA::string_dup("to");
parameters[0].val <<= CORBA::Any::from_string

("bank", true);
parameters[1].name = CORBA::string_dup("single writer");
parameters[1].val <<= CORBA::Any::from_boolean(true);

2 IT_PSS::SessionManager_var session_mgr =
connector->it_create_session_manager(parameters);

3 IT_PSS::TxSessionAssociation association(
session_mgr.in(),
CosPersistentState::READ_ONLY,
CosTransactions::Coordinator::_nil() // use the shared

// read-only session
);

4 // show balances in all accounts
// The query API is proprietary; it is similar to JDBC
 436

Accessing Storage Objects
IT_PSS::Statement_var statement =
association.get_session_nc()->it_create_statement();

IT_PSS::ResultSet_var result_set = statement->execute_query(
"select ref(h) from PSDL:BankDemoStore/Bank:1.0 h"

);

cout << "Listing database: account id, balance" << endl;
BankDemoStore::AccountBaseRef account_ref;
CORBA::Any_var ref_as_any;
while (result_set->next())
{

ref_as_any = result_set->get(1);
CORBA::Boolean ok = (ref_as_any >>= account_ref);
assert(ok);
cout << " "

<< account_ref->account_id()
<< ", $" << account_ref->balance()
<< endl;

}
result_set->close();

association.suspend();
// ...
return 0;

}

Setting SessionManager Parameters
You supply parameters to it_create_session_manager() through a
CosPersistentState::ParameterList, which is defined as a sequence of
Parameter types. Each Parameter is a struct with name and val members:

• name is a string that denotes the parameter type.
• val is an any that sets the value of name.
437

Chapter 19 | Persistent State Service
The parameter list must specify the Resource that sessions connect to—for
example, an ODBC datasource name or Oracle database name. Table 24
describes all parameter settings

Table 24: SessionManager parameters

Parameter
name

Type Description

to string Identifies the datastore to connect to. For
example with PSS/DB, it will be an
environment name.

You must set this parameter.

rw pool size long Initial size of the pool of read-write
transactional sessions managed by the
session manager. The value must be
between 1 and 1000, inclusive.

The default value is 1.

grow pool boolean If set to TRUE, specifies to create a new
session to process a new request when all
read-write transactional sessions are busy. A
value of FALSE, specifies to wait until a
read-write transactional session becomes
available.

The default value is FALSE.

single writer boolean Can be set to TRUE only if rw pool size is 1.
In this case, specifies to create a single
read-write transactional session that allows
only one writer at a time.

The default value is FALSE.
 438

Accessing Storage Objects
Creating a SessionManager
You create a SessionManager by calling it_create_session_manager() on
the Orbix connector. it_create_session_manager() takes a single
ParameterList argument (see page 437), and is defined in the IT_PSS::

Connector interface as follows:

module IT_PSS {
// ...
local interface Connector : CosPersistentState::Connector
{

SessionManager
it_create_session_manager(

in CosPersistentState::ParameterList parameters
);

};
}

Associating a Transaction with a Session
The association object IT_PSS::TxSessionAssociation associates a
transaction with a session that is managed by the SessionManager. You
create an association object by supplying it with a SessionManager and the
access mode. The CosPersistentState module defines two AccessMode
constants: READ_ONLY and READ_WRITE

The IT_PSS::TXSessionAssociation interface defines two constructors for a
TxSessionAssociation object:

namespace IT_PSS {
//...
class TxSessionAssociation {
public:

TxSessionAssociation(
SessionManager_ptr session_mgr,
CosPersistentState::AccessMode access_mode

) throw (CORBA::SystemException);

TxSessionAssociation(
SessionManager_ptr session_mgr,
CosPersistentState::AccessMode access_mode,
CosTransactions::Coordinator_ptr tx_coordinator
439

Chapter 19 | Persistent State Service
) throw (CORBA::SystemException);

~TxSessionAssociation()
throw(CORBA::SystemException);
// ...

};

The first constructor supplies only the session manager and access mode.
This constructor uses the default coordinator object that is associated with
the current transaction (CosTransactions::Current). The second
constructor lets you explicitly specify a coordinator; or to specify no
coordinator by supplying _nil(). If you specify _nil(), the association uses
the shared transaction that is associated with the shared read-only session;
therefore, the access mode must be READ_ONLY.

A new association is initially in an active state—that is, it allows transactions
to use the session to access storage objects. You can change the associa-
tion’s state by calling suspend() or end() operations on it (see page 441).

Association Object Operations
An association object has several operations that are defined as follows:

namespace IT_PSS {
// ...
class TxSessionAssociation{
public:

// ...
TransactionalSession_ptr
get_session_nc() const throw ();

CosTransactions::Coordinator_ptr
get_tx_coordinator_nc() const throw();

void
suspend() throw (CORBA::SystemException);

void
end(

CORBA::Boolean success = true
) throw (CORBA::SystemException);

};
};
 440

Accessing Storage Objects
get_session_nc() returns the session for this association object. After you
obtain the session, you can access storage objects in the datastore that this
session connects to.

get_tx_coordinator_nc() returns the coordinator of this association’s
transaction.

suspend() suspends a session-Resource association. This operation can
raise two exceptions:

• PERSIST_STORE: there is no active association
• INVALID_TRANSACTION: The given transaction does not match the

transaction of the Resource actively associated with this session.

end() terminates a session-Resource association. The end operation raises
the standard exception PERSIST_STORE if there is no associated Resource,
and INVALID_TRANSACTION if the given transaction does not match the
transaction of the Resource associated with this session. If the success
parameter is FALSE, the Resource is rolled back immediately. Like
refresh(), end() invalidates direct references to incarnations’ data
members.

A Resource can be prepared or committed in one phase only when it is not
actively associated with any session. If asked to prepare or commit in one
phase when still in use, the Resource rolls back. A Resource (provided by the
PSS implementation) ends any session-Resource association in which it is
involved when it is prepared, committed in one phase, or rolled back.

Using an Association to Access Storage Objects
You can use an association object to access the data in storage objects. The
example shown earlier (see page 435) queries the data in all Account storage
objects in the Bank storage home. In order to obtain data from a given
storage object, you typically follow this procedure:

Use an association object to get the current session.
441

Chapter 19 | Persistent State Service
Managing Transactional Sessions

The previous section shows how to use the Orbix SessionManager to create
and manage transactional sessions. The Orbix SessionManager is built on top
of the CosPersistentState::TransactionalSession interface. You can use
this interface to manage transactional sessions directly.

Note: PSS also provides the CosPersistentState::Session interface to
manage basic sessions for file-like access. This interface offers only
non-transactional functionality whose usefulness is limited to simple
applications; therefore, it lies outside the scope of this discussion, except
insofar as its methods are inherited by CosPersistentState::
TransactionalSession.

After you create and register storage object and storage home factories, you
create a session and associate transactions with it as follows:

1. Create a TransactionalSession by calling
create_transactional_session() on a Connector object.

2. Activate the transactional session by calling start() on it. The
transactional session creates a new CosTransactions::Resource, and
registers it with the transaction.

For more information about CosTransactions::Resource objects, see
page 368.

3. Use the session-Resource association to perform transactional
operations on the datastore’s storage objects.

Creating a Transactional Session
Sessions are created through Connector objects. A Connector is a local
object that represents a given PSS implementation.

Each ORB-implementation provides a single instance of the local Connector
interface, which you obtain through resolve_initial_references("PSS")
then narrowing the returned reference to a CosPersistentState::Connector
object. You use the Connector object to create a TransactionalSession object
by calling create_transactional_session() on it:
 442

Accessing Storage Objects
module CosPersistentState {
// ...

// forward declarations
local interface TransactionalSession;
// ...

struct Parameter {
string name;
any val;

};

typedef sequence<Parameter> ParameterList;

local interface Connector {
// ...
TransactionalSession
create_transactional_session(

in AccessMode access_mode,
in IsolationLevel default_isolation_level,
in EndOfAssociationCallback callback,
in TypeId catalog_type_name,
in ParameterList additional_parameters

);
};
// ...

};

The parameters that you supply to create_transactional_session() define
the new session’s behavior:

• The access mode for all Resource objects to be created by the session.
The CosPersistentState module defines two AccessMode constants:
READ_ONLY
READ_WRITE

• The default isolation level for all Resource objects to be created by the
session. The CosPersistentState module defines four IsolationLevel
constants:
READ_UNCOMMITTED
READ_COMMITTED
REPEATABLE_READ
SERIALIZABLE
443

Chapter 19 | Persistent State Service
• A callback object to invoke when a session-Resource association ends
(see page 444).

• A ParameterList that specifies the datastore to connect to, and optionally
other session characteristics (see page 444).

Note: The catalog_type_name parameter is currently not supported. Set it
to an empty string.

End-of-Association Callbacks

When a session-Resource association ends, the session might not become
available immediately. For example, if the session is implemented with an
ODBC or JDBC connection, the PSS implementation needs this connection
until the Resource is committed or rolled back.

A session pooling mechanism might want to be notified when PSS releases a
session. You can do this by passing a EndOfAssociationCallback local
object to the Connector::create_transactional_session operation:

module CosPersistentState {
// ...
local interface EndOfAssociationCallback {

void released(in TransactionalSession session);
};

};

ParameterList Settings

You set session parameters in a ParameterList, which is a sequence of
Parameter types. Each Parameter is a struct with name and val members:

name is a string that denotes the parameter type.

val is an any that sets the value of name.
 444

Accessing Storage Objects
The parameter list must specify the Resource that sessions connect to—for
example, a Berkeley DB environment name. Table 25 describes all
parameter settings

Activating a Transactional Session
When you create a transactional session, it is initially in an inactive state—
that is, the session is not associated with any Resource. You associate the
session with a Resource by calling start() on it, supplying the name of a
transaction’s coordinator object (see page 447). This function associates the
session with a Resource, and registers the Resource with the coordinator’s
transaction.

Table 25: ParameterList settings for a TransactionalSession

Parameter
name

Type Description

to string Identifies the datastore to connect to. For
example with PSS/DB, it will be an
environment name; with PSS/ODBC a
datasource name; with PSS/Oracle, an
Oracle database name.

You must set this parameter.

concurrent boolean If set to TRUE, the session can be used by
multiple concurrent threads.

The default value is FALSE.

single writer boolean Can be set to TRUE only if this session is the
only session that writes to this database. A
value of TRUE eliminates the risk of deadlock;
the cache can remain unchanged after a
commit.

The default value is FALSE.
445

Chapter 19 | Persistent State Service
A transactional session is associated with one Resource object (a datastore
transaction), or with no Resource at all. During its lifetime, a
session-Resource association can be in one of three states—active,
suspended, or ending—as shown in Figure 41:

The state members of a storage object’s incarnation are accessible only when
the transactional session has an active association with a Resource.

Typically, a Resource is associated with a single session for its entire lifetime.
However, with some advanced database products, the same Resource can
be associated with several sessions, possibly at the same time.

The TransactionalSession interface has this definition:

module CosPersistentState {

// ...
typedef short IsolationLevel;
const IsolationLevel READ_UNCOMMITTED = 0;
const IsolationLevel READ_COMMITTED = 1;
const IsolationLevel REPEATABLE_READ = 2;
const IsolationLevel SERIALIZABLE = 3;

Figure 41: Transactional session states

ACTIVE SUSPENDED

INACTIVEcreation

start

ENDING

end
start

destruction

suspend

end

start
 446

Accessing Storage Objects
interface TransactionalSession : Session {

readonly attribute IsolationLevel default_isolation_level;

typedef short AssociationStatus;
const AssociationStatus NO_ASSOCIATION = 0;
const AssociationStatus ACTIVE = 1;
const AssociationStatus SUSPENDED = 2;
const AssociationStatus ENDING = 3;

void start(in CosTransactions::Coordinator transaction);
void suspend(in CosTransactions::Coordinator transaction);
void end(

in CosTransactions::Coordinator transaction,
in boolean success

);

AssociationStatus get_association_status();
CosTransactions::Coordinator get_transaction();
IsolationLevel
get_isolation_level_of_associated_resource();

};
};

Managing a Transactional Session
The TransactionalSession interface provides a number of functions to
manage a transactional session.

start() activates a transactional session. If the session is new, it performs
these actions:

• Creates a new Resource and registers it with the given transaction.
• Associates itself with this Resource.

If the session is already associated with a Resource but is in suspended
state, start() resumes it.

suspend() suspends a session-Resource association. This operation can
raise two exceptions:

• PERSIST_STORE: there is no active association
447

Chapter 19 | Persistent State Service
• INVALID_TRANSACTION: The given transaction does not match the
transaction of the Resource actively associated with this session.

end() terminates a session-Resource association. If its success parameter is
FALSE, the Resource is rolled back immediately. Like refresh(), end()
invalidates direct references to the data members of incarnations.

This operation can raise one of the following exceptions

• PERSIST_STORE: There is no associated Resource
• INVALID_TRANSACTION: The given transaction does not match the

transaction of the Resource associated with this session

A Resource can be prepared or committed in one phase only if it is not
actively associated with any session. If asked to prepare or commit in one
phase when still in use, the Resource rolls back. A Resource ends any
session-Resource association in which it is involved when it is prepared,
committed in one phase, or rolled back.

Note: In XA terms, start() corresponds to xa_start() with either the
TMNOFLAGS, TMJOIN or TMRESUME flag. end corresponds to xa_end() with the
TMSUCCESS or the TMFAIL flag. suspend corresponds to xa_end() with the
TMSUSPEND or TMSUSPEND | TMMIGRATE flag.

get_association_status() returns the status of the association (if any) with
this session. The association status can be one of these AssociationStatus
constants:

NO_ASSOCIATION
ACTIVE
SUSPENDED
ENDING

See “Activating a Transactional Session” on page 445 for more information
about a transactional session’s different states.

get_transaction() returns the coordinator of the transaction with which the
Resource associated with this session is registered. get_transaction returns
a nil object reference when the session is not associated with a Resource.
 448

Accessing Storage Objects
When data is accessed through a transactional session that is actively
associated with a Resource, a number of undesirable phenomena can occur:

• Dirty reads: A dirty read occurs when a Resource is used to read the
uncommitted state of a storage object. For example, suppose a storage
object is updated using Resource 1. The updated storage object’s state
is read using Resource 2 before Resource 1 is committed. If Resource 1
is rolled back, the data read with Resource 2 is considered never to have
existed.

• Nonrepeatable reads: A nonrepeatable read occurs when a Resource is
used to read the same data twice but different data is returned by each
read. For example, suppose Resource 1 is used to read the state of a
storage object. Resource 2 is used to update the state of this storage
object and Resource 2 is committed. If Resource 1 is used to reread the
storage object’s state, different data is returned.

The degree of an application’s exposure to these occurrences depends on the
isolation level of the Resource. The following isolation levels are defined:

Note: Isolation level REPEATABLE_READ is reserved for future use.

get_isolation_level_of_associated_resource() returns the isolation level of
the Resource associated with this session. If no Resource is associated with
this session, the operation raises the standard exception PERSIST_STORE.

resource_isolation_level (read-only attribute) returns the isolation level of the
Resource objects created by this session.

Table 26: Isolation levels

Isolation level Exposure risk

READ_UNCOMMITTED Dirty reads and the nonrepeatable reads

READ_COMMITTED Only nonrepeatable reads

SERIALIZABLE None
449

Chapter 19 | Persistent State Service
Basic Session Management Operations
The CosPersistentState::TransactionalSession interface inherits a
number of operations (via CosPersistentState::Session) from the
CosPersistentState::CatalogBase interface. CatalogBase operations
provide access to a datastore’s storage homes and storage objects; it also
provides several memory-management operations:

module CosPersistentState {
interface CatalogBase {

readonly attribute AccessMode access_mode;

StorageHomeBase
find_storage_home(in string storage_home_type_id)

raises (NotFound);

StorageObjectBase
find_by_pid(in Pid the_pid) raises (NotFound);

void flush();
void refresh();
void free_all();
void close();

};
// ...
local interface Session : CatalogBase {};

interface TransactionalSession : Session {
// ...
};

};

find_storage_home() returns a storage home instance that matches the
supplied storagehome ID. If the operation cannot find a storage home, it
raises a NotFound exception.

find_by_pid() searches for the specified storage object among the storage
homes that are provided by the target session. If successful, the operation
returns an incarnation of the specified storage object; otherwise, it raises the
exception NotFound.
 450

Accessing Storage Objects
flush() writes to disk any cached modifications of storage object incarnations
that are managed by this session. This operation is useful when an
application creates a new storage object or updates a storage object, and the
modification is not written directly to disk. In this case, you can call flush()
to rid the cache of “dirty” data.

refresh() refreshes any cached storage object incarnations that are accessed
by this session. This operation is liable to invalidate any direct reference to a
storage object incarnation’s data member.

free_all() sets to 0 the reference count of all PSDL storage objects that have
been incarnated for the given session.

PSDL storage object instances are reference-counted by the application.
Freeing references can be problematic for storage objects that hold references
to other storage objects. For example, if storage object A holds a reference to
storage object B, A’s incarnation owns a reference count of B’s incarnation.
When storage objects form a cyclic graph, the corresponding instances own
reference count of each other. For example, the following PSDL storage type
definition contains a reference to itself:

abstract storagetype Person {
readonly state string full_name;
state ref<Person> spouse;

};

When a couple is formed, each Person incarnation maintains the other
Person’s incarnation in memory. Therefore, the cyclic graph can never be
completely released even if you correctly release all reference counts. In this
case, the application must call free_all().

close() terminates the session. When the session is closed, it is also flushed.
If the session is associated with one or more transactions (see below) when
close() is called, these transactions are marked as roll-back only.

Getting a Storage Object Incarnation

After you have an active session, you use this session to get a storage home;
you can obtain from this storage home incarnations of its storage objects. You
can then use these incarnations to manipulate the actual storage object data.
451

Chapter 19 | Persistent State Service
To get a storage home, call find_storage_home() on the session. You
narrow the result to the specific storage home type.

Call one of the following operations on the storage home to get the desired
storage object incarnation:

• One of the find operations that are generated for key in that storage
home. (see page 427).

• find_by_short_pid()

Querying Data

Orbix PSS provides simple JDBC-like queries.You use an IT_PSS::
CatalogBase to create a Statement. For example:

IT_PSS::Statement_var stmt
= catalog->it_create_statement();

Then you execute a query that returns a result set:

// Gets all accounts
IT_PSS::ResultSet_var result_set

= stmt->execute_query("select ref(h) from PSDL:Bank:1.0 h");
while (result_set->next())
{

CORBA::Any_var ref_as_any = result_set->get(1);
BankDemoStore::AccountRef ref;
ref_as_any >>= ref;
cout << "account_id: " << ref->account_id()

<< " balance: $" << ref->balance()
<< endl;

}
result_set->close(); // optional in C++
statement->close(); // optional in C++

Orbix PSS supports the following form of query:

select ref(h) from home_type_id h

The alias must be h.
 452

Accessing Storage Objects
Associating CORBA and Storage Objects

The simplest way to associate a CORBA object with a storage object is to
bind the identity of the CORBA object (its oid, an octet sequence) with the
identity of the storage object.

For example, to make the storage objects stored in storage home Bank
remotely accessible, you can create for each account a CORBA object whose
object ID is the account number (account_id).

To make such a common association easier to implement, each storage
object provides two external representations of its identity as octet
sequences: the pid and the short_pid:

• short_pid is a unique identifier within a storage home and its derived
homes.

• pid is a unique identifier within the datastore.

Thread Safety

A storage object can be used like a struct: it is safe to read concurrently the
same storage object incarnation, but concurrent writes or concurrent read/
write are unsafe. This behavior assumes that a writer typically uses its own
transaction in a single thread; it is rare for an application to make concurrent
updates in the same transaction.

Flushing or locking a storage object is like reading this object. Discarding an
object is like updating it.

