IONA Orbix 2000
Programmer’s Guide
C++ Edition

IONA Technologies PLC
August 2001

Orbix is a Registered Trademark of IONA Technologies PLC.
Orbix 2000 is a Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

M2671

Contents

Preface
Audience
Document Conventions

Chapter 1 Introduction to Orbix 2000
Why CORBA?
CORBA Application Basics
Servers and the Portable Object Adapter
Orbix Plug-In Design
Development Tools
Orbix Application Deployment
CORBA Features and Services

Chapter 2 Getting Started with Orbix 2000
Prerequisites
Setting the Orbix Environment
Hello World Example
Development Using the Client/Server Wizard
Development from the Command Line

Chapter 3 First Application
Overview of the Development Process
Development Steps
Step 1—Define the IDL Interfaces
Step 2—Generate Starting Point Code
Step 3—Compile the IDL Definitions
Step 4—Develop the Server Program
Step 5—Develop the Client Program
Step 6—Build and Run the Application
Learning More About the Server
Complete Source Code for server.cxx

Chapter 4 Defining Interfaces

—
= O 000U Hh =

N =
00N O U1l U1

35
35
41
42
43
45
48
55
59
61
72

77

Table of Contents

Modules and Name Scoping
Interfaces

Valuetypes

Abstract Interfaces

IDL Data Types

Defining Data Types
Constants

Constant Expressions

Chapter 5 Developing Applications with Genies
Starting Development Projects
Generating Signatures of Individual Operations
Configuration Settings

Chapter 6 ORB Intialization and Shutdown
Initializing the ORB Runtime
Shutting Down the ORB

Chapter 7 Using Policies
Creating Policy and PolicyList Objects
Setting Orb and Thread Policies
Setting Server-Side Policies
Setting Client Policies
Getting Policies

Chapter 8 Developing a Client
Interfaces and Proxies
Using Object References
Initializing and Shutting Down the ORB
Invoking Operations and Attributes
Passing Parameters in Client Invocations
Setting Client Policies
Implementing Callback Objects

Chapter 9 Developing a Server
POAs, Skeletons, and Servants
Mapping Interfaces to Skeleton Classes

77
79
90
91
92
102
103
106

109
109
126
127

129
129
130

133
134
135
137
138
141

145
145
147
163
163
164
182
193

195
195
197

Table of Contents

Creating a Servant Class
Implementing Operations
Activating CORBA Objects
Handling Output Parameters
Counting Servant References
Delegating Servant Implementations
Implementation Inheritance
Interface Inheritance
Multiple Inheritance

Explicit Event Handling
Termination Handler
Compiling and Linking

Chapter 10 Managing Server Objects
Mapping Objects to Servants
Creating a POA
Using POA Policies
Explicit and Implicit Object Activation
Managing Request Flow
Creating a Work Queue

Chapter 11 Managing Servants
Using Servant Managers
Using a Default Servant
Creating Inactive Objects

Chapter 12 Asynchronous Method Invocations
Implied IDL
Calling Back to Reply Handlers

Chapter 13 Exceptions
Exception Code Mapping
User-Defined Exceptions
Handling Exceptions
Throwing Exceptions
Exception Safety
Throwing System Exceptions

200
201
202
203
213
214
216
216
217
218
219
220

221
221
223
228
236
241
242

249
250
261
264

267
268
270

277
278
279
281
287
288
291

Table of Contents

Chapter 14 Using Type Codes

Type Code Components
Type Code Operations
Type Code Constants

Chapter 15 Using the Any Data Type

Inserting Typed Values Into Any
Extracting Typed Values From Any

Inserting and Extracting Booleans, Octets, Chars and WChars

Inserting and Extracting Array Data
Inserting and Extracting String Data
Inserting and Extracting Alias Types
Querying a CORBA::Any’s Type Code
Using DynAny Objects

Chapter 16 Generating Interfaces at Runtime

Using the DII
Using the DSI

Chapter 17 Using the Interface Repository

Interface Repository Data

Containment in the Interface Repository
Repository Object Descriptions

Retrieving Repository Information

Sample Usage

Repository IDs and Formats

Controlling Repository IDs with Pragma Directives

Chapter 18 Naming Service

Vi

Overview

Defining Names

Obtaining the Initial Naming Context
Building a Naming Graph

Using Names to Access Objects
Listing Naming Context Bindings
Maintaining the Naming Service
Federating Naming Graphs

293
293
296
301

303
304
306
309
310
311
313
315
316

339
340
347

351
352
359
365
367
370
372
373

377
377
379
382
383
388
391
395
396

Table of Contents

Sample Code
Object Groups and Load Balancing
Load Balancing Example

Chapter 19 Persistent State Service
Defining Persistent Data
Accessing Storage Objects
PSDL Language Mappings

Chapter 20 Event Service
Event Service Basics
Programming Interface for Untyped Events
Programming with the Untyped Push Model
Compiling and Running an Event Service Application

Chapter 21 Portable Interceptors
Interceptor Components
Writing IOR Interceptors
Using Requestinfo Objects
Writing Client Interceptors
Writing Server Interceptors
Registering Portable Interceptors
Setting Up Orbix to Use Portable Interceptors

Appendix A Orbix IDL Compiler Options
Command Line Switches
Plug-in Switch Modifiers
IDL Configuration File

Appendix B IONA Foundation Classes Library
Installed IFC Directories
Selecting an IFC Library

Index

402
404
410

419
419
432
454

465
465
472
483
490

493
493
502
504
506
518
529
534

537
537
539
544

549
549
550

551

Vii

Table of Contents

viii

Preface

Orbix 2000 is a full implementation from IONA Technologies of the Common
Object Request Broker Architecture (CORBA), as specified by the Object
Management Group. Orbix 2000 complies with the following specifications:

e CORBA2.3
* GIOP 1.2 (default), 1.1, and 1.0

Read Chapter 1 for an overview of Orbix. Chapter 2 shows how you can use
code-generation genies to build a distributed application quickly and easily.
Chapter 3 describes in detail the basic steps in building client and server
programs. Subsequent chapters expand on those steps by focusing on topics
that are related to application development.

Orbix 2000 documentation is periodically updated. New versions between
releases are available at this site:

htt p: // waw i ona. com docs/ or bi x2000. ht m

If you need help with this or any other IONA products, contact IONA at
support @ona. com Comments on IONA documentation can be sent to
doc- f eedback@ ona. com

Audience

The Orbix 2000 Programmer’s Guide is intended to help you become
familiar with Orbix 2000, and show how to develop distributed applications
using Orbix components. This guide assumes that you are familiar with
programming in C+ +.

This guide does not discuss every APl in great detail, but gives a general
overview of the capabilities of the Orbix development kit and how various
components fit together.

Chapter | Preface

Document Conventions

This guide uses the following typographical conventions:

Fi xed-wi dt h

[talic

italic

Fixed-width font in normal text represents portions of
code and literal names of items such as classes,
functions, variables, and data structures. For example,
text might refer to the CORBA: : bj ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For
example:

#i ncl ude <stdio. h>
Italic words in normal text represent new terms.