A number of CosPersistentState::Session operations are not thread-safe
and should not be called concurrently. No thread should use the target
session, or any object in the target session such as a storage object
incarnation or storage home, when one of these operations is called:

Session::free_all()
Session::it_discard_all()
Session::refresh()
Session::close()
TransactionalSession::start()
TransactionalSession::suspend()
TransactionalSession::end()
453

Chapter 19 | Persistent State Service
OTS operations are thread-safe. For example one thread can call
tx_current->rollback() while another thread calls start(), suspend(), or
end() on a session involved in this transaction, or while a thread is using
storage objects managed by that session.

PSDL Language Mappings
Application code that uses PSS interacts with abstract storage types, abstract
storage homes and types defined in the CosPersistentState module. This
code is completely shielded from PSS-implementation dependencies by the
C++ language mapping for abstract storage types, abstract storage homes,
and the types defined by the CosPersistentState module.

Storage types and storage homes are mapped to concrete programming
language constructs with implementation-dependent parts such as C++
members.

The C++ mapping for PSDL and IDL modules is the same. The mapping for
abstract storage types and abstract storage homes is similar to the mapping
for IDL structs and abstract valuetypes; the mapping for storage types and
storage homes is similar to the mapping for IDL structs or valuetypes.

Implementation of operations in abstract storage types and abstract storage
homes are typically provided in classes derived from classes generated by the
psdl backend to the IDL compiler.

The CosPersistentState module defines factories to create instances of all
user-defined classes, and operations to register them with a given connector:

module CosPersistentState {
native StorageObjectFactory;
native StorageHomeFactory;
native SessionFactory;

interface Connector {

StorageObjectFactory
register_storage_object_factory(

in TypeId storage_type_name,
in StorageObjectFactory factory

);
 454

PSDL Language Mappings
StorageHomeFactory
register_storage_home_factory(

in TypeId storage_home_type_name,
in StorageHomeFactory factory

);

SessionFactory
register_session_factory(

in TypeId catalog_type_name,
in SessionFactory factory

);

// ...
};

};

Each register_ operation returns the factory previously registered with the
given name; it returns NULL if there is no previously registered factory.

The CosPersistentState module also defines two enumeration types:

module CosPersistentState {
enum YieldRef { YIELD_REF };
enum ForUpdate { FOR_UPDATE };

};

YieldRef defines overloaded functions that return incarnations and
references.

ForUpdate defines an overloaded accessor function that updates the state
member.

abstract storagehome

The language mappings for abstract storage homes are defined in terms of an
equivalent local interface: the mapping of an abstract storage home is the
same as the mapping of a local interface of the same name.

Inherited abstract storages homes map to inherited equivalent local
interfaces in the equivalent definition.
455

Chapter 19 | Persistent State Service
The equivalent local interface of an abstract storage home that does not
inherit from any other abstract storage home inherits from local interface
CosPersistentState::StorageHomeBase.

abstract storagetype

An abstract storage type definition is mapped to a C++ abstract base class
of the same name. The mapped C++ class inherits (with public virtual
inheritance) from the mapped classes of all the abstract storage type
inherited by this abstract storage type.

For example, given this PSDL abstract storage type definition:

abstract storagetype A {}; // implicitly inherits
// CosPersistentState::StorageObject

abstract storagetype B : A {};

the IDL compiler generates the following C++ class:

class A :
public virtual CosPersistentState::StorageObject {};

class ARef { /* ... */};
class B : public virtual A {};
class BRef {/*... */};

The forward declaration of an abstract storage type is mapped to the forward
declaration of its mapped class and Ref class.

Ref Class
For each abstract storage type and concrete storage type definition, the IDL
compiler generates the declaration of a concrete C++ class with Ref
appended to its name.

A Ref class behaves like a smart pointer: it provides an operator->() that
returns the storage object incarnation corresponding to this reference; and
conversion operators to convert this reference to the reference of any base
type.
 456

PSDL Language Mappings
Note: Ref types manage memory in the same way as _ptr reference types.
For functionality that is equivalent to a _var reference type, the IDL compiler
(with the -psdl switch) also generates Ref_var types (see page 459).

A pointer to a storage object incarnation can be implicitly converted into a
reference of the corresponding type, or of any base type. Each reference also
has a default constructor that builds a NULL reference, and a number of
member functions that some implementations might be able to provide
without loading the referenced object.

Each Ref class has the following public members:

• Default constructor that creates a NULL reference.
• Non-explicit constructor takes an incarnation of the target storage type.
• Copy constructor.
• Destructor.
• Assignment operator.
• Assignment operator that takes an incarnation of the target [abstract]

storage type.
• operator->() that dereferences this reference and returns the target

object. The caller is not supposed to release this incarnation.
• deref() function that behaves like operator->()
• release() function that releases this reference
• destroy_object() that destroys the target object
• get_pid() function which returns the pid of the target object.
• get_short_pid() function which returns the short-pid of the target

object.
• is_null() function that returns true only if this reference is NULL.
• get_storage_home() function that returns the storage home of the target

object.
• For each direct or indirect base class of the abstract storage type, a

conversion operator that converts this object to the corresponding Ref.

Each reference class also provides a typedef to its target type, _target_type.
This is useful for programming with templates.

For example, given this abstract storage type:

abstract storagetype A {};
457

Chapter 19 | Persistent State Service
the IDL compiler generates the following reference class:

class ARef
{
public:

typedef A _target_type;

// Constructors
ARef() throw ();
ARef(A* target) throw ();
ARef(const ARef& ref) throw ();
// Destructor
~ARef() throw ();

// Assignment operator

ARef& operator=(const ARef& ref) throw ();
ARef& operator=(T* obj) throw ();

// Conversion operators
operator CosPersistentState::StorageObjectRef() const throw();

// Other member functions
void release() throw ();
A* operator->() throw (CORBA::SystemException);
A* deref() throw (CORBA::SystemException);
void destroy_object() throw (CORBA::SystemException);

CosPersistentState::Pid*
get_pid() const throw (CORBA::SystemException);

CosPersistentState::ShortPid*
get_short_pid() const throw (CORBA::SystemException);

CORBA::Boolean is_null() const throw ();

CosPersistentState::StorageHomeBase_ptr
get_storage_home() const throw (CORBA::SystemException);

// additional implementation-specific members
};
 458

PSDL Language Mappings
For operation parameters, Refs are mapped as follows:

Ref_var Classes

The _var class associated with a _var provides the same member functions
as the corresponding Ref class, and with the same behavior. It also provides
these members:

• The ref() function returns a pointer to the managed reference, or 0 if
the managed reference is NULL.

• Constructors and assignment operators that accept Ref pointers.

State Members

Each state member is mapped to a number of overloaded public pure virtual
accessor and modifier functions, with the same name as the state member.
These functions can raise any CORBA standard exception.

A state member of a basic C++ type is mapped like a value data member.
There is no modifier function if the state member is read-only.

For example, the following PSDL definition:

// PSDL
abstract storagetype Person {

state string name;
};

is mapped to this C++ class:

// C++
class Person : public virtual CosPersistentState::StorageObject {
public:

virtual const char* name() const = 0;
virtual void name(const char* s) = 0; // copies

PSDL C++

in ref<S> SRef

inout ref<S> SRef&

out ref<S> SRef_out

(return) ref<S> SRef
459

Chapter 19 | Persistent State Service
virtual void name(char* s) = 0; // adopts
virtual void name(const CORBA::string_var &) = 0;

};

A state member whose type is a reference to an abstract storage type is
mapped to two accessors and two modifier functions. One of the accessor
functions takes no parameter and returns a storage object incarnation, the
other takes a CosPersistentState::YieldRef parameter and returns a
reference. One of the modifier functions takes an incarnation, the other one
takes a reference. If the state member is read-only, only the accessor
functions are generated.

For example, the following PSDL definition:

abstract storagetype Bank;

abstract storagetype Account {
state long id;
state ref<Bank> my_bank;

};

is mapped to this C++ class:

// C++
class Account : public virtual CosPersistentState::StorageObject {
public:

virtual CORBA::Long id() = 0;
virtual void id(CORBA::Long l) = 0;
virtual Bank* my_bank() const= 0;
virtual BankRef my_bank

(CosPersistentState::YieldRef yr) const = 0;
virtual void my_bank(BankRef b) = 0;

};

All other state members are mapped to two accessor functions—one
read-only, and one read-write—and one modifier function. If the state
member is read-only, only the read-only accessor is generated. For example,
the following PSDL definition:

abstract storagetype Person {
readonly state string name;
state CORBA::OctetSeq photo;

};

is mapped to this C++ class:
 460

PSDL Language Mappings
// C++
class Person : public virtual CosPersistentState::StorageObject {
public:

virtual const char* name() = 0;
virtual const OctetSeq& photo() const = 0;
virtual OctetSeq& photo(CosPersistentState::ForUpdate fu)

= 0;
virtual void photo(const OctetSeq& new_one) = 0;

};

Operation Parameters

Table 27 shows the mapping for parameters of type S and ref<S> (where S
is an abstract storage type:.

storagetype

A storagetype is mapped to a C++ class of the same name. This class
inherits from the mapped classes of all the abstract storage types
implemented by the storage type, and from the mapped class of its base
storage type, if any. This class also provides a public default constructor.

All state members that are implemented directly by the storage type are
implemented by the mapped class as public functions.

For example, the following PSDL definition:

abstract storagetype Dictionary {
readonly state string from_language;
readonly state string to_language;
void insert(in string word, in string translation);

Table 27: Mapping for PSDL parameters

PSDL parameter C++ parameter

in S param const S* param

inout S param S& param

out S param S_out param

(return) S (return) S*
461

Chapter 19 | Persistent State Service
string translate(in string word);
};

// a portable implementation:

struct Entry {
string from;
string to;

};
typedef sequence<Entry> EntryList;

storagetype PortableDictionary implements Dictionary {
state EntryList entries;

};

is mapped to this C++ class:

// C++
class PortableDictionary : public virtual Dictionary /* ... */ {
public:

const char* from_language() const;
const char* to_language() const;
const EntryList& entries() const;
EntryList& entries(CosPersistentState::ForUpdate fu);
void entries(const EntryList&);
PortableDictionary();
// ...

};

For each storage type, a concrete Ref class is also generated. This Ref class
inherits from the Ref classes of all the abstract storage types that the storage
type implements, and from the Ref class of the base storage type, if any.

The IDL compiler generates Ref class declarations for a storage type exactly
as it does for an abstract storage type. For more information, see page 456.

storagehome

A storagehome is mapped to a C++ class of the same name. This class
inherits from the mapped classes of all the abstract storage homes
implemented by the storage home, and from the mapped class of its base
storage home, if any. This class also provides a public default constructor.
 462

PSDL Language Mappings
A storage home class implements all finder operations implicitly defined by
the abstract storage homes that the storage home directly implements.

The mapped C++ class provides two public non-virtual _create() member
functions with these signatures:

• A parameter for each storage type state member. This _create()
function returns an incarnation.

• A parameter for each storage type state member, and a
CosPersistentState::YieldRef parameter. This _create() function
returns a reference.

It also provides two public virtual _create() member functions with these
signatures:

• A parameter for each storage type’s reference representation members.
This _create() function returns an incarnation

• A parameter for each storage type’s reference representation members,
and a CosPersistentState::YieldRef parameter. This _create()
function returns a reference.

For example, given the following definition of storage home
PortableBookStore:

abstract storagetype Book {
readonly state string title;
state float price;

};
abstract storagehome BookStore of Book {};

storagetype PortableBook implements Book {
ref(title)

};

storagehome PortableBookStore of PortableBook implements BookStore
{};

the IDL compiler (with the pss_r backend) generates the C++ class
PortableBookStore:

// C++
class PortableBookStore : public virtual BookStore /* ... */ {
public:

virtual PortableBook* _create(const char* title, Float price);
virtual PortableBook* _create();
463

Chapter 19 | Persistent State Service
virtual PortableBookRef _create(
const char* name,
Float price,
CosPersistentState::YieldRef yr

);
virtual PortableBookRef _create(

const char* title,
CosPersistentState::YieldRef yr

);
// ...

};

Factory Native Types

Native factory types StorageObjectFactory, StorageHomeFactory, and
SessionFactory map to C++ classes of the same names:

namespace CosPersistentState {

template class<T>
class Factory {

public:
virtual T* create()

throw (SystemException) = 0;
virtual void _add_ref() {}
virtual void _remove_ref() {}
virtual ~Factory() {}

};

typedef Factory<StorageObject> StorageObjectFactory;
typedef Factory<StorageHomeBase> StorageHomeFactory;
typedef Factory<Session> SessionFactory;

};
 464

Event Service
This chapter provides a detailed description of the CORBA
event service communications model and describes how
Orbix 2000 implements this model.

Orbix 2000 implements the CORBA event service which is defined as part of
the CORBAservices specification. This specification defines a model for
communications between ORB applications that supplements the direct
operation call system that client/server applications normally use.

The CORBAservices specification extends the core CORBA specification with
a set of services commonly required in ORB applications. Orbix 2000 sup-
ports IIOP for interoperable communications between CORBA implementa-
tions. Consequently, any IIOP-compliant ORB can interact with Orbix 2000.

Event Service Basics
The CORBA event service specification defines a model of communication
that allows an application to send an event that will be received by any
number of objects. The model provides two approaches to initiating event
communication. For each of these approaches, event communication can
take two forms.

Figure 42 illustrates the standard CORBA model for communication between
distributed applications.

In this model, a client application calls an IDL operation on a specified object
in a server. The client waits for the call to complete and then receives
confirmation of the return status. For any operation call there is a single
client and a single server, and each must be available for the call to succeed.

This simple, one-to-one communication model is fundamental to the CORBA
architecture. However, some ORB applications need a more complex,
indirect communication style. The CORBA event service defines a
465

Chapter 20 | Event Service
communication model that allows an application to send a message to
objects in other applications without any knowledge about the objects that
receive the message.

The CORBA event service introduces the concept of events to CORBA
communications. An event originates at an event supplier and is transferred
to any number of event consumers. Suppliers and consumers are completely
decoupled: a supplier has no knowledge of the number of consumers or their
identities, and consumers have no knowledge of which supplier generated a
given event.

In order to support this model, the CORBA event service introduces to
CORBA a new architectural element, called an event channel. An event
channel mediates the transfer of events between the suppliers and
consumers as follows:

1. The event channel allows consumers to register interest in events, and
stores this registration information.

2. The channel accepts incoming events from suppliers.

3. The channel forwards supplier-generated events to registered
consumers.

Suppliers and consumers connect to the event channel and not directly to
each other (Figure 43). From a supplier’s perspective, the event channel
appears as a single consumer; from a consumer’s perspective, the event
channel appears as a single supplier. In this way, the event channel
decouples suppliers and consumers.

Figure 42: CORBA model for basic client/server communications

Server

1. Client invokes operation

2. Operation returns

Client

Target
Object
 466

Event Service Basics
Any number of suppliers can issue events to any number of consumers using
a single event channel. There is no correlation between the number of
suppliers and the number of consumers, and new suppliers and consumers
can be easily added to the system. In addition, any supplier or consumer can
connect to more than one event channel.

A typical example that uses an event-based communication model is that of a
spreadsheet cell. Many documents might be linked to a spreadsheet cell and
these documents need to be notified when the cell value changes. However,
the spreadsheet software should not need knowledge of each document
linked to the cell. When the cell value changes, the spreadsheet software
should be able to issue an event which is automatically forwarded to each
connected document.

CORBA defines the event service at a level above the ORB architecture.
Suppliers, consumers and event channels can be implemented as ORB
applications, while events are defined using standard IDL operation calls.
Suppliers, consumers and event channels each implement clearly defined
IDL interfaces that support the steps required to transfer events in a
distributed system.

Figure 44 illustrates an implementation of event propagation in a CORBA
system. In this example, suppliers are implemented as CORBA clients; the
event channel and consumers are implemented as CORBA servers. An event

Figure 43: Suppliers and Consumers Communicating through an Event Channel

Event propagation

Event channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

Consumer
467

Chapter 20 | Event Service
occurs when a supplier invokes a clearly defined IDL operation on an object
in the event channel application. The event channel propagates the event by
invoking a similar operation on objects in each of the consumer servers. To
make this possible, the event channel application stores a reference to each
of the consumer objects, for example, in an internal list.

This is not the only way in which the concept of events can map to a CORBA
system. In particular, the CORBA event service identifies two approaches to
initiating the propagation of events, and these affect the implementation
architecture. “Initiating Event Communication” on page 468 addresses this
topic in detail.

“Types of Event Communication” on page 471 discusses how events can
map to IDL operation calls, and describes how you can associate data with
an event using IDL operation parameters.

Initiating Event Communication

CORBA specifies two approaches to initiating the transfer of events between
suppliers and consumers. These approaches are called the push model and
the pull model. In the push model, suppliers initiate the transfer of events by
sending those events to consumers. In the pull model, consumers initiate the
transfer of events by requesting those events from suppliers.

This section illustrates each approach in turn, and then describes how these
models can be mixed in a single system.

Figure 44: A sample implementation of event propagation

Event channel

Consumer

Consumer

Consumer

Supplier

1. Supplier calls operation
on event channel

2. Event channel callsoperation
on each consumer
 468

Event Service Basics
Push Model
In the push model, a supplier generates events and actively passes them to a
consumer. In this model, a consumer passively waits for events to arrive.
Conceptually, suppliers in the push model correspond to clients in normal
CORBA applications, and consumers correspond to servers.

Figure 45 illustrates a push model architecture in which push suppliers
communicate with push consumers through an event channel.

In this architecture, a supplier initiates the transfer of an event by invoking an
IDL operation on an object in the event channel. The event channel invokes a
similar operation on an object in each consumer that has registered with the
channel.

Pull Model
In the pull model, a consumer actively requests that a supplier generate an
event. In this model, the supplier waits for a pull request to arrive. When a
pull request arrives, event data is generated by the supplier and returned to
the pulling consumer. Conceptually, consumers in the pull model correspond
to clients in normal CORBA applications and suppliers correspond to servers.

Figure 45: Push model suppliers and consumers communicating through an event
channel
469

Chapter 20 | Event Service
Figure 46 illustrates a pull model architecture in which pull consumers
communicate with pull suppliers through an event channel.

In this architecture, a consumer initiates the transfer of an event by invoking
an IDL operation on an object in the event channel application. The event
channel then invokes a similar operation on an object in each supplier. The
event data is returned from the supplier to the event channel and then from
the channel to the consumer which initiated the transfer.

Mixing Push and Pull Models in a Single System
Because suppliers and consumers are completely decoupled by an event
channel, the push and pull models can be mixed in a single system. For
example, suppliers might connect to an event channel using the push model,
while consumers connect using the pull model as shown in Figure 47.

In this case, both suppliers and consumers must participate in initiating
event transfer. A supplier invokes an operation on an object in the event
channel to transfer an event to the channel. A consumer then invokes another
operation on an event channel object to transfer the event data from the
channel. Unlike the case in which consumers connect using the push model,
the event channel takes no initiative in forwarding the event. The event

Figure 46: Pull model suppliers and consumers communicating through an event
channel

Event propagation

Event channel

Pull supplier
Pull consumer

Pull consumer

Pull consumer

Pull consumer

Pull supplier

Pull supplier
 470

Event Service Basics
channel stores events supplied by the push suppliers until some pull
consumer requests an event, or until a push consumer connects to the event
channel.

Types of Event Communication

The CORBA event service maps an event to a successfully completed
sequence of operation calls. The operations and the sequence of calls are
clearly defined for both push and pull models, and data about an event can
be passed as operation parameters or return values. This data is specific to
each application and is generally not interpreted by implementations of the
CORBA event service, as in Orbix 2000.

The CORBA event service specification defines that event communication can
take one of the two forms, typed or untyped.

Note: The event service implementation in Orbix 2000 supports only
untyped communication.

Figure 47: Push model suppliers and pull model consumers in a single system

Event propagation

Event channel

Push supplier
Pull consumer

Pull consumer

Pull consumer

Pull consumer

Push supplier

Push supplier
471

Chapter 20 | Event Service
Untyped Event Communication In untyped event communication, an event
is propagated by a series of generic push() or pull() operation calls. The
push() operation takes a single parameter which stores the event data. The
event data parameter is of type any, which allows any IDL defined data type
to be passed between suppliers and consumers. The pull() operation has no
parameters but transmits event data in its return value, which is also of type
any. Clearly, in both cases, the supplier and consumer applications must
agree about the contents of the any parameter and return value if this data is
to be useful.

Typed Event Communication In typed event communication, a programmer
defines application-specific IDL interfaces through which events are
propagated. Rather than using push() and pull() operations and
transmitting data using an any, a programmer defines an interface that
suppliers and consumers use for the purpose of event communication. The
operations defined on the interface can contain parameters defined in any
suitable IDL data type. In the push model, event communication is initiated
simply by invoking operations defined on this interface. The pull model is
more complex because event communication is initiated by invoking
operations on an interface that is specially constructed from the
application-specific interface that the programmer defines.

Programming Interface for Untyped Events
The CORBA event service specification defines a set of interfaces that support
the push and pull models of initiating the transfer of events in both typed and
untyped format. Orbix 2000 supports only untyped events. This section gives
details of the interfaces for these models. The CORBA event service
specification defines the roles of consumer, supplier and event channel by
describing IDL interfaces that each model must support. The operations on
these interfaces allow consumers and suppliers to register with an event
channel to enable the propagation of events. The CORBA event service for
untyped events also defines a number of administration interfaces that allow
suppliers and consumers to register with an event channel to allow the
transfer of events between them.

You can find a complete listing of all interfaces relating to the CORBA event
service in the Orbix 2000 Programmer’s Reference.
 472

Programming Interface for Untyped Events
Registration of Suppliers and Consumers with an Event Channel

A supplier connects to an event channel to indicate that it wishes to transfer
events to consumers through that channel. A consumer connects to an event
channel to register its interest in any events supplied through that channel.
When a supplier or consumer no longer wishes to send or receive events, the
application can disconnect itself from the event channel. In some cases, the
event channel might need to disconnect a supplier or consumer explicitly.

The CORBA event service defines a set of interfaces that supports untyped
event transfer using the push and pull models. These interfaces are described
in the remainder of this section.

Push Model for Untyped Events
Four IDL interfaces support connection to and disconnection from event
channels using the push model:

PushSupplier
PushConsumer
ProxyPushConsumer
ProxyPushSupplier

The interfaces PushSupplier and ProxyPushConsumer allow suppliers to
supply events to an event channel.

The interfaces PushConsumer and ProxyPushSupplier are specific to
consumers, allowing them to receive events from an event channel.

These four interfaces are defined in IDL as follows:

module CosEventComm {
exception Disconnected {
};

interface PushConsumer {
void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};

interface PushSupplier {
void disconnect_push_supplier();

};
};
473

Chapter 20 | Event Service
module CosEventChannelAdmin {
exception AlreadyConnected {
};

exception TypeError {
};

interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier (

in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected);

};

interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer (

in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected, TypeError);

};

...
};

Connecting a Supplier A supplier initiates connection to an event channel by
obtaining a reference to an object of type ProxyPushConsumer in the channel.
The supplier application might wish to be notified if the event channel
terminates the connection. If so, the supplier then invokes
connect_push_supplier() on that object, passing a reference to an object of
type PushSupplier as an operation parameter. If the ProxyPushConsumer is
already connected to a PushSupplier, connect_push_supplier() will raise
the exception AlreadyConnected.

Connecting a Consumer A consumer first obtains a reference to a
ProxyPushSupplier object implemented in the event channel. In order to
register its interest in events from the channel, the consumer then invokes
connect_push_consumer() on the ProxyPushSupplier object. The consumer
passes a reference to an object of type PushConsumer to the operation call.

If ProxyPushSupplier is already connected to a PushConsumer,
connect_push_consumer() will raise the exception AlreadyConnected.
 474

Programming Interface for Untyped Events
Figure 48 illustrates how a supplier and consumer connect to an event
channel. Note that there are no dependencies between the connection of the
supplier and the connection of the consumer.

Pull Model for Untyped Events
A similar set of IDL interfaces supports connection to and disconnection from
event channels in the pull model. These interfaces are:

PullSupplier
PullConsumer
ProxyPullConsumer
ProxyPullSupplier

The interfaces PullConsumer and ProxyPullSupplier allow consumers to
request events from an event channel.

The interfaces PullSupplier and ProxyPullConsumer allow an event channel
to request events from suppliers.

The pull model interfaces are defined in IDL as follows:

module CosEventComm {
exception Disconnected {
};

interface PullSupplier {
any pull () raises (Disconnected);
any try_pull (out boolean has_event) raises (Disconnected);
void disconnect_pull_supplier();

};

Figure 48: Push supplier and push consumer connecting to an event channel in the
untyped model

ProxyPushSupplier

ProxyPushConsumer

Push Supplier Event Channel

Push Supplier

connect_push_consumer()connect_push_supplier()

Push Consumer

Push Consumer
475

Chapter 20 | Event Service
interface PullConsumer {
void disconnect_pull_consumer ();

};
};

module CosEventChannelAdmin {
exception AlreadyConnected {
};

exception TypeError {
};

interface ProxyPullSupplier : CosEventComm::PullSupplier {
void connect_pull_consumer (

in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected);

};

interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier (

in CosEventComm::PushSupplier pull_supplier)
raises (AlreadyConnected, TypeError);

};

...
};

Connecting a Consumer In the pull model, the transfer of events is initiated
by consumers. A consumer initiates connection to an event channel by
obtaining a reference to an object of type ProxyPullSupplier in the channel.
The consumer application might wish to be notified if the event channel
terminates the connection. If so, it invokes connect_pull_consumer() on
the ProxyPullSupplier object, passing a reference to an object of type
PullConsumer as an operation parameter. If the ProxyPullSupplier is
already connected to a PullConsumer, connect_pull_consumer() throws
exception AlreadyConnected.
 476

Programming Interface for Untyped Events
Connecting a Supplier To connect to an event channel, a pull supplier first
obtains a reference to a ProxyPullConsumer object implemented in the event
channel. The supplier then invokes connect_pull_supplier() on the
ProxyPullConsumer object, passing a reference to an object of type
PullSupplier as the operation parameter. If the ProxyPullConsumer is
already connected to a PullSupplier, connect_pull_supplier() throws
exception AlreadyConnected.

Figure 49 illustrates how a pull supplier and pull consumer connect to an
event channel. Note that there are no dependencies between the connection
of the supplier and the connection of the consumer.

Transfer of Untyped Events Through an Event Channel

The transfer of events from a supplier through an event channel to a
consumer follows a simple pattern. Events originate at a supplier. In the push
model, a supplier pushes events into the event channel which in turn pushes
the events to registered consumers. In the pull model, consumers take the
active role by requesting events from the event channel; the event channel, in
turn, requests events from registered suppliers. Both methods of transfer are
described for untyped events in the remainder of this section.

Figure 49: Pull supplier and pull consumer connecting to an event channel in the
untyped model

Pull Consumer

PullSupplier

Pull Supplier Event Channel

ProxyPullConsumer

ProxyPullSupplier

PullConsumer

connect_pull_supplier() connect_pull_consumer()
477

Chapter 20 | Event Service
Push Model
The supplier initiates event transfer by invoking push() on a
ProxyPushConsumer object in the event channel, passing the event data as a
parameter of type any. The event channel then invokes push() on the
PushConsumer object in each registered consumer, again passing the event
data as an operation parameter. Conceptually, this transfer is as shown in
Figure 50.

Note that the supplier views the event channel as a single consumer and has
no knowledge of the actual consumers. Likewise, the consumer views the
event channel as a single supplier. In this way, the channel decouples the
supplier and consumer.

Pull Model
The consumer initiates event transfer in the pull model. The consumer
initiates event transfer in one of two ways as described below.

pull()

The consumer invokes pull() on a ProxyPullSupplier object in the event
channel. The event channel, if it does not already have an event, invokes
pull() on the PullSupplier object in each registered supplier.

Figure 50: Transfer of an event through an event channel to a consumer using the
untyped push model

Push Consumer

ProxyPushConsumer PushConsumer

push() push()

Push Supplier Event Channel
 478

Programming Interface for Untyped Events
pull() blocks until an event is available; the operation then returns the event
data in its return value which is of type any. Thus, the consumer application
blocks until the event channel can supply an event. The event channel, in
turn, blocks until some supplier supplies an event to the channel.

try_pull()

The consumer invokes try_pull() on a ProxyPullSupplier object in the
event channel. The event channel, in turn, invokes try_pull() on the
PullSupplier object in each registered supplier.

If no supplier has an event available, try_pull() sets its boolean has_event
parameter to false and returns immediately. If an event is available from
some supplier, try_pull() sets the has_event parameter to true and returns
the event data in its return value which is of type any.

Conceptually, the transfer of an event using the pull model is as shown in
Figure 51.

Note that, as in the push model, the channel decouples suppliers and
consumers. The consumer views the event channel as a single supplier and
has no knowledge of the actual suppliers. Likewise, the supplier views the
event channel as a single consumer.

Figure 51: Transfer of an event through an event channel to a consumer using the
untyped pull model

Pull Consumer

ProxyPullSupplier

pull()/
try_pull()

pull()/
try_pull()

PullSupplier

Pull Supplier Event Channel
479

Chapter 20 | Event Service
Event Channel Administration Interfaces

The CORBA event service specification defines a set of interfaces that support
event channel administration. These interfaces allow a supplier or consumer
to make initial contact with an event channel, and provide a set of standard-
ized operations so that a supplier can obtain a ProxyPushConsumer or
ProxyPullConsumer and a consumer can obtain a ProxyPushSupplier or
ProxyPullSupplier object reference.

Each event channel supports the EventChannel interface, which is defined as
follows:

module CosEventChannelAdmin {
...

interface EventChannel {
ConsumerAdmin for_consumers ();
SupplierAdmin for_suppliers ();
void destroy ();

};
};

If a supplier or consumer wishes to connect to an event channel, it must first
obtain a reference to an EventChannel object in that channel. It does this by
calling resolve_intital_references() on "EventService" and narrowing the
resulting reference.

A supplier then invokes for_suppliers() on the EventChannel object. This
operation returns a reference to an object of type SupplierAdmin, which is
defined as follows:

module CosEventChannelAdmin {
interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer ();
ProxyPullConsumer obtain_pull_consumer ();

};

...
};

To obtain a reference to a ProxyPushConsumer object in the event channel,
the supplier invokes obtain_push_consumer() on the SupplierAdmin object.
At this point, the supplier is ready to connect to the channel and begin
transferring events using the push model.
 480

Programming Interface for Untyped Events
The supplier invokes obtain_pull_consumer() on the SupplierAdmin object
if it wishes to obtain a ProxyPullConsumer. The supplier is then ready to
connect to the channel and to transfer events using the pull model.

Similarly, a consumer invokes for_consumers() on an EventChannel object
in order to obtain a reference to an object of type ConsumerAdmin, which is
defined as follows:

module CosEventChannelAdmin {
interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier ();
ProxyPullSupplier obtain_pull_supplier ();

};

...
};

If the consumer is using the push model, it then invokes
obtain_push_supplier() to obtain a reference to a ProxyPushSupplier. If
the consumer is using the pull model, it invokes obtain_pull_supplier() to
obtain a reference to a ProxyPullSupplier object in the event channel.

The consumer is then free to register its interest in events propagated through
the channel.

Overview of the Orbix Event Service

The Orbix event service can implement one or more conceptual event
channels. The criteria that determine the number of event channels required
by your application architecture are specific to that application. Some
applications might transfer each of several event types through a single
channel, while others might have multiple channels that act as alternative
sources of a single event type.

Figure 52 illustrates a sample architecture where suppliers and consumers
communicate through two event channels implemented in a single Orbix
server. Note that any given supplier or consumer can connect to multiple
event channels simultaneously. In addition, a supplier or consumer can
connect to event channels in multiple Orbix servers, if required.

Orbix maintains an EventChannel object, a SupplierAdmin object and a
ConsumerAdmin object for each untyped event channel it implements. An
ORB application contacts an event channel by obtaining a reference to the
481

Chapter 20 | Event Service
corresponding EventChannel object. The application then uses this object to
retrieve a reference to the SupplierAdmin or the ConsumerAdmin object,
depending on whether the application is a supplier or consumer.

The SupplierAdmin object creates and manages ProxyPushConsumer objects
for a single untyped event channel. For each supplier that connects to the
channel, the SupplierAdmin creates a ProxyPushConsumer object which the
supplier can use to generate events. Similarly, the ConsumerAdmin object
creates and manages a ProxyPushSupplier object for each consumer that
connects to the event channel.

Components of the Orbix Event Service

An Orbix consumer or supplier is a normal ORB application that
communicates with an Orbix server using standard IDL operation calls.

Consequently, the components of your Orbix implementation include the
complete IDL definitions for the CORBA event service.

Figure 52: Sample Orbix event service architecture with two event channels

Event propagation

Event channel 2

Event channel 1

OrbixEvents server

Push supplier
Push consumer

Push consumer

Push consumer

Push consumer

Push supplier

Push supplier

Channel managerEventChannel
 482

Programming with the Untyped Push Model
The IDL definitions for the CORBA event service are contained in these files
in the idl directory:

Programming with the Untyped Push Model
From a programmer’s perspective, the event channel is the key element of a
CORBA event service application.

This section describes an ORB application that shows how you can use the
Orbix event service to develop push model suppliers and consumers that
communicate untyped events through event channels.

Overview of a Sample Application

The example described in this section consists of a push supplier and a push
consumer, each of which connects to a single event channel. The supplier
repeatedly pushes an event to the event channel and the data associated
with each event takes the form of a string. The event channel propagates
each event to the consumer, which simply displays the event data. This
application is simple, but it illustrates a series of development tasks that
apply to all Orbix event service applications.

To develop an Orbix event service application, you must implement the
suppliers and consumers as normal ORB applications that communicate with
the event channel through IDL interfaces. The Orbix event service fully
implements the event channel, which is created in the Orbix event service
server application. The IDL definitions for the CORBA event service are
supplied with Orbix.

Table 28: Orbix Event Service IDL Files

IDL File Contents

CosEventComm.idl This file contains the CosEventComm mod-
ule.

CosEventChannelAdmin.idl This file contains the
CosEventChannelAdmin module.

event.idl This file contains the IT_Event module
483

Chapter 20 | Event Service
Developing an Untyped Push Supplier

As described in “Transfer of Untyped Events Through an Event Channel” on
page 477, a push supplier initiates the transfer of an event by pushing the
event into an event channel. The event channel then takes responsibility for
forwarding the event to each registered consumer.

This section describes how you can implement a push supplier as an Orbix
application that communicates with a single event channel in an Orbix event
service server. This application acts as a client to several IDL interfaces
implemented in the event channel and acts as a server to the interface
PushSupplier, which it implements.

There are three main programming steps in developing a push supplier:

1. Obtain a reference for a ProxyPushConsumer object from the event
channel.

“Obtaining a ProxyPushConsumer from an Event Channel” on page 484
explains this step in detail.

2. Invoke connect_push_supplier() on the ProxyPushConsumer object, to
connect a PushSupplier implementation object to the event channel.

“Connecting a PushSupplier Object to an Event Channel” on page 485
explains this step.

3. Invoke push() on the ProxyPushConsumer object to initiate the transfer
of each event.

“Pushing Events to an Event Channel” on page 486 explains this step.

Obtaining a ProxyPushConsumer from an Event Channel
A push supplier needs to obtain a reference for a ProxyPushConsumer object
in an event channel in order to transfer events to the channel for later
distribution to consumers. The supplier transfers events by invoking push()
on the target ProxyPushConsumer object.

In order to obtain a ProxyPushConsumer object reference from an event
channel, a supplier must implement the following programming steps:

1. Obtain a reference to an EventChannel.

2. Invoke for_suppliers() on the EventChannel object, in order to obtain
a SupplierAdmin object reference.
 484

Programming with the Untyped Push Model
3. Invoke obtain_push_consumer() on the SupplierAdmin object. This
operation returns a ProxyPushConsumer object reference.

// C++
CORBA::Object_var objVar =

orb->resolve_initial_references("EventService");
IT_Event::EventChannelFactory_var factory =

IT_Event::EventChannelFactory::_narrow(objVar);
int channel = factory->create_channel("my_channel", id);
CosEventChannelAdmin::SupplierAdmin_var sa =

channel->for_suppliers();
CosEventChannelAdmin::ProxyPushConsumer_var ppc =

sa->obtain_push_consumer();

Connecting a PushSupplier Object to an Event Channel
When the supplier has retrieved the EventChannel object reference and used
this to obtain a ProxyPushConsumer, the supplier needs to connect an
implementation of the PushSupplier interface to the event channel. As
described in “Registration of Suppliers and Consumers with an Event
Channel” on page 473, this interface is defined as follows:

module CosEventComm {
...

interface PushSupplier {
void disconnect_push_supplier ();

};
};

The role of this interface is to allow the event channel to disconnect the
supplier by invoking disconnect_push_supplier(). This can happen if the
event channel closes down.

// C++
// This assumes we have a reference to "RootPOA" and have activated
// this object
CORBA::Object_var obj = poa->servant_to_reference(this);
ref = CosEventComm::PushSupplier::_narrow(obj);
ppc->connect_push_supplier(obj);

Here, the supplier connects an object of this type to an event channel by
calling connect_push_supplier() on the ProxyPushConsumer object.
485

Chapter 20 | Event Service
Pushing Events to an Event Channel
The following code extract is a simple demonstration of initiating the transfer
of events:

// C++
while (!pushSupplier.complete())

{
if (orb->work_pending())
{

orb->perform_work();
}

CORBA::Any a;
a <<= eventDataString;
ppc->push (a);

}

In this example, the supplier repeatedly pushes an event to the event channel
by calling push() on a ProxyPushConsumer object. The supplier represents
the event data using a simple string, but this is not necessary in general.
push() takes a parameter of type any for the event data, so you can represent
this data using any IDL type.

Note that the supplier stops sending events only when it receives an
incoming disconnect_push_supplier() operation call from the event
channel. As an alternative, the supplier could explicitly disconnect from the
event channel by invoking disconnect_push_consumer() on the event
channel ProxyPushConsumer object.

Push Supplier Application
To see a complete example of how the above steps fit together, take a look at
the Event Service demos, in <orbix_2000_installation_dir>/demos/
events/.

Developing an Untyped Push Consumer

A push consumer receives events from an event channel, with no knowledge
of the suppliers from which those events originated. An event channel
propagates an event to a push consumer by invoking push() on a
PushConsumer implementation object in the consumer application. As such,
 486

Programming with the Untyped Push Model
the main functionality of a push consumer is associated with registering a
PushConsumer object with an event channel and receiving incoming operation
calls on that object.

To develop a push consumer application, you must implement the following
steps:

1. Obtain a reference for a ProxyPushSupplier object from the event
channel.

“Obtaining a ProxyPushSupplier from an Event Channel” on page 487
explains this step.

2. Connect a PushConsumer implementation object to the event channel, by
invoking connect_push_consumer() on the ProxyPushSupplier object.

“Connecting a PushConsumer Object to an Event Channel” on page 488
explains this step.

3. Monitor incoming operation calls.

“Monitoring Incoming Operation Calls” on page 489 explains this step.

Obtaining a ProxyPushSupplier from an Event Channel
Each push consumer connected to an event channel receives every event
raised by every supplier connected to the channel. However, consumers have
no knowledge of the suppliers. Consumers simply connect to an object in the
event channel which acts as a single source of events.

This object is responsible for storing a PushConsumer object reference for
each connected consumer and invoking the push() operation on each of
these references when a supplier transmits an event. The event channel
object which stores consumer references is of type ProxyPushSupplier. The
first task in developing a push consumer application is to obtain a reference
to this object.

There are three stages in obtaining a ProxyPushSupplier object reference:

1. Obtain a reference to an EventChannel object in the event channel.

2. Invoke for_consumers() on the EventChannel object to obtain a
ConsumerAdmin object reference.

3. Invoke obtain_push_supplier() on the ConsumerAdmin object. This
operation returns a ProxyPushSupplier object reference.
487

Chapter 20 | Event Service
You can implement the first of these steps in exactly the manner described
for push supplier applications in “Obtaining a ProxyPushConsumer from an
Event Channel” on page 484. The remaining steps involve normal operation
invocations.