Italicized fixed-width font in syntax and in text denotes
variables that you supply, such as arguments to
commands, or path names. For example:

% cd /users/your - nane

This guide may use the following keying conventions:

%

[]

{}

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

The notation > represents the DOS, Windows NT,
Windows95, or Windows98 command prompt.

Ellipses in sample code and syntax descriptions indicate
that material has been eliminated to simplify a
discussion.

Italicized brackets enclose optional items in format and
syntax descriptions.

Braces enclose a list from which you must choose an item
in format and syntax descriptions.

A vertical bar separates items in a list of choices enclosed
in { } (braces) in format and syntax descriptions.

Introduction to Orbix 2000

With Orbix, you can develop and deploy large-scale
enterprise-wide CORBA systems in C++ and Java. Orbix
has an advanced modular architecture that lets you
configure and change functionality without modifying your
application code, and a rich deployment architecture that
lets you configure and manage a complex distributed
system.

Today’s enterprises need flexible, open information systems. Most enterprises
must cope with a wide range of technologies, operating systems, hardware
platforms, and programming languages. Each of these is good at some
important business task; all of them must work together for the business to
function.

The common object request broker architecture—CORBA—provides the
foundation for flexible and open systems. It underlies some of the Internet’s
most successful e-business sites, and some of the world’s most complex and
demanding enterprise information systems.

Orbix is a CORBA development platform for building high-performance
systems. Orbix’s modular architecture supports the most demanding
requirements for scalability, performance, and deployment flexibility. The
Orbix architecture is also language-independent and can be implemented in
Java and C++. Orbix applications can interoperate via the standard [IOP
protocol with applications built on any CORBA-compliant technology.

Why CORBA?

CORBA is an open, standard solution for distributed object systems. You can
use CORBA to describe your enterprise system in object-oriented terms,
regardless of the platforms and technologies used to implement its different

Chapter 1 | Introduction to Orbix 2000

parts. CORBA objects communicate directly across a network using standard
protocols, regardless of the programming languages used to create objects or
the operating systems and platforms on which the objects run.

CORBA solutions are available for every common environment and are used
to integrate applications written in C, C++, Java, Ada, Smalltalk, and
COBOL, running on embedded systems, PCs, UNIX hosts, and mainframes.
CORBA objects running in these environments can cooperate seamlessly.
Through OrbixCOMet, IONA’s dynamic bridge between CORBA and COM,
they can also interoperate with COM objects.

CORBA is widely available and offers an extensive infrastructure that
supports all the features required by distributed business objects. This
infrastructure includes important distributed services, such as transactions,
security, and messaging.

CORBA Objects

CORBA objects are abstract objects in a CORBA system that provide
distributed object capability between applications in a network. Figure 1
shows that any part of a CORBA system can refer to the abstract CORBA
object, but the object is only implemented in one place and time on some
server of the system.

An object reference is used to identify, locate, and address a CORBA object.
Clients use an object reference to invoke requests on a CORBA object.
CORBA objects can be implemented by servers in any supported
programming language, such as C++ or Java.

Although CORBA objects are implemented using standard programming
languages, each CORBA object has a clearly-defined interface, specified in
the CORBA Interface Definition Language (IDL). The interface definition
specifies which member functions, data types, attributes, and exceptions are
available to a client, without making any assumptions about an object’s
implementation.

With a few calls to an ORB’s application programming interface (API),
servers can make CORBA objects available to client programs in your
network.

Why CORBA?

RN
\/ \
- _ /\ A server implements
a CORBA object
/ -~ Clients access
y ___CORBA
- / obJ_ects via
object
s A
\ IDL interface definitions

<_7 specify CORBA objects
Figure 1: The nature of abstract CORBA objects

To call member functions on a CORBA object, a client programmer needs
only to refer to the object’s interface definition. Clients can call the member
functions of a CORBA object using the normal syntax of the chosen
programming language. The client does not need to know which
programming language implements the object, the object’s location on the
network, or the operating system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation
has several advantages. For example, you can change the programming
language in which an object is implemented without affecting the clients that
access the object. You can also make existing objects available across a
network.

Object Request Broker

CORBA defines a standard architecture for object request brokers (ORB). An
ORB is a software component that mediates the transfer of messages from a
program to an object located on a remote network host. The ORB hides the
underlying complexity of network communications from the programmer.

Chapter 1 | Introduction to Orbix 2000

An ORB lets you create standard software objects whose member functions
can be invoked by client programs located anywhere in your network. A
program that contains instances of CORBA objects is often known as a
server. However, the same program can serve at different times as a client
and a server. For example, a server program might itself invoke calls on other
server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB
intercepts the function call. As shown in Figure 2, the ORB redirects the
function call across the network to the target object. The ORB then collects
results from the function call and returns these to the client.

Client Host Server Host

ServerQ
Client ,

Object Request Broker

Function
Call

Figure 2: The object request broker

CORBA Application Basics

You start developing a CORBA application by defining interfaces to objects in
your system in CORBA IDL. You compile these interfaces with an IDL
compiler. An IDL compiler generates C+ + or Java code from IDL definitions.
This code includes client stub code with which you develop client programs,
and object skeleton code, which you use to implement CORBA objects.

Servers and the Portable Object Adapter

When a client calls a member function on a CORBA object, the call is
transferred through the client stub code to the ORB. Because the
implemented object is not located in the client’s address space, CORBA
objects are represented in client code by proxy objects.

A client invokes on object references that it obtains from the server process.
The ORB then passes the function call through the object skeleton code to
the target object.

Client Host Server Host

Server
Client Q

Object
Skeleton
Co

Function Object Request Broker
Call ‘

Figure 3: /nvoking on a CORBA object

Servers and the Portable Object Adapter

Server processes act as containers for one or more portable object adapters. A
portable object adapter, or POA, maps abstract CORBA objects to their actual
implementations, or servants, as shown in Figure 4. Because the POA
assumes responsibility for mapping servants to abstract CORBA objects, the
way that you define or change an object’s implementation is transparent to
the rest of the application. By abstracting an object’s identity from its
implementation, a POA enables a server to be portable among different
implementations.

Chapter 1 | Introduction to Orbix 2000

Client Host Server Host

Client

Server
skeleton

Portable objec
adapter

Figure 4: The portable object adapter

Depending on the policies that you set on a POA, object-servant mappings
can be static or dynamic. POA policies also determine whether object
references are persistent or transient, and the threading model that it uses. In
all cases, the policies that a POA uses to manage its objects are invisible to
clients.

A server can have one or more nested POAs. Because each POA has its own
set of policies, you can group objects logically or functionally among multiple
POAs, where each POA is defined in a way that best accommodates the
needs of the objects that it processes.

Orbix Plug-In Design

Orbix has a modular plug-in architecture. The ORB core supports abstract
CORBA types and provides a plug-in framework. Support for concrete
features like specific network protocols, encryption mechanisms, and
database storage is packaged into plug-ins that can be loaded into the ORB
based on runtime configuration settings.

Orbix Plug-In Design

Plug-Ins

ORB Core

A plug-in is a code library that can be loaded into an Orbix application at
runtime. A plug-in can contain any type of code; typically, it contains objects
that register themselves with the ORB runtimes to add functionality.