Connecting a PushConsumer Object to an Event Channel
When a consumer has obtained a reference to the ProxyPushSupplier object
in an event channel, the next step is to register a PushConsumer
implementation object with the ProxyPushSupplier. The event channel uses
the PushConsumer object to propagate events to the consumer.

As described in “Registration of Suppliers and Consumers with an Event
Channel” on page 473, the CORBA event service specification defines the
interface PushConsumer as follows:

module CosEventComm {
exception Disconnected {};

interface PushConsumer {
oneway void push (in any data) raises (Disconnected);
void disconnect_push_consumer ();

};
...

};

When an event arrives at an event channel, the channel ProxyPushSupplier
object invokes push() on each connected consumer, passing the event data
as an any parameter. A consumer can raise a Disconnected exception in the
implementation of this call to indicate to the channel that consumer is
disconnected and the event was propagated erroneously. The
disconnect_push_consumer() operation allows an event channel to
disconnect a consumer, for example if the channel closes down.

// C++
PushConsumer_i servant(orb);
CosEventComm::PushConsumer_var consumer = servant.this();
CosEventChannelAdmin::ConsumerAdmin_var ca =

channel->for_consumers();
CosEventChannelAdmin::ProxyPushSupplier_var pps =

ca->obtain_push_supplier();
pps->connect_push_consumer(consumer);
}

 488

Programming with the Untyped Push Model
Monitoring Incoming Operation Calls
The main role of the consumer is to receive events from the event channel in
the form of IDL operation calls. In the push event model the consumer is in
effect a server, and therefore must remain available to the event channel until
the event channel explicitly disconnects it. Consequently, the PushConsumer
must process events in a separate thread.

// C++
PortableServer::POAManager_var poa_manager =

root_poa->the_POAManager;
poa_manager->activate();
while (!pushConsumer.complete());
{

if (orb->work_pending()) {
orb->perform_work();

}
// Do other things
}
pps->disconnect_push_supplier;

If the consumer receives an invocation on disconnect_push_consumer(),
then the implementation of this operation sets pcImpl.m_disconnected to 1
and breaks the consumer’s event processing loop. Consequently, the
consumer receives all events until the event channel explicitly forces it to
disconnect.

As an alternative, the consumer could explicitly disconnect itself from the
event channel when it no longer wishes to receive events. The consumer does
this by invoking disconnect_push_supplier() on the event channel
ProxyPushSupplier object.

Push Consumer Application
To see a complete example of how the above steps fit together, take a look at
the Event Service demos, in <orbix_2000_installation_dir>/demos/
events/.
489

Chapter 20 | Event Service
Compiling and Running an Event Service
Application

You will need to compile the IDL definitions for the event service as well as
compile and build your application.

IDL Definitions for the Event Service

The CORBA standard IDL interfaces for CORBA event service suppliers,
consumers and event channels are defined in the files CosEventComm.idl
and CosEventChannelAdmin.idl in the idl/omg directory and

event.idl in the idl/orbix directory of your Orbix installation. These are
the contents of the IDL files:

Compiling an Event Service Application

An Orbix event service supplier or consumer application is simply a standard
ORB application that communicates with an event channel server through a
set of IDL interfaces. In addition, both suppliers and consumers implement
IDL interfaces and therefore act as ORB servers.

To compile an Orbix event service application, you should follow the
compilation steps described in the Orbix 2000 Programmer’s Guide. For
example, the following steps are required to build an Orbix application that
communicates with an event channel:

Table 29: Orbix Event Service IDL Files

IDL File Contents

CosEventComm.idl This file contains the CosEventComm module.

CosEventChannelAdm
in.idl

This file contains the CosEventChannelAdmin
module.

event.idl This contains the IT_Events module
 490

Compiling and Running an Event Service Application
1. Compile the IDL definitions accessed by your application, including
those in the files cosevents.idl, coseventsadmin.idl, and event.idl
as described in “IDL Definitions for the Event Service” on page 490.

2. Compile any IDL generated C++ files required by your application.

3. Compile all other C++ source files associated with your application.

4. Link the object files from steps 2 and 3 with the appropriate Orbix
libraries.

Running an Orbix Event Service Application

The Orbix event service is installed when Orbix 2000 services are installed.
The default service installed uses the ORB name "event".

Before running an Orbix event service application, you must first decide
whether you want to use the default event service or create new copies.

If you want to use new copies, you must register them with the Orbix
implementation repository. You must name your ORBs hierarchically as
children of the default ORB, such as event.event2.

Running your Application
Once you have registered the Orbix event service, you can run your supplier
and consumer applications. In the examples in “Programming with the
Untyped Push Model” on page 483 the order in which you run the consumer
and supplier applications has no effect on the system functionality. You do
not need to register the suppliers or the consumers shown here in the
implementation repository.

Lifetime of Proxy Objects
The event server creates a new proxy object when requested for one. This
object persists until:

1. Disconnect is invoked upon it.

2. The event channel is destroyed.

3. The IIOP connection is closed.
491

Chapter 20 | Event Service
The proxy is destroyed in all these cases. It is not possible perform another
invocation on the object after that, including push(), pull(), try_pull(),
connect(), or disconnect(). If an attempt is made to perform an operation
on the destroyed proxy, an INVALID OBJECT REFERENCE exception is thrown.

If a PullConsumer has invoked pull() upon a ProxyPullSupplier, and
meanwhile disconnect_pull_supplier() is invoked upon the
ProxyPullSupplier, the pull() throws a Disconnected exception some time
after (depending on the pull_prod_interval configuration value).

If you attempt to connect an invalid object to a proxy object (where an
exception other than INVALID OBJECT REFERENCE is thrown), the proxy is not
destroyed.
 492

Portable Interceptors
Portable interceptors provide hooks, or interception points,
which define stages within the request and reply sequence.
Services can use these interception points to query request/
reply data, and to transfer service contexts between clients
and servers.

This chapter shows an application that uses interceptors to secure a server
with a password authorization service as follows:

• A password policy is created and set on the server’s POA.
• An IOR interceptor adds a tagged component to all object references

exported from that POA. This tagged component encodes data that
indicates whether a password is required.

• A client interceptor checks the profile of each object reference that the
client invokes on. It ascertains whether the object is password-pro-
tected; if so, it adds to the outgoing request a service context that con-
tains the password data.

• A server interceptor checks the service contexts of incoming requests for
password data, and compares it with the server password. The
interceptor allows requests to continue only if the client and server
passwords match.

Note: The password authorization service that is shown here is deliberately
simplistic, and intended for illustrative purposes only.

Interceptor Components
Portable interceptors require the following components:
493

Chapter 21 | Portable Interceptors
Interceptor implementations that are derived from interface
PortableInterceptor::Interceptor.

IOP::ServiceContext supplies the service context data that a client or server
needs to identify and access an ORB service.

PortableInterceptor::Current (hereafter referred to as PICurrent) is a table of
slots that are available to application threads and interceptors, to store and
access service context data.

IOP::TaggedComponent contains information about optional features and
ORB services that an IOR interceptor can add to an outgoing object
reference. This information is added by server-side IOR interceptors, and is
accessible to client interceptors.

IOP::Codec can convert data into an octet sequence, so it can be encoded as
a service context or tagged component.

PortableInterceptor::PolicyFactory enables creation of policy objects that are
required by ORB services.

PortableInterceptor::ORBInitializer is called on ORB initialization. An ORB
initializer obtains the ORB’s PICurrent, and registers portable interceptors
with the ORB. It can also register policy factories.

Interceptor Types

All portable interceptors are based on the Interceptor interface:

module PortableInterceptor{
local interface Interceptor{

readonly attribute string name;
};

};

An interceptor can be named or unnamed. Among an ORB’s interceptors of
the same type, all names must be unique. Any number of unnamed, or
anonymous interceptors can be registered with an ORB.
 494

Interceptor Components
Note: At present, Orbix provides no mechanism for administering portable
interceptors by name.

All interceptors implement one of the interceptor types that inherit from the
Interceptor interface:

ClientRequestInterceptor defines the interception points that client-side
interceptors can implement.

ServerRequestInterceptor defines the interception points that server-side
interceptors can implement.

IORInterceptor defines a single interception point, establish_components. It
is called immediately after a POA is created, and pre-assembles the list of
tagged components to add to that POA’s object references.

Interception Points
Each interceptor type defines a set of interception points, which represent
stages in the request/reply sequence. Interception points are specific to each
interceptor type, and are discussed fully in later sections that describe these
types. Generally, in a successful request-reply sequence, the ORB calls
interception points on each interceptor.

For example, Figure 53 shows client-side interceptors A and B. Each
interceptor implements interception points send_request and
receive_reply. As each outgoing request passes through interceptors A and
B, their send_request implementations add service context data a and b to
495

Chapter 21 | Portable Interceptors
the request before it is transported to the server. The same interceptors’
receive_reply implementations evaluate the reply’s service context data
before the reply returns to the client.

Interception Point Data
For each interception point, the ORB supplies an object that enables the
interceptor to evaluate the request or reply data at its current stage of flow:

• A PortableInterceptor::IORInfo object is supplied to an IOR
interceptor’s single interception point establish_components (see
page 502).

• A PortableInterceptor::ClientRequestInfo object is supplied to all
ClientRequestInterceptor interception points (see page 512).

• A PortableInterceptor::ServerRequestInfo object is supplied to all
ServerRequestInterceptor interception points (see page 520).

Much of the information that client and server interceptors require is similar;
so ClientRequestInfo and ServerRequestInfo both inherit from interface
PortableInterceptor::RequestInfo. For more information on RequestInfo,
see page 504.

Figure 53: Client interceptors allow services to access outgoing requests and
incoming replies.

Client

client interceptors

B
Server

request
a
b

 reply

send_request

receive_reply

send_request

receive_reply

A

add a
add b
 496

Interceptor Components
Service Contexts

Service contexts supply the information a client or server needs to identify
and access an ORB service. The IOP module defines the ServiceContext
structure as follows:

module IOP
{

// ...
typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;

};
};

A service context has two member components:

• Service-context IDs are user-defined unsigned long types. The high-order
20 bits of a service-context ID contain a 20-bit vendor service context
codeset ID, or VSCID; the low-order 12 bits contain the rest of the
service context ID. To define a set of service context IDs:

1. Obtain a unique VSCID from the OMG

2. Define the service context IDs, using the VSCID for the high-order
bits.

• Service context data is encoded and decoded by an IOP::Codec (see
“Codec” on page 499).

PICurrent

PICurrent is a table of slots that different services can use to transfer their
data to request or reply service contexts. For example, in order to send a
request to a password-protected server, a client application can set the
497

Chapter 21 | Portable Interceptors
required password in PICurrent. On each client invocation, a client
interceptor’s send_request interception point obtains the password from
PICurrent and attaches it as service context data to the request.

The PortableInterceptor module defines the interface for PICurrent as
follows:

module PortableInterceptor
{

// ...
typedef unsigned long SlotId;
exception InvalidSlot {};

local interface Current : CORBA::Current {
any
get_slot(in SlotId id
) raises (InvalidSlot);

void
set_slot(in SlotId id, in any data
) raises (InvalidSlot);

};
};

Figure 54: PICurrent facilitates transfer of thread context data to a request or reply.

Client request

send_request

client interceptor
client("vermilion")

PICurrent

Server

get password slot data
add service context
 with password

{

}

"vermilion"
 498

Interceptor Components
Tagged Components

Object references that support an interoperability protocol such as IIOP or
SIOP can include one or more tagged components, which supply information
about optional IIOP features and ORB services. A tagged component contains
an identifier, or tag, and component data, defined as follows:

typedef unsigned long ComponentId;
struct TaggedComponent{

ComponentID tag;
sequence<octet> component_data;

};

An IOR interceptor can define tagged components and add these to an object
reference’s profile by calling add_ior_component() (see “Writing IOR
Interceptors” on page 502). A client interceptor can evaluate tagged
components in a request’s object reference by calling
get_effective_component() or get_effective_components() (see
“Evaluating Tagged Components” on page 515).

Note: The OMG is responsible for allocating and registering the tag IDs of
tagged components. Requests to allocate tag IDs can be sent to
tag_request@omg.org.

Codec

The data of service contexts and tagged components must be encoded as a
CDR encapsulation. Therefore, the IOP module defines the Codec interface,
so interceptors can encode and decode octet sequences:

local interface Codec {
exception InvalidTypeForEncoding {};
exception FormatMismatch {};
exception TypeMismatch {};

CORBA::OctetSeq
encode(in any data
) raises (InvalidTypeForEncoding);

any
499

Chapter 21 | Portable Interceptors
decode(in CORBA::OctetSeq data
) raises (FormatMismatch);

CORBA::OctetSeq
encode_value(in any data
) raises (InvalidTypeForEncoding);

any
decode_value(
in CORBA::OctetSeq data,
in CORBA::TypeCode tc

) raises (FormatMismatch, TypeMismatch);
};

Codec Operations
The Codec interface defines the following operations:

encode converts the supplied any into an octet sequence, based on the
encoding format effective for this Codec. The returned octet sequence
contains both the TypeCode and the data of the type.

decode decodes the given octet sequence into an any, based on the encoding
format effective for this Codec.

encode_value converts the given any into an octet sequence, based on the
encoding format effective for this Codec. Only the data from the any is
encoded.

decode_value decodes the given octet sequence into an any based on the
given TypeCode and the encoding format effective for this Codec.

Creating a Codec
The ORBInitInfo::codec_factory attribute returns a Codec factory, so you
can provide Codec objects to interceptors. This operation must be called
during ORB initialization, through the ORB initializer.
 500

Interceptor Components
Policy Factory

An ORB service can be associated with a user-defined policy. The
PortableInterceptor module provides the PolicyFactory interface, which
applications can use to implement their own policy factories:

local interface PolicyFactory {
CORBA::Policy
create_policy(

in CORBA::PolicyType type,
in any value

) raises (CORBA::PolicyError);
};

Policy factories are created during ORB initialization, and registered through
the ORB initializer (see “Creating and Registering Policy Factories” on
page 532).

ORB Initializer

ORB initializers implement interface PortableInterceptor::
OrbInitializer:

local interface ORBInitializer {
void
pre_init(in ORBInitInfo info);

void
post_init(in ORBInitInfo info);

};

As it initializes, the ORB calls the ORB initializer’s pre_init() and
post_init() operations. pre_init() and post_init() both receive an
ORBInitInfo argument, which enables implementations to perform these
tasks:

• Instantiate a PICurrent and allocates its slots for service data.
• Register policy factories for specified policy types.
• Create Codec objects, which enable interceptors to encode service

context data as octet sequences, and vice versa.
• Register interceptors with the ORB.
501

Chapter 21 | Portable Interceptors
Writing IOR Interceptors
IOR interceptors gives an application the opportunity to evaluate a server’s
effective policies, and modify an object reference’s profiles before the server
exports it. For example, if a server is secured by a password policy, the object
references that it exports should contain information that signals to potential
clients that they must supply a password along with requests on those
objects.

The IDL interface for IOR interceptors is defined as follows:

local interface IORInterceptor : Interceptor {
void
establish_components(in IORInfo info);

};

Interception Point

An IOR interceptor has a single interception point, establish_components().
The server-side ORB calls establish_components() once for each POA on all
registered IOR interceptors. A typical implementation of
establish_components() assembles the list of components to include in the
profile of all object references that a POA exports.

An implementation of establish_components() must not throw exceptions.
If it does, the ORB ignores the exception.

IORInfo

establish_components() gets an IORInfo object, which has the following
interface:

local interface IORInfo {

CORBA::Policy
get_effective_policy(in CORBA::PolicyType type);

void
add_ior_component(in IOP::TaggedComponent component);

add_ior_component_to_profile (
 502

Writing IOR Interceptors
in IOP::TaggedComponent component,
in IOP::ProfileId profile_id

);
};

Note: add_ior_component_to_profile() is currently unimplemented.

The sample application’s IOR interceptor implements
establish_components() to perform the following tasks on an object
reference’s profile:

• Get its password policy.
• Set a TAG_REQUIRES_PASSWORD component accordingly.
ACL_IORInterceptorImpl::ACL_IORInterceptorImpl(

IOP::Codec_ptr codec
) IT_THROW_DECL(()) :

m_codec(IOP::Codec::_duplicate(codec))
{
}

void
ACL_IORInterceptorImpl::establish_components(

PortableInterceptor::IORInfo_ptr ior_info
) IT_THROW_DECL((CORBA::SystemException))
{

CORBA::Boolean requires_password = IT_FALSE;

try {
1 CORBA::Policy_var policy =

ior_info->get_effective_policy(
AccessControl::PASSWORD_POLICY_ID);

AccessControl::PasswordPolicy_var password_policy =
AccessControl::PasswordPolicy::_narrow(policy);

assert(!CORBA::is_nil(password_policy));

2 requires_password = password_policy->requires_password();
}
catch (const CORBA::INV_POLICY&) {
// Policy wasn't set...don't add component
}

503

Chapter 21 | Portable Interceptors
CORBA::Any component_data_as_any;
component_data_as_any <<=

CORBA::Any::from_boolean(requires_password);

3 CORBA::OctetSeq_var octets =
m_codec->encode_value(component_data_as_any);

4 IOP::TaggedComponent component;
component.tag = AccessControlService::TAG_REQUIRES_PASSWORD;
component.component_data.replace(octets->length(),

octets->length(),
octets->get_buffer(),
IT_FALSE);

5 ior_info->add_ior_component(component);
}

The sample application’s implementation of establish_components()
executes as follows:

1. Gets the effective password policy object for the POA by calling
get_effective_policy() on the IORInfo.

2. Gets the password policy value by calling requires_password() on the
policy object.

3. Encodes the password policy value as an octet.

4. Instantiates a tagged component (IOP::TaggedComponent) and initializes
it with the TAG_REQUIRES_PASSWORD tag and encoded password policy
value.

5. Adds the tagged component to the object reference’s profile by calling
add_ior_component().

Using RequestInfo Objects
Interception points for client and server interceptors receive
ClientRequestInfo and ServerRequestInfo objects, respectively. These
derive from PortableInterceptor::RequestInfo, which defines operations
and attributes common to both.
 504

Using RequestInfo Objects
RequestInfo Interface

The RequestInfo interface is defined as follows:

local interface RequestInfo {
readonly attribute unsigned long request_id;
readonly attribute string operation;
readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;
readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_expected;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;
any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context (

in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context (

in IOP::ServiceId id);
};

A RequestInfo object provides access to much of the information that an
interceptor requires to evaluate a request and its service context data. For a
full description of all attributes and operations, see the Orbix 2000
Programmer’s Reference.

The validity of any given RequestInfo operation and attribute varies among
client and server interception points. For example, the result attribute is
valid only for interception points receive_reply on a client interceptor; and
send_reply on a server interceptor. It is invalid for all other interception
points. Table 31 on page 513 and Table 32 on page 525 show which
RequestInfo operations and attributes are valid for a given interception
point.

Timeout Attributes

A client might specify one or more timout policies on request or reply
delivery. If portable interceptors are present in the bindings, these
interceptors must be aware of the relevant timeouts so that they can bound
any potentially blocking activities that they undertake.
505

Chapter 21 | Portable Interceptors
The current OMG specification for portable interceptors does not account for
timeout policy constraints; consequently, Orbix provides its own derivation of
the RequestInfo interface, IT_PortableInterceptor::RequestInfo, which
adds two attributes:

module IT_PortableInterceptor
{
local interface RequestInfo : PortableInterceptor::RequestInfo
{
readonly attribute TimeBase::UtcT request_end_time;
readonly attribute TimeBase::UtcT reply_end_time;

};
};

To access timeout constraints, interception points implementations can
narrow their ClientRequestInfo or ServerRequestInfo objects to this
interface. The two attributes apply to different interception points, as follows:

Writing Client Interceptors
Client interceptors implement the ClientRequestInterceptor interface,
which defines five interception points:

local interface ClientRequestInterceptor : Interceptor {
void send_request (in ClientRequestInfo ri)

raises (ForwardRequest);

Table 30:

Timeout attribute Relevant interception points

request_end_time send_request
send_poll
receive_request_service_contexts
receive_request

reply_end_time send_reply
send_exception
send_other
receive_reply
receive_exception
receive_other
 506

Writing Client Interceptors
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri)

raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri)

raises (ForwardRequest);
};

A client interceptor implements one or more of these operations.