Plug-ins can be linked directly with an application, loaded when an
application starts up, or loaded on-demand while the application is running.
This gives you the flexibility to choose precisely those ORB features that you
actually need. Moreover, you can develop new features such as protocol
support for direct ATM or HTTPNG. Because ORB features are configured into
the application rather than compiled in, you can change your choices as your
needs change without rewriting or recompiling applications.

For example, an application that uses the standard IIOP protocol can be
reconfigured to use the secure SSL protocol simply by configuring a different
transport plug-in. No one transport is inherent to the ORB core; you simply
load the transport set that suits your application best. This architecture
makes it easy for IONA to support additional transports in the future such as
multicast or special purpose network protocols.

The ORB core presents a uniform programming interface to the developer:
everything is a CORBA object. This means that everything appears to be a
local C++ or Java object within the process. In fact it might be a local
object, or a remote object reached by some network protocol. It is the ORB’s
job to get application requests to the right objects no matter where they live.

To do its job, the ORB loads a collection of plug-ins as specified by ORB
configuration settings—either on startup or on demand—as they are needed
by the application. For remote objects, the ORB intercepts local function calls
and turns them into CORBA requests that can be dispatched to a remote
object.

In order to send a request on its way, the ORB core sets up a chain of
interceptors to handle requests for each object. The ORB core neither knows
nor cares what these interceptors do, it simply passes the request along the
interceptor chain. The chain might be a single interceptor which sends the
request with the standard [IOP protocol, or a collection of interceptors that
add transaction information, encrypt the message and send it on a secure

Chapter 1 | Introduction to Orbix 2000

protocol such as SSL. All of this is transparent to the application, so you can
change the protocol or services used by your application simply by
configuring a different set of interceptors.

Development Tools

The Orbix 2000 developer’s kit contains a number of facilities and features
that help you and your development team be more productive.

Code Generation Toolkit

IONA provides a code generation toolkit that simplifies and streamlines the
development effort. You only need to define your IDL interfaces; out-of-the

box scripts generate a complete client/server application automatically from
an IDL file.

The toolkit also can be useful for debugging: you can use an auto-generated
server to debug your client, and vice versa. Advanced users can write code
generation scripts to automate repetitive coding in a large application.

For more information about the code generation toolkit, refer to the Orbix
2000 Code Generation Guide.

Multi-threading Support

Orbix provides excellent support for multi-threaded applications. Orbix
libraries are multi-threaded and thread-safe. Orbix servers use standard POA
policies to enable multi-threading. The ORB creates a thread pool that
automatically grows or shrinks depending on demand load. Thread pool size,
growth and request queuing can be controlled by configuration settings
without any coding.

Of course, multi-threaded applications must themselves be thread-safe. This
usually means they need to use thread-synchronization objects such as
mutexes or semaphores. Although most platforms provide similar thread
synchronization facilities, the interfaces vary widely. Orbix includes an
object-oriented thread synchronization portability library which allows you to
write portable multi-threaded code.

Orbix Application Deployment

Configuration and Logging Interfaces

Applications can store their own configuration information in Orbix
configuration domains, taking advantage of the infrastructure for ORB
configuration. CORBA interfaces provide access to configuration information
in application code.

Applications can also take advantage of the Orbix logging subsystem, again
using CORBA interfaces to log diagnostic messages. These messages are
logged to log-stream objects that are registered with the ORB. Log streams
for local output, file logging and system logging (Unix syslogd or Windows
Event Service) are provided with Orbix. You can also implement your own log
streams, which capture ORB and application diagnostics and send them to
any destination you desire.

Portable Interceptors

Portable interceptors allow an application to intervene in request handling.
They can be used to log per-request information, or to add extra “hidden”
data to requests in the form of GIOP service contextsO for example,
transaction information or security credentials.

Orbix Application Deployment

Orbix provides a rich deployment environment designed for high scalability.
You can create a location domain that spans any number of hosts across a
network, and can be dynamically extended with new hosts. Centralized
domain management allows servers and their objects to move among hosts
within the domain without disturbing clients that use those objects. Orbix
supports load balancing across object groups. A configuration domain provides
the central control of configuration for an entire distributed application.

Orbix offers a rich deployment environment that lets you structure and control
enterprise-wide distributed applications. Orbix provides central control of all
applications within a common domain.

Chapter 1 | Introduction to Orbix 2000

Location Domains

A location domain is a collection of servers under the control of a single
locator daemon. The locator daemon can manage servers on any number of
hosts across a network. The locator daemon automatically activates remote
servers through a stateless activator daemon that runs on the remote host.

The locator daemon also maintains the implementation repository, which is a
database of available servers. The implementation repository keeps track of
the servers available in a system and the hosts they run on. It also provides a
central forwarding point for client requests. By combining these two
functions, the locator lets you relocate servers from one host to another
without disrupting client request processing. The locator redirects requests to
the new location and transparently reconnects clients to the new server
instance. Moving a server does not require updates to the naming service,
trading service, or any other repository of object references.

The locator can monitor the state of health of servers and redirect clients in
the event of a failure, or spread client load by redirecting clients to one of a
group of servers.

Configuration Domains

10

A configuration domain is a collection of applications under common
administrative control. A configuration domain can contain multiple location
domains.

Orbix supports two mechanisms to administer a configuration domain:

* During development, or for small-scale deployment, configuration can be
stored in an ASCII text file, which is edited directly.

® For larger deployments, Orbix provides a distributed configuration server
that enables centralized configuration for all applications spread across a
network.

The configuration mechanism is loaded as a plug-in, so future configuration
systems can be extended to load configuration from any source such as
example HTTP or third-party configuration systems.

CORBA Features and Services

CORBA Features and Services

Orbix fully supports the latest CORBA specification, and in some cases
anticipates features to be included in upcoming specifications.

Full CORBA 2.3 Support and Interoperability
All CORBA 2.3 IDL data types are fully supported, including:

Extended precision numeric types for 64 bit integer and extended
floating point calculations.

Fixed point decimals for financial calculations.

International character sets, including support for code-set negotiation
where multiple character sets are available.

Objects by value: you can define objects that are passed by value as well
as the traditional pass-by-reference semantics of normal CORBA objects.
This is particularly relevant in Java based systems, but also supported
for C++ using object factories.

Orbix supports the most recent 1.2 revision of the CORBA standard General
Inter-ORB Protocol (GIOP) and Internet Inter-ORB Protocol (IIOP), and also
supports previous 1.1 and 1.0 revisions for backwards compatibility with
applications based on other ORBs. Orbix is interoperable with any
CORBA-compliant application that uses the standard [IOP protocol.

Asynchronous Messaging and Quality of Service

Orbix implements two key parts of the CORBA messaging specification that
are included in CORBA 3.0.

Asynchronous messaging interfaces allow easy, type-safe asynchronous
calls to normal CORBA operations. This means that clients can make a
request on a remote service, and then carry on with other work until the
reply is ready.

ORB quality-of-service policies provide finer standardized control over
how the ORB processes requests. For example, you can specify how
quickly a client resumes processing after sending one-way requests.

11

Chapter 1 | Introduction to Orbix 2000

Interoperable Naming Service and Load Balancing Extensions

Orbix supports the interoperable naming service specification. This is a
superset of the original CORBA naming service which adds some ease-of-use
features and provides a standard URL format for CORBA object references to
simplify configuration and administration of CORBA services.

The Orbix naming service also supports IONA-specific load-balancing
extensions of OrbixNames 3. A group of objects can be registered against a
single name; the naming service hands out references to clients so that the
client load is spread across the group.

Object Transaction Service

Orbix includes the object transaction service (OTS) which is optimized for the
common case where only a single resource (database) is involved in a
transaction. Applications built against the single resource OTS can easily be
reconfigured to use a full-blown OTS when it is available, since the interfaces
are identical. With Orbix plug-in architecture, applications will not even need
to be recompiled. For the many applications where transactions do not span
multiple databases, the single-resource OTS will continue to be a highly
efficient solution, compared to a full OTS that performs extensive logging to
guarantee transaction integrity.

Event Service

12

Orbix 2000 supports the CORBA event service specification, which defines a
model for indirect communications between ORB applications. A client does
not directly invoke an operation on an object in a server. Instead, the client
sends an event that can be received by any number of objects. The sender of
an event is called a supplier; the receivers are called consumers. An
intermediary event channel takes care of forwarding events from suppliers to
consumers.

Orbix supports both the push and pull model of event transfer, as defined in
the CORBA event specification. Orbix performs event transfer using the
untyped format, whereby events are based on a standard operation call that
takes a generic parameter of type any.

CORBA Features and Services

SSL/TLS

COMet

Orbix 2000 SSL/TLS provides data security for applications that
communicate across networks by ensuring authentication, privacy, and
integrity features for communications across TCP/IP connections.

TLS is a transport layer security protocol layered between application
protocols and TCP/IP, and can be used for communication by all Orbix 2000
SSL/TLS components and applications.

OrbixCOMet 2000 provides a high performance dynamic bridge that enables
transparent communication between COM/Automation clients and CORBA
servers.

OrbixCOMet 2000 is designed to give COM programmers—who use tools
such as Visual C++, Visual Basic, PowerBuilder, Delphi, or Active Server
Pages on the Windows desktop—easy access to CORBA applications running
on Windows, UNIX, or 0S/390 environments. COM programmers can use the
tools familiar to them to build heterogeneous systems that use both COM and
CORBA components within a COM environment.

Persistent State Service

Orbix includes the first implementation of the persistent state service (PSS).
PSS interposes a CORBA-based abstraction layer between a server and its
persistent storage. Orbix’s implementation of PSS is based on Berkeley DB,
an efficient embedded database that is included with Orbix. By adding new
PSS driver plug-ins, applications that use PSS can be reconfigured to store
their data in any database without code changes or recompilation.

Dynamic Type Support: Interface Repository and DynAny

Orbix has full support for handling data values that are not known at compile
time. The interface repository stores information about all CORBA types
known to the system and can be queried at runtime. Clients can construct
requests based on runtime type information using the dynamic invocation

13

Chapter 1 | Introduction to Orbix 2000

14

interface (DIl), and servers can implement “universal” objects that can
implement any interface at run time with the dynamic skeleton interface
(DSI).

Although all of these features have been available since early releases of the
CORBA specification, they are incomplete without the addition of the DynAny
interface. This interface allows clients and servers to interpret or construct
values based purely on runtime information, without any compiled-in data
types.

These features are ideal for building generic object browsers, type
repositories, or protocol gateways that map CORBA requests into another
object protocol.

Getting Started with
Orbix 2000

You can use the Orbix Code Generation Toolkit to develop
an Orbix application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the client
and server application code, including makefiles. You then complete the
distributed application by filling in the missing business logic.

Prerequisites

Before proceeding with the demonstration in this chapter you need to ensure:

® The Orbix developer's kit is installed on your host.
® Orbix is configured to run on your host platform.

The Orbix 2000 Administrator’s Guide contains more information on Orbix
configuration, and details of Orbix command line utilities.

Setting the Orbix Environment

The scripts that set the Orbix environment are associated with a particular
domain, which is the basic unit of Orbix configuration. Consult the Orbix
2000 Installation Guide, and the Orbix 2000 Administrator’s Guide for
further details on configuring Orbix.

To set the Orbix environment associated with the DomainName domain,
enter:

Windows
> Obixlnstall D r\ bi n\ Domai nNarre_env. bat

15

Chapter 2 | Getting Started with Orbix 2000

UNIX
% . ObixlnstallDir/bin/Donai nNarre_env. sh
OrbixInstallDir is the root directory where Orbix is installed and

DomainName is the name of an Orbix configuration domain
(usually O bi x2000).

Hello World Example

16

This chapter shows how to create, build, and run a complete client/server
demonstration with the help of the Orbix Code Generation Toolkit. The
architecture of this example system is shown in Figure 5.

Client Machine Server Machine

Server Application

Client Application
.) ORB
Operation Call >
Object
Code Result Code /‘ »

IDL Interface

A

Figure 5: Client makes a single operation call on a server

The client and server applications communicate with each other using the
Internet Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a client
invokes a remote operation, a request message is sent from the client to the
server. When the operation returns, a reply message containing its return
values is sent back to the client. This completes a single remote CORBA
invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

/11D
interface Hello {
string getQ&eeting();

}s

Development Using the Client/Server Wizard

The IDL declares a single Hel | o interface, which exposes a single operation
get G eeting(). This declaration provides a language neutral interface to
CORBA obijects of type Hel | o.

The concrete implementation of the Hel | o CORBA object is written in C++
and is provided by the server application. The server could create multiple
instances of Hel | o objects if required. However, the generated code
generates only one Hel | o object.

The client application has to locate the Hel | o object—it does this by reading
a stringified object reference from the file Hel | 0. ref . There is one operation
get G eeting() defined on the Hel | o interface. The client invokes this
operation and exits.

Development Using the Client/Server Wizard

On the Windows NT platform, Orbix provides a wizard add-on to the
Microsoft Visual Studio integrated development environment (IDE) that
enables you to generate starting point code for Orbix applications.

If you are not working on a Windows platform or if you prefer to use a
command line approach to development, see “Development from the
Command Line” on page 28.

Ordinarily, the client/server wizard is installed at the same time as Orbix. If
the wizard is not on your system, however, consult the Orbix Install Guide for
instructions on how to install it.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:
1. Define the IDL interface, Hel | o.
2. Generate the server.
3. Complete and build the server program.
Implement the single IDL get G eeti ng() operation.
4. Generate the client.
5. Complete and build the client program.
Insert a line of code to invoke the get G eeti ng() operation.

17

Chapter 2 | Getting Started with Orbix 2000

6. Run the demonstration.

Step 1—Define the IDL Interface

Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

> nkdir C: \ OCGT\ Hel | oExanpl e
Create an IDL file C \ OOGI Hel | oExanpl e\ hel | 0. i dl using a text editor.
Enter the following text into the hel I o.i dl file:

/11D
interface Hello {
string getQGeeting();

b
This interface mediates the interaction between the client and the server
halves of the distributed application.

Step 2—Generate the Server

Generate files for the server application using the Orbix Code Generation
Toolkit.

To create a server project using the IONA Orbix 2000 client/server wizard:
1. Open the Microsoft Visual C++ 6.0 integrated development
environment (IDE).