In the password service example, the client interceptor provides an
implementation for send_request, which encodes the required password in a
service context and adds the service context to the object reference. For
implementation details, see “Client Interceptor Tasks” on page 514.

As noted earlier, the ORB initializer instantiates and registers the client
interceptor. This interceptor’s constructor is implemented as follows:

// Client interceptor constructor
ACL_ClientInterceptorImpl::ACL_ClientInterceptorImpl(

PortableInterceptor::SlotId password_slot,
IOP::Codec_ptr codec

) IT_THROW_DECL(()) :
m_password_slot(password_slot),
m_codec(IOP::Codec::_duplicate(codec))

{
}

The client interceptor takes two arguments:

• The PICurrent slot allocated by the ORB initializer to store password
data.

• An IOP::Codec, which is used to encode password data for service
context data.

Interception Points

A client interceptor implements one or more interception points. During a
successful request-reply sequence, each client-side interceptor executes one
starting interception point and one ending interception point.
507

Chapter 21 | Portable Interceptors
Starting Interception Points
Depending on the nature of the request, the ORB calls one of the following
starting interception points:

send_request lets an interceptor query a synchronously invoked request, and
modify its service context data before the request is sent to the server.

send_poll lets an interceptor query an asynchronously invoked request,
where the client polls for a reply. This interception point currently applies
only to deferred synchronous operation calls (see “Invoking Deferred
Synchronous Requests” on page 346)

Ending Interception Points
Before the client receives a reply to a given request, the ORB executes one of
the following ending interception points on that reply:

receive_reply lets an interceptor query information on a reply after it is
returned from the server and before control returns to the client.

receive_exception is called when an exception occurs. It lets an interceptor
query exception data before it is thrown to the client.

receive_other lets an interceptor query information that is available when a
request results in something other than a normal reply or an exception. For
example: a request can result in a retry, as when a GIOP reply with a
LOCATION_FORWARD status is received; receive_other is also called on
asynchronous calls, where the client resumes control before it receives a
reply on a given request and an ending interception point is called.

Interception Point Flow

For each request-reply sequence, only one starting interception point and one
ending point is called on a client interceptor. Each completed starting point is
paired to an ending point. For example, if send_request executes to
completion without throwing an exception, the ORB calls one of its ending
interception points—receive_reply, receive_exception, or
receive_other.
 508

Writing Client Interceptors
If multiple interceptors are registered on a client, the interceptors are
traversed in order for outgoing requests, and in reverse order for incoming
replies.

Scenario 1: Request-reply sequence is successful
Interception points A and B are registered with the server ORB. The
interception point flow shown in Figure 55 depicts a successful reply-request
sequence, where the server returns a normal reply:

Figure 55: Client interceptors process a normal reply.

send_request

receive_reply

send_request

receive_reply

send_request

receive_reply

B

A

C

Client

Server
509

Chapter 21 | Portable Interceptors
Scenario 2: Client receives LOCATION_FORWARD
If the server throws an exception or returns some other reply, such as
LOCATION_FORWARD, the ORB directs the reply flow to the appropriate
interception points, as shown in Figure 56:

Scenario 3: Exception aborts interception flow
Any number of events can abort or shorten the interception flow. Figure 57
shows the following interception flow:

1. Interceptor B’s send_request throws an exception.

2. Because interceptor B’s start point does not complete, no end point is
called on it, and interceptor C is never called. Instead, the request flow
returns to interceptor A’s receive_exception end point.

Figure 56: Client interceptors process a LOCATION_FORWARD reply.

send_request

receive_other

send_request

receive_other

send_request

receive_other

B

A

C

Client

Server

replies with
LOCATION_FORWARD
 510

Writing Client Interceptors
Scenario 4: Interceptor changes reply
An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a
different system exception. Figure 58 shows the following interception flow:

1. The server returns a normal reply.

2. The ORB calls receive_reply on interceptor C.

3. Interceptor C’s receive_reply raises exception foo_x, which the ORB
delivers to interceptor B’s receive_exception.

4. Interceptor B’s receive_exception changes exception foo_x to
exception foo_y.

5. Interceptor A’s receive_exception receives exception foo_y and returns
it to the client.

Figure 57: send_request throws an exception in a client-side interceptor

A

C

Client

send_request

receive_exception

send_request

throws exception

B

C

511

Chapter 21 | Portable Interceptors
Note: Interceptors must never change the CompletionStatus of the received
exception.

ClientRequestInfo

Each interception point gets a single ClientRequestInfo argument, which
provides the necessary hooks to access and modify client request data:

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;

IOP::TaggedComponent
get_effective_component(in IOP::ComponentId id);

IOP::TaggedComponentSeq
get_effective_components(in IOP::ComponentId id);

Figure 58: Client interceptors can change the nature of the reply.

receive_exception

send_request

B

A

C

Client

Server

servant returns
normal reply

receive_exception

throws exception
foo_y

send_request

foo_y

foo_x

send_request

receive_reply

foo_x
throws exception
 512

Writing Client Interceptors
CORBA::Policy
get_request_policy(in CORBA::PolicyType type);

void
add_request_service_context(

in IOP::ServiceContext service_context,
in boolean replace

);
};

Table 31 shows which ClientRequestInfo operations and attributes are
accessible to each client interception point. In general, attempts to access an
attribute or operation that is invalid for a given interception point throw an
exception of BAD_INV_ORDER with a standard minor code of 10.

Table 31: Client Interception Point Access to ClientRequestInfo

ClientRequestInfo: s_req s_poll r_reply r_exep r_other

request_id y y y y y

operation y y y y y

arguments ya y

exceptions y y y y

contexts y y y y

operation_context y y y y

result y

response_expected y y y y y

sync_scope y y y y

reply_status y y y

forward_reference yb

get_slot y y y y y

get_request_service_context y y y y
513

Chapter 21 | Portable Interceptors
Client Interceptor Tasks

A client interceptor typically uses a ClientRequestInfo to perform the
following tasks:

• Evaluate an object reference’s tagged components to determine an
outgoing request’s service requirements.

• Obtain service data from PICurrent.
• Encode service data as a service context
• Add service contexts to a request

These tasks are usually implemented in send_request. Interceptors have a
much wider range of potential actions available to them—for example, client
interceptors can call get_request_service_context(), to evaluate the

get_reply_service_context y y y

target y y y y y

effective_target y y y y y

effective_profile y y y y y

received_exception y

received_exception_id y

get_effective_component y y y y

get_effective_components y y y y

get_request_policy y y y y

add_request_service_context y

a.When ClientRequestInfo is passed to send_request, the arguments list contains an entry
for all arguments, but only in and inout arguments are available.

b.Access to forward_reference is valid only if reply_status is set to LOCATION_FORWARD or
LOCATION_FORWARD_PERMANENT.

Table 31: Client Interception Point Access to ClientRequestInfo

ClientRequestInfo: s_req s_poll r_reply r_exep r_other
 514

Writing Client Interceptors
service contexts that preceding interceptors added to a request. Other
operations are specific to reply data or exceptions, and therefore can be
invoked only by the appropriate receive_ interception points.

This discussion confines itself to send_request and the tasks that it typically
performs. For a full description of other ClientRequestInfo operations and
attributes, see the Orbix 2000 Programmer’s Reference.

In the sample application, the client interceptor provides an implementation
for send_request, which performs these tasks:

• Evaluates each outgoing request for this tagged component to determine
whether the request requires a password.

• Obtains service data from PICurrent
• Encodes the required password in a service context
• Adds the service context to the object reference:

Evaluating Tagged Components
The sample application’s implementation of send_request checks each
outgoing request for tagged component TAG_REQUIRES_PASSWORD by calling
get_effective_component() on the interceptor’s ClientRequestInfo:

void
ACL_ClientInterceptorImpl::send_request(

PortableInterceptor::ClientRequestInfo_ptr request
) IT_THROW_DECL((

CORBA::SystemException,
PortableInterceptor::ForwardRequest

))

try {
// Check if the object requires a password

1 if (requires_password(request))
{ // ...
}

}

// ...

CORBA::Boolean
ACL_ClientInterceptorImpl::requires_password(
515

Chapter 21 | Portable Interceptors
PortableInterceptor::ClientRequestInfo_ptr request
) IT_THROW_DECL((CORBA::SystemException))
{

try {
2 IOP::TaggedComponent_var password_required_component =

request->get_effective_component(
AccessControlService::TAG_REQUIRES_PASSWORD
);

3 IOP::TaggedComponent::_component_data_seq& component_data =
password_required_component->component_data;

CORBA::OctetSeq octets(component_data.length(),
component_data.length(),
component_data.get_buffer(),
IT_FALSE);

4 CORBA::Any_var password_required_as_any =
m_codec->decode_value(octets, CORBA::_tc_boolean);

CORBA::Boolean password_required;
5 if (password_required_as_any >>=

CORBA::Any::to_boolean(password_required))
{

return password_required;
}
}
catch (const CORBA::BAD_PARAM&)
{
// Component does not exist; treat as not requiring a password
}

return IT_FALSE;
}

The interception point executes as follows:

1. Calls the subroutine require_password() to determine whether a
password is required.

2. get_effective_component() returns tagged component
TAG_REQUIRES_PASSWORD from the request’s object reference.

3. component_data() returns the tagged component’s data as an octet
sequence.
 516

Writing Client Interceptors
4. decode_value() is called on the interceptor’s Codec to decode the octet
sequence into a CORBA::Any. The call extracts the Boolean data that is
embedded in the octet sequence.

5. The Any is evaluated to determine whether the component data of
TAG_REQUIRES_PASSWORD is set to true.

Obtaining Service Data
After the client interceptor verifies that the request requires a password, it
calls RequestInfo::get_slot() to obtain the client password from the
appropriate slot:

// Get the specified password
CORBA::Any_var password =

request->get_slot(m_password_slot);
// ...
}

Encoding Service Context Data
After the client interceptor gets the password string, it must convert the string
and related data into a CDR encapsulation, so it can be embedded in a
service context that is added to the request. To perform the data conversion,
it calls encode_value on an IOP::Codec:

// Encode the password as a service context
CORBA::OctetSeq_var octets =

m_codec->encode_value(password);
IOP::ServiceContext::_context_data_seq seq(

octets->length(),
octets->length(),
octets->get_buffer(),
IT_FALSE);

Adding Service Contexts to a Request
After initializing the service context, the client interceptor adds it to the
outgoing request by calling add_request_service_context():

IOP::ServiceContext service_context;
service_context.context_id =

AccessControlService::PASSWORD_SERVICE_ID;
517

Chapter 21 | Portable Interceptors
service_context.context_data = seq;

request->add_request_service_context(
service_context, IT_TRUE);

Writing Server Interceptors
Server interceptors implement the ServerRequestInterceptor interface:

local interface ServerRequestInterceptor : Interceptor {
void
receive_request_service_contexts(in ServerRequestInfo ri
) raises (ForwardRequest);

void
receive_request(in ServerRequestInfo ri
) raises (ForwardRequest);

void
send_reply(in ServerRequestInfo ri);

void
send_exception(in ServerRequestInfo ri
) raises (ForwardRequest);

void
send_other(in ServerRequestInfo ri
) raises (ForwardRequest);

};

Interception Points

During a successful request-reply sequence, each server interceptor executes
one starting interception point and one intermediate interception point for
incoming requests. For outgoing replies, a server interceptor executes an
ending interception point.

Starting Interception Point
A server interceptor has a single starting interception point:
 518

Writing Server Interceptors
receive_request_service_contexts lets interceptors get service context
information from an incoming request and transfer it to PICurrent slots. This
interception point is called before the servant manager is called. Operation
parameters are not yet available at this point.

Intermediate Interception Point
A server interceptor has a single intermediate interception point:

receive_request lets an interceptor query request information after all
information, including operation parameters, is available.

Ending Interception Points
An ending interception point is called after the target operation is invoked,
and before the reply returns to the client. The ORB executes one of the
following ending interception points, depending on the nature of the reply:

send_reply lets an interceptor query reply information and modify the reply
service context after the target operation is invoked and before the reply
returns to the client.

send_exception is called when an exception occurs. An interceptor can query
exception information and modify the reply service context before the
exception is thrown to the client.

send_other lets an interceptor query the information available when a
request results in something other than a normal reply or an exception. For
example, a request can result in a retry, as when a GIOP reply with a
LOCATION_FORWARD status is received.

Interception Point Flow

For a given interceptor, the flow of execution follows one of these paths:

• receive_request_service_contexts completes execution without
throwing an exception. The ORB calls that interceptor’s intermediate and
ending interception points. If the intermediate point throws an exception,
the ending point for that interceptor is called with the exception.
519

Chapter 21 | Portable Interceptors
• receive_request_service_contexts throws an exception. The
interceptor’s intermediate and ending points are not called.

If multiple interceptors are registered on a server, the interceptors are
traversed in order for incoming requests, and in reverse order for outgoing
replies. If one interceptor in the chain throws an exception in either its
starting or intermediate points, no other interceptors in the chain are called;
and the appropriate ending points for that interceptor and all preceding
interceptors are called.

Scenario 1: Target object throws exception
Interceptors A and B are registered with the server ORB. Figure 59 shows the
following interception flow:

1. The interception point receive_request_server_contexts processes an
incoming request on interceptor A, then B. Neither interception point
throws an exception.

2. Intermediate interception point receive_reply processes the request
first on interceptor A, then B. Neither interception point throws an
exception.

3. The ORB delivers the request to the target object. The object throws an
exception.

4. The ORB calls interception point send_exception, first on interceptor B.,
then A, to handle the exception.
 520

Writing Server Interceptors
5. The ORB returns the exception to the client.

Scenario 2: Exception aborts interception flow
Any number of events can abort interception flow. Figure 60 shows the
following interception flow.

1. A request starts server-side interceptor processing, starting with
interceptor A’s receive_request_service_contexts. The request is
passed on to interceptor B.

2. Interceptor B’s receive_request_service_contexts throws an
exception. The ORB aborts interceptor flow and returns the exception to
interceptor A’s end interception point send_exception.

3. The exception is returned to the client.

Figure 59: Server interceptors receive request and send exception thrown by target
object.

r_req_serv_cxts

receive_request

send_exception

BA

Client

Server

r_req_serv_cxts

receive_request

send_exception

object throws
exception
521

Chapter 21 | Portable Interceptors
Because interceptor B’s start point does not complete execution, its
intermediate and end points are not called. Interceptor A’s intermediate point
receive_request also is not called.

Scenario 3: Interceptors change reply type
An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a
different system exception. Figure 61 shows the following interception flow:

1. The target object returns a normal reply.

2. The ORB calls send_reply on server interceptor C.

3. Interceptor C’s send_reply interception point throws exception foo_x,
which the ORB delivers to interceptor B’s send_exception.

4. Interceptor B’s send_exception changes exception foo_x to exception
foo_y, which the ORB delivers to interceptor A’s send_exception.

Figure 60: receive_request_service_contexts throws an exception and interception
flow is aborted.

r_req_serv_cxts

receive_request

send_exception

BA

Client

Server

r_req_serv_cxts

throws exception
 522

Writing Server Interceptors
5. Interceptor A’s send_exception returns exception foo_y to the client.

Note: Interceptors must never change the CompletionStatus of the received
exception.

ServerRequestInfo

Each interception point gets a single ServerRequestInfo argument, which
provides the necessary hooks to access and modify server request data:

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;
readonly attribute CORBA::OctetSeq object_id;
readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute CORBA::RepositoryId

target_most_derived_interface;

CORBA::Policy
get_server_policy(in CORBA::PolicyType type);

Figure 61: Server interceptors can change the reply type.

BA

Client

Server

r_req_serv_cxts

receive_request

send_exception

r_req_serv_cxts

receive_request

send_reply

C

foo_x
throws exception

foo_y
throws exception

r_req_serv_cxts

receive_request

send_exception

foo_xfoo_y object returns
normal reply
523

Chapter 21 | Portable Interceptors
void
set_slot(

in SlotId id,
in any data

) raises (InvalidSlot);

boolean
target_is_a(in CORBA::RepositoryId id);

void
add_reply_service_context(

in IOP::ServiceContext service_context,
in boolean replease

);
};

Table 32 shows which ServerRequestInfo operations and attributes are
accessible to server interception points. In general, attempts to access an
attribute or operation that is invalid for a given interception point raise an
exception of BAD_INV_ORDER with a standard minor code of 10.
 524

Writing Server Interceptors

Table 32: Server Interception Point Access to ServerRequestInfo

ServerRequestInfo: r_req_
serv_cxts r_req s_reply s_excep s_other

request_id y y y y y

operation y y y y y

argumentsa y y y

exceptions y y y y

contexts y y y y

operation_context y y

result y

response_expected y y y y y

sync_scope y y y y y

reply_status y y y

forward_reference y

get_slot y y y y y

get_request_service_context y y y y y

get_reply_service_context y y y

sending_exception y

get_server_policy y y y y y

set_slot y y y y y

add_reply_service_context y y y y y

a.When a ServerRequestInfo is passed to receive_request, the arguments list contains an
entry for all arguments, but only in and inout arguments are available.
525

Chapter 21 | Portable Interceptors
Server Interceptor Tasks

A server interceptor typically uses a ServerRequestInfo to perform the
following tasks:

• Get server policies.
• Get service contexts from an incoming request and extract their data.

The sample application implements receive_request_server_contexts
only. The requisite service context data is available at this interception point,
so it is capable of executing authorizing or disqualifying incoming requests.
Also, unnecessary overhead is avoided for unauthorized requests: by
throwing an exception in receive_request_server_contexts, the starting
interception point fails to complete and all other server interception points are
bypassed.

This discussion confines itself to receive_request_server_contexts and the
tasks that it typically performs. For a description of other ServerRequestInfo
operations and attributes, see the Orbix 2000 Programmer’s Reference.

Getting Server Policies
The sample application’s receive_request_server_contexts
implementation obtains the server’s password policy in order to compare it to
the password that accompanies each request. In order to do so, it calls
get_server_policy() on the interception point’s ServerRequestInfo:

void
ACL_ServerInterceptorImpl::receive_request_service_contexts(

PortableInterceptor::ServerRequestInfo_ptr request
) IT_THROW_DECL((

CORBA::SystemException,
PortableInterceptor::ForwardRequest

))
{

// Determine whether password protection is required.
AccessControl::PasswordPolicy_var password_policy =
get_password_policy(request);

// ...

AccessControl::PasswordPolicy_ptr
ACL_ServerInterceptorImpl::get_password_policy(

PortableInterceptor::ServerRequestInfo_ptr request
 526

Writing Server Interceptors
) IT_THROW_DECL((CORBA::SystemException))
{

try {
CORBA::Policy_var policy = request->get_server_policy(

AccessControl::PASSWORD_POLICY_ID);
return AccessControl::PasswordPolicy::_narrow(policy);
}
catch (const CORBA::INV_POLICY&) {
// Policy not specified
}

return AccessControl::PasswordPolicy::_nil();
}

// ...

Getting Service Contexts
After receive_request_server_contexts gets the server’s password policy,
it needs to compare it to the client password that accompanies the request.
The password is encoded as a service context, which is accessed through its
identifier PASSWORD_SERVICE_ID:

// ...
if (!CORBA::is_nil(password_policy) &&
password_policy->requires_password())
{

CORBA::String_var server_password =
password_policy->password();

if (!check_password(request, server_password))
{

throw CORBA::NO_PERMISSION(0xDEADBEEF);
}

}
// ...