2. Select File » New from the Visual C++ menus. A New dialog box
appears, as shown in Figure 6. Click on the Projects tab.

3. Under the New - Projects tab, select the IONA Orbix 2000 Client/
Server Wizard. In the Project name text box enter server, and under
the Location text box enter C.\ QOGN Hel | oExanpl e\ ser ver.

18

Development Using the Client/Server Wizard

4. When you have finished filling in the text boxes, click OK to continue.

New EHE

Files Projects | wihork spaces | Other Documents I

L& ATL COM Appwizard | %] win32 Dynamic-Link | Froiect name:

7| Cluzter Resource Type Wizard E] Winde Static Library ISEWBd

gi<| Custam Appi/fizard :

‘& Database Project Logatian:
i, 0 e Shudio Add-in Wizard IEI:\DEGT'\HeIIDEHampIe\server J
4 Estended Stored Proc Wizard

BEl |0M2 Orbix 2000 Client/S erver Wizard

Bl 10N Orbix C++ Client/Server Wizard (o Create new workspace

e | 5AF Extenzion Wizard] sddlkn curent worlkspace

b akefile = | Bependency of:

fi= MFC Activer Controfwizard I j
[8] MFLC Appiwizard (i
A MFL Appwizard [exe)

T Utility Project

i !|_|,| ID|BC-:) Platfarms:

A |'win32 Application TnG?

Wiin32 Conzole dpplication I "
o
ok I Cancel

Figure 6: Starting up the IONA Orbix 2000 client/server wizard

5. The client/server wizard appears on your screen, as shown in Figure 7.
In answer to the question What CORBA IDL file would you like to use
for this project? enter the location of hel | 0. i dl in the text box or use
the Browse button.

6. Inanswer to the question Would you like to generate a working client or
server? click on the Server radiobutton.

7. Click Next to advance to the next screen.

8. The second screen of the server wizard is shown in Figure 8. You can
accept the default settings on this screen. Click Finish to proceed with
generating the server project

19

Chapter 2 | Getting Started with Orbix 2000

10MA Orbix 2000 Client/Server Wizard - Step 1 of 2

What CORBA DL file would vou like ta uze for this project?
CAOCGTWHelloE amplethello.idl

| | i

Browsze. . | Wig | Remove |

Would you like to generate a working clignt ar server?

WWhat ohject reference distribution method waould you like ta
uze?

+ Stingified Object Feferences

€ Naming Service

Orbix 2000™

< Back I Hewt » I Finizh | Cancel | Help |

Figure 7: Step 1 of the wizard for generating an Orbix server

9. A scrollbox entitled New Project Information appears that informs you
about the files that were generated. Select OK to continue after you have
browsed the information.

10. The server workspace has now been generated. Figure 9 shows a list of
the source files that have been generated for the server project.

11. Double-click on the ReadmeQ bi x2000Ser ver . t xt file and read the notes
contained in it.
Step 3—Complete and Build the Server Program

Complete the implementation class, Hel | ol npl , by providing the definition of
the get G eeting() function. This C+ + function provides the concrete
realization of the IDL Hel | o: : get G eet i ng() operation.

20

Development Using the Client/Server Wizard

IONA Orbix 2000 Chient/Server Wizard - Step 2 of 2 E3

—POA Server Generation O ptionz

¥ Servant inkertance matches DL inbentance

™ Create a multithreaded server

— Servant Implementation Approach—————————————————

% |nheritance fiom POA base claszes
" TIE [Delegation]

— Servant Management Strateqy—————————————————————
¥ Create and activate servants in mainline

™ Servantbctivator creates servants on demand

{~ ServantLocator creates servants per-invocation

Drbix EDOOTM " |se a single default servant for many objects

< Back | Hers | Finizh I Cancel Help

Figure 8: Step 2 of the wizard for generating an Orbix server

_Workspace ‘server’ 1 project(s]

=28 server files

E1-23 Source Files

*] helloC.cum
Hellalmpl. cux
hellaS. cxx
it_print_funcs, oo
it_random_funcs. crs
it_zervant_baze_overide
SEIYELCHY
#-|_ Header Files
------ [Z7 Resource Files
------ Readme0rbi=20005 erver k=t

| | ©
B Classiview | Fileiew |

Figure 9: Workspace for the generated server project

21

Chapter 2 | Getting Started with Orbix 2000

Edit Hellolmpl.cxx

Delete the generated boilerplate code that occupies the body of the
Hel 1 ol npl : : get @ eeti ng() function and replace it with the line of code
highlighted in bold font below:

/] G++

char*

Hel | ol npl : : get G eeti ng()
{

char* _result;
_result = CORBA: :string_dup("Hello Vrld!");

return _result;

The function OORBA: : string_dup() allocates a copy of the string on the free
store. This is needed to be consistent with the style of memory management
used in CORBA programming.

Build the Server

From within the Visual C++ IDE select Build - Build server.exe to compile
and link the server.

By default, the project builds with debug settings and the server executable is
stored in C \ QOGI\ Hel | oExanpl e\ ser ver \ Debug\ ser ver . exe.

Close the server workspace by selecting File - Close Workspace.

Step 4—Generate the Client

22

Generate files for the client application using the Orbix Code Generation
Toolkit.

Windows

To create a client project using the IONA Orbix 2000 client/server wizard:
1. Open the Microsoft Visual C++ 6.0 IDE.

Development Using the Client/Server Wizard

2. Select File - New from the Visual C++ menus. A New dialog box
appears, as shown in Figure 10.

3. Under the New - Projects tab, select the IONA Orbix 2000 Client/
Server Wizard. In the Project name text box enter cl i ent, and under
the Location text box enter C\ QOGN Hel | oExanpl e\ cl i ent.

4. When you have finished filling in the text boxes, click OK to continue.

Hew HE

Files Projects | Workspaces I Otker Documents |

L2 ATL COM Appwizard [wir32 Dynamic-Link | F1oisct name:
¢| Cluster Resource Type Wizard] win3z Static Library IC"Eﬂl

¢i%| Cuztom Applwizard .

=1 Database Project Lagation:

" DevStudio Add-in ‘Wizard IE:'\DCGT\HellnExample'\cIient J
X E vtended Stored Proc Wizard

B8 0N Orbix 2000 Client/Server Wizard

B8 10N Orbix C++ Client/Server wizard % Create new warkspace

) Sdd b cument workspace

Makeflle = Demendeney of
[#im MFC Activek Controlizard I j
[MFC: Appwizard [dI)
MFC Appifizard [exe)
i°§ Ultility Project :
B]'win32 Application Blatforms:

Iwm32

o

QK. I Cancel |

Figure 10: Starting up the IONA Orbix 2000 client/server wizard

5. The client/server wizard appears on your screen, as shown in Figure 11.
In answer to the question What CORBA IDL file would you like to use
for this project? enter the location of hel | 0. i dl in the text box or use
the Browse button.

6. Inanswer to the question Would you like to generate a working client or
server? click on the Client radiobutton.

7. Click Finish to proceed with generating the client project.

23

Chapter 2 | Getting Started with Orbix 2000

I0ONA Orbix 2000 Client/Server Wizard - Step 1 of 1 E2

What CORBA DL file would you like to use for thiz project?
C:AOCGTYHelokE Ramplethello.idl

4] | o

Wi | Bemove |

Would you like to generate a working clignt ar server?