CORBA::Boolean
ACL_ServerInterceptorImpl::check_password(

PortableInterceptor::ServerRequestInfo_ptr request,
const char* expected_password

) IT_THROW_DECL((CORBA::SystemException))
{

try {
527

Chapter 21 | Portable Interceptors
// Get the password service context...
1 IOP::ServiceContext_var password_service_context =

request->get_request_service_context(
AccessControlService::PASSWORD_SERVICE_ID
);

// ...convert it into string format...
2 IOP::ServiceContext::_context_data_seq& context_data =

password_service_context->context_data;
3 CORBA::OctetSeq octets(context_data.length(),

context_data.length(),
context_data.get_buffer(),
IT_FALSE);

4 CORBA::Any_var password_as_any =
m_codec->decode_value(octets, CORBA::_tc_string);

const char* password;
password_as_any >>= password;

// ...and compare the passwords
5 return (strcmp(password, expected_password) == 0);

}
catch (const CORBA::BAD_PARAM&)
{
// Service context was not specified
return IT_FALSE;
}

}

The interception point executes as follows:

1. Calls get_request_service_context() with an argument of
AccessControlService::PASSWORD_SERVICE_ID. If successful, the call
returns with a service context that contains the client password.

2. context_data() returns the service context data as an octet sequence
(see “Service Contexts” on page 497).

3. Initializes an octet sequence with the context data.

4. Calls decode_value() on the interceptor’s Codec to decode the octet
sequence into a CORBA::Any. The call specifies to extract the string data
that is embedded in the octet sequence.
 528

Registering Portable Interceptors
5. Extracts the Any’s string value and compares it to the server password. If
the two strings match, the request passes authorization and is allowed
to proceed; otherwise, an exception is thrown back to the client.

Registering Portable Interceptors
Portable interceptors and their components are instantiated and registered
during ORB initialization, through an ORB initializer. An ORB initializer
implements its pre_init() or post_init() operation, or both. The client and
server applications must register the ORB initializer before calling
ORB_init().

Implementing an ORB Initializer

The sample application’s ORB initializer implements pre_init() to perform
these tasks:

• Obtain PICurrent and allocate a slot for password data.
• Encapsulate PICurrent and the password slot identifier in an

AccessControl::Current object, and register this object with the ORB
as an initial reference.

• Register a password policy factory.
• Create Codec objects for the application’s interceptors, so they can

encode and decode service context data and tagged components.
• Register interceptors with the ORB.

Obtaining PICurrent
In the sample application, the client application and client interceptor use
PICurrent to exchange password data:

• The client thread places the password in the specified PICurrent slot.
• The client interceptor accesses the slot to obtain the client password and

add it to outgoing requests.

In the sample application, pre_init() calls the following operations on
ORBInitInfo:

1. allocate_slot_id() allocates a slot and returns the slot’s identifer.
529

Chapter 21 | Portable Interceptors
2. resolve_initial_references("PICurrent") returns PICurrent.
void
ACL_ORBInitializerImpl::pre_init(

PortableInterceptor::ORBInitInfo_ptr info
) IT_THROW_DECL((CORBA::SystemException))
{

// Reserve a slot for the password current
1 PortableInterceptor::SlotId password_slot =

info->allocate_slot_id();

PortableInterceptor::Current_var pi_current;

// get PICurrent
try {

2 CORBA::Object_var init_ref =
info->resolve_initial_references("PICurrent");

pi_current = PortableInterceptor::Current::_narrow(init_ref);
} catch

(const PortableInterceptor::ORBInitInfo::InvalidName&) {
throw CORBA::INITIALIZE();

}
// ...
}

Registering an Initial Reference
After the ORB initializer obtains PICurrent and a password slot, it must make
this information available to the client thread. To do so, it instantiates an
AccessControl::Current object. This object encapsulates:

• PICurrent and its password slot
• Operations that access slot data

The AccessControl::Current object has the following IDL definition:

// IDL
module AccessControl {

// ...
local interface Current : CORBA::Current {

attribute string password;
};

};
 530

Registering Portable Interceptors
The application defines its implementation of AccessControl::Current as
follows:

#include <omg/PortableInterceptor.hh>
#include <orbix/corba.hh>
#include "access_control.hh"

class ACL_CurrentImpl :
public AccessControl::Current,
public IT_CORBA::RefCountedLocalObject

{
public:
ACL_CurrentImpl(
PortableInterceptor::Current_ptr pi_current,
PortableInterceptor::SlotId password_slot
) IT_THROW_DECL(());

char*
password() IT_THROW_DECL((CORBA::SystemException));

void
password(const char* the_password
) IT_THROW_DECL((CORBA::SystemException));
// ...

}

With AccessControl::Current thus defined, the ORB initializer performs
these tasks:

1. Instantiates the AccessControl::Current object.

2. Registers it as an initial reference.
try {

1 AccessControl::Current_var current =
new ACL_CurrentImpl(pi_current, password_slot);

2 info->register_initial_reference(
"AccessControlCurrent", current);

}
catch (const PortableInterceptor::ORBInitInfo::DuplicateName&)

{
throw CORBA::INITIALIZE();

}

531

Chapter 21 | Portable Interceptors
Creating and Registering Policy Factories
The sample application’s IDL defines the following password policy to
provide password protection for the server’s POAs.

// IDL
module AccessControl {

const CORBA::PolicyType PASSWORD_POLICY_ID = 0xBEEF;

struct PasswordPolicyValue {
boolean requires_password;
string password;

};

local interface PasswordPolicy : CORBA::Policy {
readonly attribute boolean requires_password;
readonly attribute string password;

};

local interface Current : CORBA::Current {
attribute string password;

};
};

During ORB initialization, the ORB initializer instantiates and registers a
factory for password policy creation:

PortableInterceptor::PolicyFactory_var passwd_policy_factory =
new ACL_PasswordPolicyFactoryImpl();

info->register_policy_factory(
AccessControl::PASSWORD_POLICY_ID,
passwd_policy_factory

);

For example, a server-side ORB initializer can register a factory to create a
password policy, to provide password protection for the server’s POAs.

Creating Codec Objects
Each portable interceptor in the sample application requires a
PortableInterceptor::Codec in order to encode and decode octet data for
service contexts or tagged components. The ORB initializer obtains a Codec
factory by calling ORBInitInfo::codec_factory, then creates a Codec:
 532

Registering Portable Interceptors
IOP::CodecFactory_var codec_factory = info->codec_factory();
IOP::Encoding cdr_encoding = { IOP::ENCODING_CDR_ENCAPS, 1, 2 };
IOP::Codec_var cdr_codec =

codec_factory->create_codec(cdr_encoding);

When the ORB initializer instantiates portable interceptors, it supplies this
Codec to the interceptor constructors.

Registering Interceptors
The sample application relies on three interceptors:

• An IOR interceptor that adds a TAG_PASSWORD_REQUIRED component to
IOR’s that are generated by the server application.

• A client interceptor that attaches a password as a service context to
outgoing requests.

• A server interceptor that checks a request’s password before allowing it
to continue.

Note: The order in which the ORB initializer registers interceptors has no
effect on their runtime ordering. The order in which portable initializers are
called is determined by their order in the client and server binding lists (see
“Setting Up Orbix to Use Portable Interceptors” on page 534)

The ORB initializer instantiates and registers these interceptors as follows:

// Register IOR interceptor
PortableInterceptor::IORInterceptor_var ior_icp =

new ACL_IORInterceptorImpl(cdr_codec);
info->add_ior_interceptor(ior_icp);

// Register client interceptor
PortableInterceptor::ClientRequestInterceptor_var client_icp =
new ACL_ClientInterceptorImpl(password_slot, cdr_codec);
info->add_client_request_interceptor(client_icp);

// Register server interceptor
PortableInterceptor::ServerRequestInterceptor_var server_icp =
new ACL_ServerInterceptorImpl(cdr_codec);
info->add_server_request_interceptor(server_icp);
533

Chapter 21 | Portable Interceptors
Registering an ORBInitializer

An application registers an ORB initializer by calling
register_orb_initializer, which is defined in the PortableInterceptor
name space as follows:

namespace PortableInterceptor {
static void register_orb_initializer(

PortableInterceptor::ORBInitializer_ptr init);
};

Each service that implements interceptors provides an instance of an ORB
initializer. To use a service, an application follows these steps:

1. Calls register_orb_initializer and supplies the service’s ORB
initializer.

2. Instantiates a new ORB by calling ORB_init() with a new ORB
identifier.

An ORB initializer is called by all new ORBs that are instantiated after its
registration.

Setting Up Orbix to Use Portable Interceptors
The following setup requirements apply to registering portable interceptors
with the Orbix configuration. At the appropriate scope, add:

• portable_interceptor plugin to orb_plugins.
• Client interceptor names to client_binding_list.
• Server interceptor names to server_binding_list.

You can only register portable interceptors for ORBs created in programs that
are linked with the shared library it_portable_interceptor. If an
application has unnamed (anonymous) portable interceptors, add
AnonymousPortableInterceptor to the client and server binding lists. All
unnamed portable interceptors insert themselves at that location in the list.

Note: The binding lists determine the order in which interceptors are called
during request processing.
 534

Setting Up Orbix to Use Portable Interceptors
For more information about Orbix configuration, see the Orbix 2000
Administrator’s Guide.
535

Chapter 21 | Portable Interceptors
 536

Appendix A
Orbix IDL Compiler Options

The IDL compiler compiles the contents of an IDL module into header and
source files for client and server processes, in the specified implementation
language. You invoke the idl compiler with the following command syntax:

idl -plugin[...] [-switch]... idlModule

Note: You must specify at least one plugin switch, such as -poa or -base,
unless you modify the IDL configuration file to set IsDefault for one or more
plugins to Yes. (see page 544). As distributed, the configuration file sets
IsDefault for all plugins to No.

Command Line Switches
You can qualify the idl command with one or more of the following
switches. Multiple switches are colon-delimited.

Switch Description

-Dname[:value] Defines the preprocessor’s name.

-E Runs preprocessor only, prints on stdout.

-Idir Includes dir in search path for preprocessor.

-R[-v] Populates the interface repository (IFR). The -v
modifier specifies verbose mode.

-Uname Undefines name for preprocessor.
537

Chapter Appendix A | Orbix IDL Compiler Options
-V Prints version information and exits.

-u Prints usage message and exits.

-w Suppresses warning messages.

-plugin
[:-modifier]...

Specifies to load the IDL plug-in specified by
plugin to generate code that is specific to a
language or ART plug-in. You must specify at
least one plugin to the idl compiler

Use one of these values for plugin:

• base: Generate C++ header and stub code.
• jbase: Generate Java stub code
• poa: Generate POA code for C++ servers.
• jpoa: Generate POA code for Java servers.
• psdl: Generate C++ code that maps to

abstract PSDL constructs.
• pss_r: Generate C++ code that maps

concrete PSDL constructs to relational and
relational-like database back-end drivers.

Each plugin switch can be qualified with one or
more colon-delimited modifiers.

Switch Description
 538

Plug-in Switch Modifiers
Plug-in Switch Modifiers
The following tables describe the modifiers that you can supply to plug-in
switches such as -base or -poa.

Table 33: Modifiers for all C++ plug-in switches

Modifier Description

-d[decl-spec] Creates NT declspecs for dllexport and dllimport. If you omit
decl-spec, idl uses the stripped IDL module’s name.

For example, the following command:

idl -dIT_ART_API foo.idl

yields this code:

#if !defined(IT_ART_API)
#if defined(IT_ART_API_EXPORT)
#define IT_ART_API IT_DECLSPEC_EXPORT
#else
#define IT_ART_API IT_DECLSPEC_IMPORT
#endif
#endif

If you compile and link a DLL with the idl-generated code within it,
IT_ART_API_EXPORT must be a defined preprocessor symbol so that
IT_ART_API is set to dllexport. All methods and variables in the
generated code can be exported from the DLL and used by other
applications. If IT_ART_API_EXPORT is not defined as a preprocessor
symbol, IT_ART_API is set to dllimport; methods and variables that
are defined in the generated code are imported from a DLL.

-ipath-prefix Prepends path-prefix to generated include statements. For example, if
the IDL file contains the following statement:

#include "foo.idl"

idl generates this statement in the header file:

#include path-prefix/foo.hh
539

Chapter Appendix A | Orbix IDL Compiler Options
-h[suffix.]ext Sets header file extensions. The default setting is .hh.

For example, the following command:

idl -base:-hh foo.idl

yields a header file with this name:

foo.h

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -base:-h_client.h foo.idl

yields the following header file name:

foo_client.h

If you use the -h to modify the -base switch, also use -b to modify
the -poa switch (see Table 36).

-Ohpath Sets the output directory for header files.

-Ocpath Sets the output directory for client stub (.cxx) files.

-xAMICallbacks Generates stub code that enables asynchronous method invocations
(AMI).

Table 33: Modifiers for all C++ plug-in switches

Modifier Description
 540

Plug-in Switch Modifiers
Table 34: Modifier for -base, -psdl, and -pss_r plugin switches

Modifier Description

-c[suffix.]ext Specifies the format for stub file names. The default name is
idl-name.cxx.

For example, the following command:

idl -base:-cc foo.idl

yields a server skeleton file with this name:

foo.c

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -base:-c_client.c foo.idl

yields the following stub file name:

foo_client.c

-xOBV Generates object-by-value default valuetype implementations in files.

Table 35: Modifiers for -jbase and -jpoa switches

Modifier Description

-Ppackage Use package as the root scope to package all unspecified modules.
By default, all Java output is packaged in the IDL module names.

-Pmodule=package Use package as the root scope for the specified module.

-Odir Output all java code to dir. The default is the current directory.

-Gdsi
-Gstream

Output DSI or stream-based code. The default is stream.

-Mreflect
-Mcascade

Specifies the POA dispatch model to use either reflection or
cascading if-then-else statements. The default is reflect.

-J1.1
-J1.2

Specifies the JDK version. The default is 1.2.
541

Chapter Appendix A | Orbix IDL Compiler Options
-VTRUE
-VFALSE

Generate native implementation for valuetypes. The default is FALSE.

-FTRUE
-FFALSE

Generate factory implementation for valuetypes. The default is FALSE.

Table 36: Modifiers for -poa switch

Modifier Description

-s[suffix.]ext Specifies the skeleton file name. The default name is idl-nameS.cxx
for skeleton files.

For example, the following command:

idl -poa:-sc foo.idl

yields a server skeleton file with this name:

fooS.c

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -poa:-s_server.h foo.idl

yields the following skeleton file name:

foo_server.c

Table 35: Modifiers for -jbase and -jpoa switches

Modifier Description
 542

Plug-in Switch Modifiers
-b[suffix.]ext Specifies the format of the header file names in generated #include
statements. Use this modifier if you also use the -h modifier with the
-base plugin switch.

For example, if you specify a .h extension for -base-generated header
files, specify the same extension in -poa-generated #include
statements, as in the following commands:

idl -base:-hh foo.idl
idl -poa:-bh foo.idl

These commands generate header file foo.h, and include in skeleton
file fooS.cxx a header file of the same name:

#include "foo.h"

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -poa:-b_client.h foo.idl

yields in the generated skeleton file the following #include statement:

#include "foo_client.h"

-mincl-mask #include statements with file names that match mask are ignored in
the generated skeleton header file. This lets the code generator ignore
files that it does not need. For example, the following switch:

-momg/orb

directs the idl compiler to ignore this #include statement in the IDL/
PSDL:

#include <omg/orb.idl>

-pmultiple Sets the dispatch table to be 2 to the power of multiple. The default
value of multiple is 1. Larger dispatch tables can facilitate operation
dispatching, but also increase code size and memory usage.

-xTIE Generates POA TIE classes.

Table 36: Modifiers for -poa switch

Modifier Description
543

Chapter Appendix A | Orbix IDL Compiler Options
IDL Configuration File
The IDL configuration file defines valid idl plugin switches such as -base
and -poa and specifies how to execute them. For example, the default IDL
configuration file defines the base and poa switches, the path to their
respective libraries, and command line options to use for compiling C++
header and client stub code and POA code.

IDL configuration files have the following format:

IDLPlugins = "plugin-type[, plugin-type].."

plugin-type
{

Switch = switch-name;
ShlibName = path;
ShlibMajorVersion = version
ISDefault = "{ YES | NO }";
PresetOptions = "-plugin-modifier[, -plugin-modifier]..."

plugin-specific settings...
...
}

plugin-type can be one of the following literals:

Java
POAJava
Cplusplus
POACxx
IFR
PSSDLCxx
PSSRCxx

The idl command can supply additional switch modifiers; these are
appended to the switch modifiers that are defined in the configuration file.
You can comment out any line by beginning it with the # character.

The distributed IDL configuration file looks like this:

IDL Configuration File

IDL_CPP_LOCATION configures the C-Preprocessor for the IDL
Compiler
It can be the fully qualified path with the executable name or
 544

IDL Configuration File
just the executable name
#IDL_CPP_LOCATION = "%PRODUCT_BIN_DIR_PATH%/idl_cpp";
#IDL_CPP_ARGUMENTS = "";
#tmp_dir = "c:\temp";

IDLPlugins = "Java, POAJava, Cplusplus, POACxx, IFR, PSSDLCxx,
PSSRCxx";

Cplusplus
{

Switch = "base";
ShlibName = "it_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";

Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

POACxx
{

Switch = "poa";
ShlibName = "it_poa_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";

Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

IFR
{

Switch = "R";
545

Chapter Appendix A | Orbix IDL Compiler Options
ShlibName = "it_ifr_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "";

};

PSSDLCxx
{

Switch = "psdl";
ShlibName = "it_pss_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";
UsePSSDLGrammar = "YES";

Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

PSSRCxx
{

Switch = "pss_r";
ShlibName = "it_pss_r_cxx_ibe";
ShlibMajorVersion = "1";
IsDefault = "NO";
PresetOptions = "-t";
UsePSSDLGrammar = "YES";

Header and StubExtension set the generated files extension
The Default is .cxx and .hh
#
StubExtension = "cxx";
HeaderExtension = "hh";
};

Java Config Information
Java
{

Switch = "jbase";
 546

IDL Configuration File
ShlibName = "idl_java";
ShlibMajorVersion = "1";
IsDefault = "NO";

};

POAJava
{

Switch = "jpoa";
ShlibName = "jpoa";
ShlibMajorVersion = "1";
IsDefault = "NO";

};

Given this configuration, you can issue the following idl commands on the
IDL file foo.idl:

idl -base foo.idl Generates client stub and header code.

idl -poa foo.idl Generates POA code.

idl -base -poa foo.idl Generates code for both client stub and header
code and POA code.
547

Chapter Appendix A | Orbix IDL Compiler Options
 548

Installed IFC Directories
Appendix B
IONA Foundation Classes Library

For each platform, IONA distributes several variants of its IONA foundation
classes (IFC) shared library, which provides a number of proprietary features,
such as a threading abstraction. For each IFC library, IONA provides checked
and unchecked variants:

• Checked variants are suitable for development and testing: extra
checking is built into the code—for example, it throws an exception
when a thread attempts to lock a mutex that it has already locked.

• Unchecked variants are suitable for deployed applications, which have
been tested for thread safety.

Each UNIX distribution provides IFC libraries that support the POSIX thread
package. The following platforms have multiple IFC libraries, which support
different thread packages:

Installed IFC Directories
Each Orbix installation makes IFC variants available in directories with this
format:

Platform Thread package support

HPUX 32 POSIX, DCE/CMA

Solaris 32/64 POSIX, UI

Unix

Checked $IT_PRODUCT_DIR/shlib/native-thread-pkg/libit_ifc_compiler-spec

Unchecked $IT_PRODUCT_DIR/shlib/native-thread-pkg/checked/
libit_ifc_compiler-spec

Windows

Checked %IT_PRODUCT_DIR%\bin\windows\it_ifc3_vc60.dll

Unchecked %IT_PRODUCT_DIR%\bin\windows\checked\it_ifc3_vc60.dll
549

Chapter Appendix B | IONA Foundation Classes Library
Further, each installation provides a default IFC directory, which contains an
unchecked variant. On UNIX platforms, the default directory contains a
symbolic link to an unchecked variant of UI or POSIX; on Windows, it
contains a copy of the unchecked variant of the Windows IFC library:

UNIX:

$IT_PRODUCT_DIR/shlib/default/ifc-lib-sym-link

Windows:

%IT_PRODUCT_DIR%\bin\it_ifc3_vc60.dll

Selecting an IFC Library
Options for setting a given program’s IFC library are platform-dependent.