&' Client
€ Server

| ‘what object reference distribution method would you like to
uze?

+ Stingified Object Feferences

€ Naming Service

Orbix 2000™

< Back | e | Finizh Cancel Help

Figure 11: Step 1 of the wizard for generating an Orbix client

8. A scrollbox entitled New Project Information appears, informing you
about the files that were generated. Click OK to continue after you have
browsed the information.

9. The client workspace has now been generated. Figure 12 shows a list of
the source files that have been generated for the client project.

10. Double-click on the file ReadneQ bi x2000d i ent . t xt and read the
contents of the file.
Step 5—Complete and Build the Client Program

Complete the implementation of the client nai n() function in the cl i ent . cxx
file. You must add a couple of lines of code to make a remote invocation of
the operation get Greeti ng() on the Hel | o object.

24

Development Using the Client/Server Wizard

.Workspace ‘client” 1 project(s)

=128 client files
=43 Source Files

t_print_funcs.cxe

Y] it_random_funcs.ces
[-[_] Header Files

------ (L1 Resoures Files

...... ReadmeDix2000Clent bt

4] |]
B Classiview | Filgiem |

Figure 12: Workspace for the generated client project

Edit client.cxx

Search for the line where the cal | _Hel | o_get G eeti ng() function is called.
Delete this line and replace it with the two lines of code highlighted in bold
font below:

/] C++
/IFile: ‘client.cxx

if (CCRBA :is nil (Hellol))

{

cerr << "Qould not narrow reference to interface "
<< "Hel | 0" << endl;

}

el se

{
CORBA: : String_var strV = Hel |l ol->get G eeting();
cout << "Qeeting is: " << strV << endl;

}

The object reference Hel | o1 refers to an instance of a Hel | o object in the
server application. It is already initialized for you.

25

Chapter 2 | Getting Started with Orbix 2000

A remote invocation is made by invoking get G eeting() onthe Hellol
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the Hel | ol npl : :

get @ eeting() function in the server application.

The returned string is put into a C++ object, strV, of the type OORBA::
String_var. The destructor of this object will delete the returned string so
that there is no memory leak in the above code.

Build the Client

From within the Visual C++ IDE select Build - Build client.exe to compile
and link the client.

By default, the project will build with debug settings and the client
executable will be stored in C
\ QOGN Hel | oExanpl e\ cl i ent\ Debug\ cl i ent . exe.

Close the client workspace by selecting File - Close Workspace.

Step 6—Run the Demonstration

26

Run the application as follows:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new MS-DOS prompt.
> start_Domai nNane_ser vi ces. bat

Where DomainName is the name of the default configuration domain
(usually or bi x2000).

2. Run the server program.
Open a new MS-DOS prompt.

> cd C:\ OCGT\ Hel | oExanpl e\ server\ Debug
> server. exe

The server outputs the following lines to the screen:
Initializing the CRB

Development Using the Client/Server Wizard

Witing stringified object reference to Hello.ref
Wi ting for requests...

The server performs the following steps when it is launched:
+ Itinstantiates and activates a single Hel | o CORBA object.

+ The stringified object reference for the Hel | o object is written to the
file C\tenp\ Hel l 0. ref.

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

Run the client program.
Open a new MS-DOS prompt.

> cd C:\ OCGT\ Hel | oExanpl e\ cl i ent\ Debug
> client.exe

The client outputs the following lines to the screen:

dient using randomseed 0
Readi ng stringified object reference fromHello.ref
QGeeting is: Hello Wrld!

The client performs the following steps when it is run:

+ It reads the stringified object reference for the Hel | o object from the
C\tenp\ Hell o.ref file.

+ It converts the stringified object reference into an object reference.

+ It calls the remote Hel | o: : get @ eeti ng() operation by invoking on
the object reference. This causes a connection to be established
with the server and the remote invocation to be performed.

When you are finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is
running.

Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xt er min UNIX, enter:
st op_Dorai nNane_ser vi ces

Where DomainName is the name of the default configuration domain
(usually or bi x2000).

27

Chapter 2 | Getting Started with Orbix 2000

Development from the Command Line

Starting point code for Orbix client and server applications can also be
generated using the i dl gen command line utility, which offers equivalent
functionality to the client/server wizard presented in the previous section.

The i dl gen utility can be used on Windows and UNIX platforms.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:

1. Define the IDL interface, Hel | o.
2. Generate starting point code.
3. Complete the server program.
Implement the single IDL get G eeti ng() operation.
4. Complete the client program.
Insert a line of code to invoke the get G eeti ng() operation.
5. Build and run the demonstration.

Step 1—Define the IDL Interface

28

Create the IDL file for the Hello World! application. First of all, make a
directory to hold the example code:

Windows
> nkdir C\ OCGT\ Hel | oExanpl e

UNIX
% nkdir -p OCGT/ Hel | oExanpl e

Create an IDL file C\ QOGT\ Hel | oExanpl e\ hel | 0.i dl (Windows) or QOGT/
Hel | oBExanpl e/ hel 1 0.idl (UNIX) using a text editor.

Enter the following text into the file hel 1 o.i dl :

/11D
interface Hello {
string getQGeeting();

Development from the Command Line

}
This interface mediates the interaction between the client and the server
halves of the distributed application.

Step 2—Generate Starting Point Code.

Generate files for the server and client application using the Orbix Code
Generation Toolkit.

In the directory C:\ QOGN Hel | oExanpl e (Windows) or QOGT/ Hel | oExanpl e
(UNIX) enter the following command:

i dl gen cpp_poa_genie.tcl -all hello.idl

This command logs the following output to the screen while it is generating
the files:

hello.idl:

cpp_poa_genie.tcl: creating it_servant_base_overrides. h
cpp_poa_genie.tcl: creating it_servant _base_overri des. cxx
cpp_poa_genie.tcl: creating Hellolnpl.h
cpp_poa_genie.tcl: creating Hell ol npl.cxx
cpp_poa_genie.tcl: creating server.cxx
cpp_poa_genie.tcl: creating client.cxx
cpp_poa_genie.tcl: creating call_funcs.h
cpp_poa_genie.tcl: creating call_funcs. cxx
cpp_poa_genie.tcl: creating it_print_funcs.h
cpp_poa_genie.tcl: creating it_print_funcs. cxx
cpp_poa_genie.tcl: creating it_random funcs. h
cpp_poa_genie.tcl: creating it_random funcs. cxx
cpp_poa_genie.tcl: creating Makefile

The files you can edit to customize the client and server applications are:

Table 1: Main C++ source files for the Hello World! application

Client Files Server Files
client.cxx Server. cxx
Hel l ol npl . h
Hel | ol npl . cxx

29

Chapter 2 | Getting Started with Orbix 2000

Step 3—Complete the Server Program

Complete the implementation class, Hel | ol npl , by providing the definition of
the Hel l ol npl : : get G eeting() menber function . This C++ function
provides the concrete realization of the Hel | o: : get G eeting() IDL
operation.