Unix

On UNIX systems, you can set a program’s IFC library in two ways:

• (Recommended) When linking the program, use the linker’s run path
feature, and set it to the desired IFC library directory. For example, set
the -R option with the Sun compiler.

• Set the program’s environment variable (LD_LIBRARY_PATH or
SHLIB_PATH). Keep in mind that other services such as the Locator also
might use this environment and can be affected by this setting.

Windows

Set PATH to the desired IFC library directory.
 550

Index
A
Abstract storage home

defined 421
defining 425
factory operation 428
forward declaration 429
inheritance 429
keys 426
operations 428

Abstract storage type
defined 421
defining 422
definition syntax 423
forward declaration 425
inheritance 423

from storage object 424
operations 424
state members 423

activate()
calling on POAManager 69, 241

activate_object() 68, 203, 234, 236
activate_object_with_id() 203, 234, 236
Active object map 222

disabling 228
enabling 228
using with servant activator 250

add_ior_component() 504
addMember() 408
_add_ref() 213
AliasDef 357
allocate_slot_id() 529
Any type 303–338

extracting user-defined types 307
extracting values from 306

alias 314
array 310
Boolean 309
bounded string alias 313
Char 309
Octet 309
string 312
WChar 309
wstring 312

extraction operators 306
inserting user-defined types 305
inserting values 304

alias 313
array 310
Boolean 309
bounded string alias 313
Char 309
Octet 309
string 311
WChar 309
wstring 311

insertion operators 304
memory management 305, 307
querying type code 315

Application
running 26, 31

arguments() 345
Arithmetic operators 106
Array type

_forany 310
ArrayDef 358
Association

constructors 439
operations 440

Asynchronous method invocations 267–276
client implementation 273
implied IDL 268
reply handlers 270

Attribute
client-side C++ mapping for 163
genie-generated 52
in IDL 82
readonly 42

B
BAD_TYPECODE 314
-base flag 45
Binding

limiting forward tries 189
limiting retries 189
setting delay between tries 189
setting timeout 189

Binding iterator 392
Binding list 392
551

Index
BindingEstablishmentPolicy 188
Boolean

constant in IDL 104
Bounded strings 311

C
CannotProceed exception 391
CDR encapsulation 499
Character

constant in IDL 103
Client

asynchronous method invocations 267
building 26
developing 55, 145
dummy implementation 44
exception handling 281
generating 22, 29, 43
implementing 24, 30, 55
initializing ORB runtime 129, 163
interceptors, see Client interceptors
invoking operations 147, 163–182
quality of service policies 182

creating PolicyList 134
effective policy 133
getting policy overrides 136
object management 137, 139
ORB PolicyManager 135, 138
setting policy overrides 136
thread management 135, 138

reply handlers for asynchronous method
invocations 273

timeout policies 185
Client interceptors

aborting request 510
changing reply 511
evaluating tagged component 515
interception point flow 508
interception points 506, 507, 513
location forwarding 510
normal reply processing 509
registering 533
tasks 514

Client policies
RebindPolicy 183
SyncScopePolicy 184
timeout 185

Client proxy 58, 145
class definition 146
deallocating 149
reference counting 148
 552
ClientRequestInfo 496
interface 512

ClientRequestInterceptor 495
interface 506

Client-side C++ mapping
attributes 163
operations 163
parameter passing 164

rules 179
parameters

fixed-length array 167
fixed-length complex 166
object reference 177
_out-type 171
simple 165
string 169
variable-length array 176
variable-length complex 174

Code generation toolkit
See also Genie-generated application
idlgen utility 29
packaged genies 109
wizard 17

Codec
creating 500, 532
decoding service context 500
encoding service context 500
interface 499
operations 500

Codec factory 500
obtaining 532

codec_factory() 500, 532
Command-line arguments 64
Compiling

application 60
event service application 490
IDL 45
IDL definitions for event service 490
PSDL 422

completed() 283
component_count() 327
Configuration 9
Connector object 442
Constant definition

boolean 104
character 103
enumeration 105
fixed-point 105
floating point 103
in IDL 103

Index
integer 103
octet 104
string 103
wide character 104
wide string 104

Constant expressions
in IDL 106

Consumer
about 466
connecting to event channels 488
push model development 486
receiving events 489

ConsumerAdmin 481, 487
Contained interface 361

Description structure 365
Container interface 363

operations 368
contents() 369
CORBA object, see Object
corbaloc 162
corbaname 390
CosEventChannelAdmin 473, 475, 480
CosEventComm 473, 475
cpp_poa_genie.tcl 29, 43
cpp_poa_genie.tcl genie 127

-all option 111
-complete/-incomplete options 122
-default_poa option 117
defined 109
-dir option 126
-include option 113
interface specification 112
-refcount/-norefcount options 117
-servant option 114
-servant/-noservant options 116
-server option 118
-strategy options 120
syntax 110
-threads/-nothreads options 119
-tie option 115
-v/-s options 126

cpp_poa_op.tcl genie 127
defined 109

_create() 67
create_active() 408
create_id_assignment_policy() 233
create_id_uniqueness_policy() 234
create_lifespan_policy() 231
create_operation_list 344
create_policy()
calling on client ORB 134
create_random() 408
create_reference() 264
create_reference_with_id() 264
_create_request 342
create_round_robin() 408, 416
create_transactional_session() 443
Current, in portable interceptors

See PICurrent
current_component() 327
current_member_kind() 331, 337
current_member_name() 331, 336

D
DCE UID repository ID format 373
deactivate()

calling on POAManager 242
decode() 500
decode_value() 500
Default servant 223, 261–264

registering with POA 231, 264
_default_POA() 238

overriding 239
Deferred synchronous request 346
def_kind 352
describe() 365
describe_contents() 369
destroy() 71, 131, 352
DII 340

See also Request object
creating request object 341
deferred synchronous request 346
invoking request 344

DIRECT_PERSISTENCE policy 232
discard_requests()

calling on POAManager 242
discriminator_kind() 333
DSI 347

dynamic implementation routine 348
Dynamic Any, see DynAny
Dynamic implementation routine 348
Dynamic invocation interface, see DII
Dynamic skeleton interface, see DSI
DynAny 316

assignment 317
comparing 317
conversion to Any 318
copying 317
creating 318
destroying 317
553

Index
DynArray interface 334
DynEnum interface 329
DynFixed interface 335
DynSequence interface 334
DynStruct interface 330
DynUnion interface 332
DynValue interface 336
DynValueBox interface 337
extraction operations 324
factory operations 318
initializing from another 317
insertion operations 323
iterating over components 327
obtaining type code 318

DynAnyFactory interface 318

E
encode() 500
encode_value() 500
EndOfAssociationCallback 444
enum data type 97
EnumDef 357
Enumeration

constant in IDL 105
equal() 297
equivalent() 297
establish_components() 502
etherealize() 255
Event channel

about 466
administration 480
registering suppliers and consumers 473
transfer of events 477

Event handling
in server 218

Event service
compiling application 490
compiling IDL 490
IDL interface 472
overview 472
programming interface 472

EventChannel 480, 484, 487
Events

about 466
initiating 468

mixing push and pull models 470
pull model 469
push model 469

pushing to an event channel 486
receiving by consumer 489
 554
relationship to operation calls 471
sample application 467
sample push model application 483
transferring through an event channel 477
typed 471
untyped 471

Exceptions 277–291
handling in clients 281
in IDL 83
specification in server skeleton class 199
system 282
system codes 283
throwing in server 287

Explicit object activation 203, 236
policy 234

F
Factory operation

in PSDL 428
find_group() 409, 416
FixedDef 358
Fixed-point

constant in IDL 105
Floating point

constant in IDL 103
for_consumers() 480, 487
for_suppliers() 480, 484
Forward declaration

abstract storage home 429
abstract storage type 425
in IDL 88

G
Genie-generated application 8, 109–127

See also cpp_poa_genie.tcl genie,
cpp_poa_op.tcl genie

compiling 126
completeness of code 122
component specification

all 111
included files 113
servant classes only 114
server only 118

_create() 54
directing output 126
generated attribute 52
interface selection 112
object mapping policy

servant locator 120

Index
use active object map only 120
use servant activator 120

overriding _default_POA() 117
POA thread policy 119
reference counting 117
servant class inheritance 116
signature 126
tie-based servants 115
verbosity settings 126

get_association_status() 448
get_boxed_value() 337
get_boxed_value_as_dyn_any() 337
get_client_policy() 140
get_compact_typecode() 298
get_discriminator() 332
get_effective_component() 515
get_effective_policy() 503
_get_interface() 367
get_length() 334
get_members() 331, 337
get_members_as_dyn_any() 331, 337
get_policy() 140
get_policy_overrides() 140

calling on ORB PolicyManager 136
calling on thread PolicyCurrent 136

get_response() 346
get_value() 335

H
hash() 152
has_no_active_member() 333
Hello World! example 16
hold_requests()

calling on POAManager 241

I
IDL 77–107

attribute in 42
attributes in 82
compiling 45
constant expressions in 106
empty interfaces 84
event service 472
exceptions 277–291
exceptions in 83
interface definition 79–88
interface repository definitions 351

object types 354
module definition 77
name scoping 77
one-way operations in 82
operation in 42, 80
parameters in 81
pragma directives 373
precedence of operators 107
prefix pragma 374
user-defined types 102
version pragma 374

IDL compiler 45
generated files 46
generating implied IDL 268
options

-base 45
-flags 45
-poa 45

output 45
populating interface repository 351

idlgen utility 43
Implicit object activation 202, 237

overriding default POA 239
policy 234

IMPLICIT_ACTIVATION policy 235, 237
Implied IDL 268

attribute mapping 269
operation mapping 269
sendc_ operation 268
sendc_get operation 269

in parameters 81
Inheritance

implementing by 51
in abstract storage home 429
in interfaces 84
in servant classes 216
storage home 431

Initial naming context
obtaining 382

Initial reference
registering 530

inout parameters 81
Integer

constant in IDL 103
Interception points 495

client flow 508
client interceptors 506, 507, 513
client-side data 496, 512
IOR data 496
IOR interceptors 502
request data 496, 504
server flow 519
555

Index
server interceptors 518, 524
server-side data 496, 523
timeout constraints 505

Interceptor interface 494
Interceptors, see Portable interceptors
Interface

client proxy for 145
components 80
defined in IDL 79–88
dynamic generation 339
empty 84
forward declaration of 88
inheritance 84
inheritance from Object interface 86
multiple inheritance 85
overriding inherited definitions 87

Interface Definition Language, see IDL
Interface repository 351–375

abstract base interfaces 353
browsing 368
Contained interface 361
Container interface 363
containment 359
destroying object 352
finding objects by ID 370
getting information from 367

object interface 367
getting object’s IDL type 358
object descriptions 365

getting 369
object types 352

named 357
unnamed 358

objects in 352
populating 351
repository IDs 372

setting prefixes 373
setting version number 374

Interface, in IDL definition 42
InterfaceDef 357
Interoperable Object Reference, see IOR
InvalidName exception 391
InvocationRetryPolicy 191
IOR 221

string format 160
usage 161

IOR interceptors 502
adding tagged components 499, 504
interception point 502
registering 533
 556
IORInfo 496
interface 502

IORInterceptor 495
See also IOR interceptors
interface 502

IRObject interface 352
_is_a() 151
_is_equivalent() 152
Isolation level

specifying for session 443
item() 345
IT_ServantBaseOverrides class 240
IT_THROW_DECL macro 51

K
Key

defined in abstract storage home 426
composite 426
simple 426

primary declaration in storage home 431
kind() 296

L
Load balancing 404

example of 410
Local repository ID format 373
Logging 9
lookup() 368
lookup_id() 370
lookup_name() 368

M
member() 333
member_kind() 333
member_name() 333
Memory management

string type 30
minor() 284
Module

in IDL 77
MULTIPLE_ID policy 234

N
Name binding

creating for application object 387
creating for naming context 384
dangling 395
listing for naming context 391

Index
removing 395
Name scoping

in IDL 77
Name sequence

converting to StringName 382
defined 379
initializing 381
resolving to object 379, 388
setting from StringName 381
setting name components 381
string format 380

NameComponent
defined 379

NamedValue pseudo object type 102
Naming context

binding application object to 387
binding to another naming context 384
destroying 395
listing bindings 391
orphan 386
rebinding application object to 388
rebinding to naming context 388

Naming graph
binding application object to context 387
binding iterator 392
binding naming context to 384
building programmatically 383
defined 377
defining Name sequences 379
destroying naming context 395
federating with other naming graphs 396
iterating over naming context bindings 392
listing name bindings 391
obtaining initial naming context 382
obtaining object reference 388
rebinding application object to context 388
rebinding naming context 388
removing bindings 395
resolving name 379, 389
resolving name with corbaname 390

Naming service 377
AlreadyBound exception 388
binding iterator 392
CannotProceed exception 391
defining names 379
exceptions 391
initializing name sequence 381
InvalidName exception 391
name binding 377
naming context 377
NotEmpty exception 395
NotFound exception 391
representing names as strings 380
string conversion operations 380

Narrowing
initial references 65
object reference 58
_ptr 153

type-safe 155
_var 158

NativeDef 357
next() 328
Nil reference 149
_nil()

Nil reference 57, 63
NO_IMPLICIT_ACTIVATION policy 235, 236
_non_existent() 151
NON_RETAIN policy 228

and servant locator 250
NotFound exception 391

O
Object

activating 68, 202
activating on demand

with servant activator 251
with servant locator 256, 260

base class 47
binding to naming context 387
client proxy for 145
creating inactive 264
deactivating

with servant activator 255
with servant locator 260

defined in CORBA 2
explicit activation 203, 236
getting interface description 367
ID assignment 67, 233
implicit activation 202, 237
mapping to servant 221

options 222
rebinding to naming context 388
removing from object groups 409
request processing policies 229
test for equivalence 152
test for existence 151
test for interface 151

Object binding
transparent rebinding 183

Object group 404
557

Index
accessing from clients 417
adding objects to 408, 411
creating 408, 411
factories 408
finding 416
group identifiers 408
member identifiers 408
member structure 417
removing 409
removing objects from 409
selection algorithms 408

Object pseudo-interface
hash() 152
inheritance from 86
is_a_() 151
_is_equivalent() 152
_non_existent() 151
operations 150

Object reference 2
adding tagged components 499, 504
creating for inactive object 264
IOR 221
lifespan 231
narrowing 58
nil 149
obtaining with create_reference() 264
obtaining with id_to_reference() 68
obtaining with _this() 237
operations 150
passing as a string 17
passing as parameter

C++ mapping in client 177
persistent 232
string conversion 159

format 160
transient 231
_var type 147

ObjectDeactivationPolicy 227, 255
object_to_string() 69, 160
obtain_pull_consumer() 480
obtain_pull_supplier() 481
obtain_push_consumer() 480, 484
obtain_push_supplier() 481, 487
Octet

constant in IDL 104
og_factory() 416
OMG IDL repository ID format 372
One-way requests

SyncScopePolicy 184
Operation
 558
client-side C++ mapping for 163
defined in abstract storage home 428
defined in abstract storage type 424
defined in IDL 80
interface repository description 365
one-way, defined in IDL 82

operation() 346
OperationDef interface 365
Operators

arithmetic 106
precedence of, in IDL 107

ORB
getting object reference to 129, 163
role of 3

-ORB flags 64
ORB initializer 494

creating and registering PolicyFactory 532
creating Codec objects 500, 532
interface 501
obtaining Codec factory 500, 532
registering initial reference 530
registering portable interceptors 529, 533
registering with application 534
tasks 501, 529

ORB PolicyManager 137
ORB runtime

destroying 130
event handling 218
initializing in client 55, 129, 163
initializing in server 63
polling for incoming requests 218
shutting down 70, 130

ORB_CTRL_MODEL policy 213, 235, 236
ORB_init() 57

calling in client 129, 163
ORB_init() function 57

calling in server 64
ORBInitInfo 501
Orphaned naming context 386
out parameters 81
_out-type parameters

C++ mapping in client 171

P
ParameterList

settings for transaction session 444
Parameters

C++ mapping in client 164
fixed-length array 167
fixed-length complex 166

Index
object reference 177
_out types 171
rules for passing 179
simple 165
string 169
variable-length array 176
variable-length complex 174

C++ mapping in server 203–213
fixed-length array 206
fixed-length complex 205
object reference 211
simple 204
string 207
variable-length array 210
variable-length complex 209

defined in IDL 42, 81
direction 81
in types 81
inout types 81
out types 81
setting for request object 342, 343, 344

perform_work() 219
PersistenceModePolicy 227
PERSISTENT policy 232
Persistent State Definition Language, see PSDL
Persistent State Service, see PSS
PICurrent 494

allocating slot 529
defined 497
interface 498
obtaining 529

Plug-in 7
POA 221–242

activating object in 67, 202
active object map 222, 228
attaching PolicyList 137, 225
creating 64, 65, 223
default servant 223, 261–264
genie-generated

active object map 120
servant activator 120
use servant locator 120

mapping object to servant through
inheritance 197–199

ObjectDeactivationPolicy 255
POAManager 65, 69, 241
registering default servant 231, 264
registering servant activator 256
registering servant locator 261
registering servant manager 230
root POA 65, 223
servant manager 223
skeleton class 196

POA manager 65, 241
states 69, 241

POA policies
attaching to new POA 137, 225
constants

DIRECT_PERSISTENCE 232
IMPLICIT_ACTIVATION 235
MULTIPLE_ID 234
NO_IMPLICIT_ACTIVATION 235
NON_RETAIN 228
ORB_CTRL_MODEL 235, 236
PERSISTENT 232
RETAIN 228
SINGLE_THREAD_MODEL 235
SYSTEM_ID 233
TRANSIENT 231
UNIQUE_ID 234
USE_ACTIVE_OBJECT_MAP_ONLY 229
USE_DEFAULT_SERVANT 230
USER_ID 233
USE_SERVANT_MANAGER 230

factories for Policy objects 226
ID assignment 233
ID uniqueness 234
object activation 234, 236
object lifespan 231
ObjectDeactivationPolicy 227
ORB_CTRL_MODEL 213
PersistenceModePolicy 227
proprietary 226
request processing 229
root POA 227
servant retention 228
setting 66, 224
threading 235
WellKnownAddressingPolicy 227

Policies
creating PolicyFactory 501
getting 141

PolicyCurrent 138
interface operations 135

PolicyFactory 494
creating and registering 532
interface 501

PolicyList
attaching to POA 137, 225
creating for client 134
559

Index
creating for POA 224
PolicyManager 138

interface operations 135
setting ORB policies 137

poll_response 346
Portable interceptors 9, 493

client interceptors, see Client interceptors
components 493
interception points, see Interception points
IOR interceptors, see IOR interceptors
ORB initializer, see ORB initializer
PICurrent, see PICurrent
policy factory, see PolicyFactory
registering 529, 533
registering with Orbix configuration 534
server interceptors, see Server interceptors
service context, see Service context
tagged component, see Tagged component
types 495

Portable Object Adapter, see POA
post_init() 529
postinvoke() 258, 260
Pragma directives, in IDL 373
Prefix pragma 374
pre_init() 529
preinvoke() 258, 260
PrimitiveDef 358
Proxy, see Client proxy
ProxyPullConsumer 475
ProxyPullSupplier 475
ProxyPushConsumer 473

retrieving from event channels 484
ProxyPushSupplier 473

retrieving from event channels 487
PSDL 419–431

abstract storage home 425
abstract storage type 422
C++ mapping 454–464

abstract storagetype 456
operation parameters 461
Ref_var class 459
state members 459
storagehome 462
storagetype 461

compiling 422
keywords 420
language mappings

equivalent local interfaces 455
storage home 420
storage type
 560
defined 420
Pseudo object types

in IDL definition 102
PSS 419–464

accessing storage objects 432
defining data 419

see also PSDL
querying data 452

_ptr object reference type 147, 153–156
duplicating 153
narrowing 153

type-safe 155
releasing 153
widening 153

Pull model
for initiating events 469

PullConsumer 475
PullSupplier 475
Push model

for initiating events 469
push() 486
PushConsumer 473, 488

developing
486

PushSupplier 473
developing 484

Q
Quality of service policies 182

creating PolicyList 134
effective policy 133, 183
getting overrides

for ORB 136
for thread 136

managing
object 139
ORB 135
thread 135

object management 137, 139
ORB PolicyManager 135, 138
setting overrides

for ORB 136
for thread 136

thread management 135, 138
Querying data 452

R
RebindPolicy 183
receive_exception() 508

Index
receive_other() 508
receive_reply() 508
receive_request() 519
receive_request_service_contexts() 519
RefCountServantBase 213
Reference counting 213

genie-generated 117
Reference representation 430
Ref_var Classes 459
register_orb_initializer() 534
RelativeBindingExclusiveRequestTimeoutPolicy

191
RelativeBindingExclusiveRoundtripTimeoutPolic

y 191
RelativeRequestTimeoutPolicy 187
RelativeRoundtripTimeoutPolicy 186
remove_member() 409
_remove_ref() 213
Reply handlers 270

exceptional replies 273
implementing on client 273
normal replies 272

ReplyEndTimePolicy 187
_request 341
Request object

creating 341
operation parameters 342, 343, 344
return type 342
with _create_request 342
with _request 341

getting request information 346
invoking 344
obtaining results 345

RequestEndTimePolicy 188
RequestInfo 496

interface 504
resolve_initial_references()

InterfaceRepository 368
NameService 382
PICurrent 530
POA 64
PSS 433
TransactionCurrent 433

resolve_str() 381
RETAIN policy 228

and servant activator 250
return_value() 346
rewind() 328
Root POA

policies 227
run() 70
Running an application 59

S
seek() 328
send_c operation 268
sendc_get_ operation 269
send_deferred 346
send_exception() 519
send_other() 519
send_poll() 508
send_reply() 519
send_request() 508
sequence data type 101
SequenceDef 358
Servant

caching 257
etherealized

by servant activator 255
by servant locator 260

genie-generated
overriding default POA 117
reference counting 117

implementation class 52, 200
incarnated

by servant locator 260
incarnating multiple objects 234
inheritance from POA skeleton class 196
inheritance from ServantBase 198
instantiating 202
mapping to object 221

options 222
reference counting 213
tie-based 214

Servant activator 251–256
deactivating objects 255
etherealizing servants 255
object deactivation policy 255
registering with POA 256
required policies 230

Servant class
creating 200–201
genie-generated 114

inheritance 116
inheritance 216
interface inheritance 216
multiple inheritance 217

Servant locator 256–261
activating objects 260
caching servants 257
561

Index
deactivating objects 260
etherealizing servants 260
incarnating servants 260
registering with POA 261
required policies 230

Servant manager 223, 249–266
registering with POA 230, 250
set for POA 230

ServantBase 198
Server

building 22
compiling 220
defined in CORBA 5
dummy implementation 44
event handling 218
generating 18, 29, 43
genie-generated 118

object mapping options 120
POA thread policy 119

implementing 20, 30, 48
initialization 61
processing requests, see POA
servant reference counting 213
shutting down 70
termination handler 70, 219
throwing exceptions 287

Server interceptors 518
aborting request 521
changing reply 522
getting server policy 526
getting service contexts 527
interception point flow 519
interception points 518, 524
registering 533
tasks 526
throwing exception 520

ServerRequest pseudo-object 348
ServerRequestInfo 496

interface 523
ServerRequestInterceptor 495

interface 518
Server-side C++ mapping

fixed-length array parameters 206
fixed-length complex parameters 205
object reference parameters 211
parameter passing 203–213
POA skeleton class 196, 197–199
simple parameters 204
skeleton class

method signatures 199
 562
string parameters 207
variable-length array parameters 210
variable-length complex parameters 209

Service context 494, 497
decoding data 500
encoding data 494, 500
IDs 497

Services 26, 27, 32, 33, 60
encapsulating ORB service data 497

Session
management operations 450

SessionManager 435
parameters 437

set_boxed_value() 337
set_boxed_value_as_dyn_any() 337
set_discriminator() 332
set_length() 334
set_members() 331, 337
set_members_as_dyn_any() 331, 337
set_policy_overrides() 141

calling on ORB PolicyManager 136
calling on thread PolicyCurrent 136

set_return_type 342
set_servant() 231
set_servant_manager() 230
set_to_default_member() 333
set_to_no_active_member() 333
set_value() 335
shutdown() 58, 71, 131
Signal handling 219
SINGLE_THREAD_MODEL policy 235
Skeleton class

dynamic generation 348
method signatures 199
naming convention 199

Skeleton code 46
Smart pointers 147
State member

in abstract storage type 423
in storage type 430

Storage home
defined 420
implementing 422, 430
inheritance 431
instance 432
primary key declaration 431

Storage object
accessing 432, 441
associating with CORBA object 453
defining 422

Index
incarnation 432
thread safety 453

Storage type
defined 420
implementing 422, 429
reference representation 430
state members 430

String
constant in IDL 103

StringDef 358
string_dup() 30, 55
StringName

converting to Name 381
using to resolve Name sequence 389

string_to_object() 57, 160
String_var 31
struct data type 98
StructDef 357
Stub code 46
Supplier

about 466
connecting to event channels 485
developing push model 484
disconnecting from event channels 486

SupplierAdmin 480, 484
SyncScopePolicy 184
System exceptions 282

codes 283
throwing 291

SYSTEM_ID policy 233

T
Tagged component 494

adding to object reference 499, 504
defined 499
evaluated by client 515

target 346
tc<type> 302
TCKind enumerators 294
Termination handler

in server 219
_this() 202, 234, 237–239

overriding default POA 239
Threading 8

POA policy 235
with storage objects 453

Tie-based servants 214
compared to inheritance approach 215
creating 214
genie-generated 115
removing from memory 215
Timeout policies 185

absolute times 185
binding retries 189
delay between binding tries 189
forwards during binding 189
invocation retries 191

delay between 192
maximum 191
maximum forwards 192
maximum rebinds 191

limiting binding time 189
propagating to portable interceptors 505
reply deadline 187
request and reply time 191

excluding binding 186
request delivery 187

excluding binding 191
request delivery deadline 188

to_name() 381
to_string() 381
Transaction resource

associating with SessionManager 439
Transactional session

activating 445
creating 442

access mode 443
callback object 444
isolation level 443
ParameterList settings 444

EndOfAssociationCallback 444
managing 442, 447

TRANSIENT policy 231
TxSessionAssociation interface 439
Type code

getting from any type 315
getting from DynAny 318

Type codes 293–302
compacting 298
comparing 296
constants 301
getting TCKind of 296
operations 296
TCKind enumerators 294
type-specific operations 298
user-defined 302

Type definition
in IDL 102

type() 314
TypeCode interface 358
563

Index
TypeCode pseudo object type 102
Typed events 471
typedef 102
TypedefDef 357

U
Union

in IDL definition 99
UnionDef 357
UNIQUE_ID policy 234
Untyped events 471
USE_ACTIVE_OBJECT_MAP_ONLY policy 229
USE_DEFAULT_SERVANT policy 230
USER_ID policy 233
USE_SERVANT_MANAGER policy 230

V
validate_connections() 141
value() 345
ValueBoxDef 357
ValueDef 357
_var object reference type 147, 156–159

assignment operator 157
class members 156
constructors 157
conversion operator 157
default constructor 157
destructor 157
explicit conversion operator 158
in() 158
indirection operator 157
inout() 158
narrowing 158
out() 158
widening 158

Version pragma 374

W
WellKnownAddressingPolicy 227, 232
Wide character

constant in IDL 104
Wide string

constant in IDL 104
Widening

_ptr 153
assignment 154

_var 158
Wizard

for code generation 17
 564
work_pending() 218
WorkQueuePolicy 242
WStringDef 358

	Preface
	Audience
	Document Conventions

	1 Introduction to Orbix 2000
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Servers and the Portable Object Adapter
	Orbix Plug-In Design
	Plug-Ins
	ORB Core

	Development Tools
	Code Generation Toolkit
	Multi-threading Support
	Configuration and Logging Interfaces
	Portable Interceptors

	Orbix Application Deployment
	Location Domains
	Configuration Domains

	CORBA Features and Services
	Full CORBA 2.3 Support and Interoperability
	Asynchronous Messaging and Quality of Service
	Interoperable Naming Service and Load Balancing Extensions
	Object Transaction Service
	Event Service
	SSL/TLS
	COMet
	Persistent State Service
	Dynamic Type Support: Interface Repository and DynAny

	2 Getting Started with Orbix�2000
	Prerequisites
	Setting the Orbix Environment
	Hello World Example
	Development Using the Client/Server Wizard
	Steps to Implement the Hello World! Application
	Step 1—Define the IDL Interface
	Step 2—Generate the Server
	Step 3—Complete and Build the Server Program
	Step 4—Generate the Client
	Step 5—Complete and Build the Client Program
	Step 6—Run the Demonstration

	Development from the Command Line
	Steps to Implement the Hello World! Application
	Step 1—Define the IDL Interface
	Step 2—Generate Starting Point Code.
	Step 3—Complete the Server Program
	Step 4—Complete the Client Program
	Step 5—Build and Run the Demonstration

	3 First Application
	Overview of the Development Process
	Development Without Using Code Generation
	Development Using Code Generation
	Locating CORBA Objects

	Development Steps
	Step 1—Define the IDL Interfaces
	Step 2—Generate Starting Point Code
	Dummy Implementation of Client and Server Programs
	Modifying Dummy Client and Server Programs

	Step 3—Compile the IDL Definitions
	Output from IDL Compilation
	IDL to C++ Mapping

	Step 4—Develop the Server Program
	Declare the BuildingImpl Servant Class
	Define the BuildingImpl Servant Class

	Step 5—Develop the Client Program
	Client main()
	Client Business Logic

	Step 6—Build and Run the Application
	Build the Application
	Run the Application

	Learning More About the Server
	Create a Termination Handler Object
	Initialize the ORB
	Create a POA for Transient Objects
	Create Servant Objects
	Activate CORBA Objects
	Export Object References
	Put the ORB into an Active State
	Shut Down the ORB

	Complete Source Code for server.cxx

	4 Defining Interfaces
	Modules and Name Scoping
	Nesting Restrictions

	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces
	Local Interfaces

	Valuetypes
	Abstract Interfaces
	IDL Data Types
	Built-in Types
	Extended Built-in Types
	Complex Data Types
	Pseudo Object Types

	Defining Data Types
	Constants
	Integer Constants
	Floating-Point Constants
	Character and String Constants
	Wide Character and String Constants
	Boolean Constants
	Octet Constants
	Fixed-Point Constants
	Enumeration Constants

	Constant Expressions
	Arithmetic Operators
	Bitwise Operators
	Precedence

	5 Developing Applications with Genies
	Starting Development Projects
	Genie Syntax
	Specifying Application Components
	Selecting Interfaces
	Including Files
	Implementing Servants
	Implementing the Server Mainline
	Implementing a Client
	Generating a Makefile
	Controlling Code Completeness
	General Options
	Compiling the Application

	Generating Signatures of Individual Operations
	Configuration Settings

	6 ORB Intialization and Shutdown
	Initializing the ORB Runtime
	Calling within main()
	Supplying an ORB Name
	C++ Mapping
	Registering Portable Interceptors

	Shutting Down the ORB

	7 Using Policies
	Creating Policy and PolicyList Objects
	Using POA Policy Factories
	Calling create_policy()

	Setting Orb and Thread Policies
	Setting Server-Side Policies
	Setting Client Policies
	Setting Policies at Different Scopes
	Managing Object Reference Policies

	Getting Policies

	8 Developing a Client
	Interfaces and Proxies
	Using Object References
	Counting References
	Nil References
	Object Reference Operations
	Using _ptr References
	Using _var References
	String Conversions

	Initializing and Shutting Down the ORB
	Invoking Operations and Attributes
	Passing Parameters in Client Invocations
	Simple Parameters
	Fixed-Length Complex Parameters
	Fixed-Length Array Parameters
	String Parameters
	_out Types
	Variable-Length Complex Parameters
	Variable-Length Array Parameters
	Object Reference Parameters
	Parameter-Passing Rules: Summary

	Setting Client Policies
	RebindPolicy
	SyncScopePolicy
	Timeout Policies

	Implementing Callback Objects

	9 Developing a Server
	POAs, Skeletons, and Servants
	Mapping Interfaces to Skeleton Classes
	Creating a Servant Class
	Implementing Operations
	Activating CORBA Objects
	Handling Output Parameters
	Simple Parameters
	Fixed-Length Complex Parameters
	Fixed-Length Array Parameters
	String Parameters
	Variable-Length Complex Parameters
	Variable-Length Array Parameters
	Object Reference Parameters

	Counting Servant References
	Delegating Servant Implementations
	Creating Tie-Based Servants
	Removing Tie Objects and Servants
	Tie Versus Inheritance

	Implementation Inheritance
	Interface Inheritance
	Multiple Inheritance
	Explicit Event Handling
	Termination Handler
	Compiling and Linking

	10 Managing Server Objects
	Mapping Objects to Servants
	Mapping Options

	Creating a POA
	Setting POA Policies
	Root POA Policies

	Using POA Policies
	Enabling the Active Object Map
	Processing Object Requests
	Setting Object Lifespan
	Assigning Object IDs
	Activating Objects with Dedicated Servants
	Activating Objects
	Setting Threading Support

	Explicit and Implicit Object Activation
	Explicit Activation
	Implicit Activation

	Managing Request Flow
	Creating a Work Queue
	ManualWorkQueue
	AutomaticWorkQueue
	Creating a POA with a WorkQueue Policy

	11 Managing Servants
	Using Servant Managers
	Servant Activators
	Servant Locators

	Using a Default Servant
	Setting a Default Servant

	Creating Inactive Objects

	12 Asynchronous Method Invocations
	Implied IDL
	Mapping Operations to Implied IDL
	Mapping Attributes to Implied IDL

	Calling Back to Reply Handlers
	Interface-to-Reply Handler Mapping
	Normal Replies
	Exceptional Replies

	Implementing a Client with Reply Handlers

	13 Exceptions
	Exception Code Mapping
	User-Defined Exceptions
	Exception Design Guidelines
	C++ Mapping for User Exceptions

	Handling Exceptions
	User Exceptions
	System Exceptions
	Evaluating System Exceptions

	Throwing Exceptions
	Exception Safety
	Throwing System Exceptions

	14 Using Type Codes
	Type Code Components
	TCKind Enumerators

	Type Code Operations
	General Type Code Operations
	Type-Specific Operations

	Type Code Constants
	Built-In Type Codes
	User-Defined Type Codes

	15 Using the Any Data Type
	Inserting Typed Values Into Any
	Memory Management of Inserted Data
	Inserting User-Defined Types

	Extracting Typed Values From Any
	Memory Management of Extracted Data
	Extracting User-Defined Types

	Inserting and Extracting Booleans, Octets, Chars�and WChars
	Inserting and Extracting Array Data
	Inserting and Extracting String Data
	Inserting Strings
	Extracting Strings

	Inserting and Extracting Alias Types
	Inserting Alias Types
	Extracting Alias Types

	Querying a CORBA::Any’s Type Code
	Using DynAny Objects
	Interface Hierarchy
	Generic Operations
	Creating a DynAny
	Inserting and Extracting DynAny Values

	16 Generating Interfaces at Runtime
	Using the DII
	Constructing a Request Object
	Invoking a Request
	Retrieving Request Results
	Getting Information about a Request Object
	Invoking Deferred Synchronous Requests

	Using the DSI
	DSI Applications
	Programming a Server to Use DSI

	17 Using the Interface Repository
	Interface Repository Data
	Abstract Base Interfaces
	Repository Object Types

	Containment in the Interface Repository
	Contained Interface
	Container Interface

	Repository Object Descriptions
	Retrieving Repository Information
	Getting a CORBA Object’s Interface
	Browsing and Listing Repository Contents
	Finding an Object Using its Repository ID

	Sample Usage
	Repository IDs and Formats
	OMG IDL Format
	DCE UUID Format
	LOCAL Format

	Controlling Repository IDs with Pragma Directives

	18 Naming Service
	Overview
	Defining Names
	Representing Names as Strings
	Initializing a Name
	Converting a Name to a StringName

	Obtaining the Initial Naming Context
	Building a Naming Graph
	Binding Naming Contexts
	Binding Object References
	Rebinding

	Using Names to Access Objects
	Setting Object Names
	Resolving Names
	Resolving Names with corbaname
	Exceptions Returned to Clients

	Listing Naming Context Bindings
	Using a Binding Iterator

	Maintaining the Naming Service
	Federating Naming Graphs
	Federation Structures

	Sample Code
	Server Code
	Client Code

	Object Groups and Load Balancing
	Load Balancing Interfaces

	Load Balancing Example
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Accessing Objects from a Client

	19 Persistent State Service
	Defining Persistent Data
	Reserved Keywords
	Datastore Model
	Abstract Types and Implementations
	Defining Storage Objects
	Syntax
	Inherited Operations
	Forward Declarations

	Defining Storage Homes
	Keys
	Operations
	Factory Operations
	Inheritance
	Forward Declarations

	Implementing Storage Objects
	Implementing Storage Homes
	Inheritance
	Primary Key Declaration

	Accessing Storage Objects
	Creating Transactional Sessions
	Using the SessionManager
	Setting SessionManager Parameters
	Creating a SessionManager
	Associating a Transaction with a Session
	Association Object Operations
	Using an Association to Access Storage Objects

	Managing Transactional Sessions
	Creating a Transactional Session
	Activating a Transactional Session
	Managing a Transactional Session
	Basic Session Management Operations

	Getting a Storage Object Incarnation
	Querying Data
	Associating CORBA and Storage Objects
	Thread Safety

	PSDL Language Mappings
	abstract storagehome
	abstract storagetype
	Ref Class

	Ref_var Classes
	State Members
	Operation Parameters
	storagetype
	storagehome
	Factory Native Types

	20 Event Service
	Event Service Basics
	Initiating Event Communication
	Types of Event Communication

	Programming Interface for Untyped Events
	Registration of Suppliers and Consumers with an Event Channel
	Transfer of Untyped Events Through an Event Channel
	Event Channel Administration Interfaces
	Overview of the Orbix Event Service
	Components of the Orbix Event Service

	Programming with the Untyped Push Model
	Overview of a Sample Application
	Developing an Untyped Push Supplier
	Developing an Untyped Push Consumer

	Compiling and Running an Event Service Application
	IDL Definitions for the Event Service
	Compiling an Event Service Application
	Running an Orbix Event Service Application

	21 Portable Interceptors
	Interceptor Components
	Interceptor Types
	Service Contexts
	PICurrent
	Tagged Components
	Codec
	Policy Factory
	ORB Initializer

	Writing IOR Interceptors
	Interception Point
	IORInfo

	Using RequestInfo Objects
	RequestInfo Interface
	Timeout Attributes

	Writing Client Interceptors
	Interception Points
	Interception Point Flow
	ClientRequestInfo
	Client Interceptor Tasks

	Writing Server Interceptors
	Interception Points
	Interception Point Flow
	ServerRequestInfo
	Server Interceptor Tasks

	Registering Portable Interceptors
	Implementing an ORB Initializer
	Registering an ORBInitializer

	Setting Up Orbix to Use Portable Interceptors

	Appendix A Orbix IDL Compiler Options
	Command Line Switches
	Plug-in Switch Modifiers
	IDL Configuration File

	Appendix B IONA Foundation Classes Library
	Installed IFC Directories
	Selecting an IFC Library
	Unix
	Windows

	Index