Edit the Hel I ol npl . cxx file, and delete most of the generated boilerplate
code occupying the body of the Hel | ol npl : : get G eet i ng() function.
Replace it with the line of code highlighted in bold font below:

/] C++

[I1File "Hellolnpl.cxx’

char *

Hel l ol npl : : get G- eeting() throw
CCRBA: : Syst enExcept i on

)

{
char * _result;
_result = CORBA :string_dup("Hello Wrldl'");
return _result;

The function OORBA: : string_dup() allocates a copy of the "Hello Verld!"

string on the free store. It would be an error to return a string literal directly

from the CORBA operation because the ORB automatically deletes the return
value after the function has completed. It would also be an error to create a

copy of the string using the C++ newoperator.

Step 4—Complete the Client Program

30

Complete the implementation of the client mai n() function in the cl i ent. cxx
file. You must add a couple of lines of code to make a remote invocation of
the get G eeti ng() operation on the Hel | o object.

Edit the client.cxx file and search for the line where the
cal | _Hell o_get Greeting() function is called. Delete this line and replace it
with the two lines of code highlighted in bold font below:

Development from the Command Line

/| G+
/IFile: ‘client.cxx

if (CORBA :is_nil(Hellol))

{

cerr << "Qould not narrow reference to interface "
<< "Hel | 0" << endl;

}

el se

{
CORBA: : String_var strV = Hel |l ol->get Geeting();
cout << "Qeeting is: " << strV << endl;

}

The object reference Hel | o1 refers to an instance of a Hel | o object in the
server application. It is already initialized for you.

A remote invocation is made by invoking get G eeting() onthe Hellol
object reference. The ORB automatically establishes a network connection
and sends packets across the network to invoke the Hel I ol npl : :

get G eeting() function in the server application.

The returned string is put into a C+ + object, strV, of the type QORBA: :
String_var. The destructor of this object will delete the returned string so
that there is no memory leak in the above code.

Step 5—Build and Run the Demonstration

The Makefi | e generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server:

Windows

At a command-line prompt, from the C \ QOGN Hel | oExanpl e directory enter:

> nnmake

UNIX
At a command-line prompt, from the OOGT/ Hel | oExanpl e directory enter:

31

Chapter 2 | Getting Started with Orbix 2000

32

% make -e

Run the Demonstration

Run the application as follows:

1.

Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xt ermin UNIX. Enter:
st art _Domai nNane_ser vi ces

Where DomainName is the name of the default configuration domain
(usually or bi x2000).

Run the server program.
Open a new MS-DOS prompt, or xt er mwindow (UNIX). From the C
\ QOGT\ Hel | oExanpl e directory enter the name of the executable file—

server. exe (Windows) or server (UNIX).The server outputs the
following lines to the screen:

Initializing the CRB
Witing stringified object reference to Hello.ref
Wi ting for requests...

The server performs the following steps when it is launched:

+ It instantiates and activates a single Hel | o CORBA object.

+ The stringified object reference for the Hel | o object is written to the
local Hel | o. ref file.

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

Run the client program.

Open a new MS-DOS prompt, or xt er mwindow (UNIX). From the C
\ OOGT\ Hel | oExanpl e directory enter the name of the executable file—
client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

Development from the Command Line

dient using random seed 0
Readi ng stringified object reference fromHello.ref
QGeeting is: Hello Wrld!

The client performs the following steps when it is run:

+ It reads the stringified object reference for the Hel | o object from the
Hel | o. ref file.

+ It converts the stringified object reference into an object reference.

+ ltcalls the remote Hel | o: : get G eeti ng() operation by invoking on
the object reference. This causes a connection to be established
with the server and the remote invocation to be performed.

4. When you are finished, terminate all processes.
Shut down the server by typing Ctrl-C in the window where it is running.
5. Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xt er min UNIX, enter:
st op_Domai nNane_ser vi ces
Where DomainName is the name of the default configuration domain
(usually or bi x2000).

The passing of the object reference from the server to the client in this way is
suitable only for simple demonstrations. Realistic server applications use the
CORBA naming service to export their object references instead (see
Chapter 18).

33

Chapter 2 | Getting Started with Orbix 2000

34

First Application

This chapter uses sample code to show how to develop an
enterprise application with Orbix.

Orbix enterprise applications consist of CORBA objects with clearly defined
interfaces that can be accessed across a network.

This chapter uses a simple application to describe the basic programming
steps required to define CORBA objects, write server programs that
implement those objects, and write client programs that access them. The
programming steps are the same whether the client and server run on a
single host or are distributed across a network.

The application described here performs these tasks:

* A server program creates a single object that represents a building such
as a warehouse.

* Aclient program uses the object’s interface to get the building’s address,
check its availability, and reserve it for specific dates.

To recreate this program, you must have installed and configured Orbix for
your particular platform.

This chapter covers the following topics:

® Qverview of the development process.
* Development steps.
® Learning more about the server.

Overview of the Development Process

The Orbix Code Generation Toolkit can ease the process of application
development for Orbix programmers, but its use is not compulsory. This
section outlines the responsibilities of client developers and server developers
in cases where the code generation toolkit is not used and in cases where it is
used.

35

Chapter 3 | First Application

Development Without Using Code Generation

36

Client
Developer

L

IDL Compiler

v

S[EE:
Code

K Client Program

S

Client Side

IDL Compiler

Server
Developer

#

Skeleton
Code

N

N

¥
v

Server Program

y

Server Side

Figure 13: Development overview without using code generation

The first step in the development process is to define a set of interfaces
written in the OMG interface definition language (IDL). The IDL file forms the
basis of development for both the client and the server.

The development process on the client side is illustrated on the left of
Figure 13. The steps are:

* An IDL compiler takes the IDL file as input and generates client stub

code.

The client stub code is a set of files that enable clients to make remote
invocations on the interfaces defined in the IDL file.

® The client developer writes the rest of the client application from

scratch.

Overview of the Development Process

The client developer builds the application.

Typically, the developer has to write a customized makefile to build the
client program.

The development process on the server side is illustrated on the right of
Figure 13. The steps are:

An IDL compiler takes the IDL file as input and generates server skeleton
code.

The server skeleton code is a set of files that enables the server to service
requests on the interfaces in the IDL file.

The server developer writes the rest of the server application from
scratch.

An implementation class must be written by the server developer for
each interface appearing in the IDL file.

The server developer builds the application.

Typically, the developer has to write a customized makefile to build the
server program.

37

Chapter 3 | First Application

Development Using Code Generation

A
Code Generation . . Code Generation
Toolkit IDL Compiler IDL Compiler || 1oyt

o Skeleton o
Modifies E Stub }{Iodlfles
Developer Code Code Developer

v V

\ Client Program / \\ Server Program /

Client Side Server Side

Figure 14: Development overview using code generation

Using the code generation toolkit, a large proportion of the code required for
the client and server programs is generated automatically. The toolkit takes
the IDL file as input and, based on the declarations in the IDL file, generates
a complete, working Orbix application.

Developers can then modify the generated code to add business logic to the
application.

38

Overview of the Development Process

The development process on the client side, using code generation, is
illustrated on the left of Figure 14. The steps are:

1.

An IDL compiler takes the IDL file as input and generates client stub
code.

The code generation toolkit takes the IDL file as input and generates a
complete client application.

The generated client is a dummy implementation that invokes every
operation on each interface in the IDL file exactly once. The dummy
client is a working application that can be built and run right away.

The client developer can modify the dummy client to complete the
application.

The client developer does not have to write boilerplate CORBA code.
The client developer builds the application.
A makefile is generated by the code generation toolkit.

The development process on the server side, using code generation, is
illustrated on the right of Figure 14. The steps are:

1.

An IDL compiler takes the IDL file as input and generates server skeleton
code.

The code generation toolkit takes the IDL file as input and generates a
complete server application.

Dummy implementation classes are generated for each interface
appearing in the IDL file. The dummy server is a working application
that can be built and run right away.

The server developer can modify the dummy server to complete the
application logic.
The server developer does not have to write boilerplate CORBA code.

The implementations of IDL interfaces can be modified by adding
business logic to the class definitions.

The server developer builds the application.
A makefile is generated by the code generation toolkit.

39

Chapter 3 | First Application

Locating CORBA Objects

40

Client Server

e invoke Q
object / \
f } servant

stringified
object reference

reference

Figure 15: Simple strategy for passing object references to clients

Before developing an Orbix application, you must choose a strategy for
locating CORBA objects.

To find a CORBA object, a client needs to know both the identity of the object
and the location of the server process that provides a home for that object. In
general, CORBA encapsulates both the identity and location of a CORBA
object inside an entity known as an object reference.

In this chapter, a simple strategy is adopted to pass the object reference from
the server to the client. The strategy, illustrated in Figure 15, has three steps:

1. The server converts the object reference into a string (stringified object
reference) and writes this stringified object reference to a file.

2. The client reads the stringified object reference from the file and converts
it to a real object reference.

3. The client can now make remote invocations by invoking on the object
reference.

Development Steps

This approach is convenient for simple demonstrations but is not
recommended for use in realistic applications. The CORBA naming service,
described in Chapter 18 on page 377, provides a more sophisticated and
scalable approach to distributing object references.

Development Steps

To develop an Orbix application:

1.

Define the IDL interfaces.

Identify the objects required by the application and define their public
interfaces in IDL.

Generate starting point code.

Use the code generation toolkit to generate starting point code for the
application. You can then edit the generated files to add business logic.

Compile the IDL definitions.

The compiler generates the C++ header and source files that you need
to implement client and server programs.

Develop the server program.

The server acts as a container for a variety of CORBA objects, each of
which supports one IDL interface. The server developer must add code
to provide the business logic for each type of CORBA object.

The server makes its CORBA objects available to clients by exporting
object references to a well-known location.

Develop the client program.

The client uses the IDL compiler-generated mappings to invoke
operations on the object references that it obtains from the server.

Build and run the application.

41

Chapter 3 | First Application

Step 1—Define the IDL Interfaces

Begin developing an Orbix enterprise application by defining the IDL
interfaces to the application’s objects. These interfaces implement CORBA
distributed objects on a server application. They also define how clients
access objects regardless of the object’s location on the network.

An interface definition contains operations and attributes:

® QOperations correspond to methods that clients can call on an object.

* Attributes give you access to a single data value.
Each attribute corresponds either to a single accessor method (readonly
attribute) or an accessor method and a modifier method (plain attribute).

For example, the following IDL code defines an interface for an object that
represents a building. This building object could be the beginning of a
facilities management application such as a warehouse allocation system:

/11D
[IFile: ’building.idl’
interface Building {
1 readonly attribute string address;

2 bool ean avail able(in | ong date);
bool ean reserveDate(in long date, out |ong confirmation);

b

The code can be explained as follows:

1. The address attribute is preceded by the IDL keyword r eadonl y, so
clients can read but can not set its value.

2. The Bui | di ng interface contains two operations: avai | abl e() and
reserveDat e() . Operation parameters can be labeled i n, out, or i nout :

+ inparameters are passed from the client to the object.
+ out parameters are passed from the object to the client.
+ inout parameters are passed in both directions.

avai | abl e() lets a client test whether the building is available on a
given date. This operation returns a boolean (true/false) value.

reserveDat e() takes the date as input, returns a confirmation number
as an out parameter, and has a boolean (true/false) return value.

42

Step 2—Generate Starting Point Code

All attributes and operations in an IDL interface are implicitly public. IDL
interfaces have no concept of private or protected members.

Step 2—Generate Starting Point Code

The recommended way to begin a CORBA application is to use the code
generation toolkit to generate starting point code. The toolkit contains two
key components:

® Theidl gen interpreter.

This is an executable file that processes IDL files based on the
instructions contained in predefined code generation scripts.

* A set of code generation scripts, or genies.

A number of genies are supplied with the toolkit. Most important of
these is the cpp_poa_geni e. tcl genie that is used to generate starting
point code for a C++ application.

Taking the bui | di ng. i dl IDL file as input, the cpp_poa_geni e. tcl genie can
produce complete source code for a distributed application that includes a
client and a server program.

To generate starting point code, execute the following command:
i dl gen cpp_poa_genie.tcl -all building.idl

This command generates all of the files you need for this application. The
-al | flag selects a default set of genie options that are appropriate for simple
demonstration applications.

The main client file generated by the cpp_poa_geni e. tcl genie is:

client.cxx Implementation of the client.

The main server files generated by the cpp_poa_geni e. tcl genie are:

server. cxx Server mai n() containing the server
initialization code.

Bui I di ngl npl . h Header file that declares the Bui | di ngl npl
servant class.

43

Chapter 3 | First Application

Bui | di ngl npl . cxx Implementation of the Bui | di ngl npl
servant class.

it_servant_base overrides.h Header file that declares a base class for all
servant classes. See page 239.

i t_servant _base_overrides. cx Implementation of the base class for all
X servant classes. See page 239.

A makefile is generated for building the application:

Makef il e The generated makefile defines rules to
build both the client and the server.

The following files are also generated and support a dummy implementation
of the client and server programs:

call _funcs. h

cal | _funcs. cxx
it_print_funcs.h
it_print_funcs. cxx
i t_random funcs. h

i t_random funcs. cxx

Dummy Implementation of Client and Server Programs

a4

The generated starting point code provides a complete dummy
implementation of the client and the server programs. The dummy
implementation provides:

* A server program that implements every IDL interface.

Every IDL operation is implemented with default code that prints the i n
and i nout parameters to the screen when it is invoked. Return values,
i nout and out parameters are populated with randomly generated
values. At random intervals a CORBA user exception might be thrown
instead.

* Aclient program that calls every operation on every IDL interface once.

The dummy client and server programs can be built and run as they are.

Step 3—Compile the IDL Definitions

Modifying Dummy Client and Server Programs
Later steps describe in detail how to modify the generated code to implement
the business logic of the Bui | di ng application.
In the code listings that follow, modifications are indicated as follows:

* Additions to the generated code are highlighted in bold font. You can
manually add this code to the generated files using a text editor.

* |n some cases the highlighted additions replace existing generated code,
requiring you to manually delete the old code.

Step 3—Compile the IDL Definitions

Note: This step is optional when developing an application using the code
generation toolkit. The Makef i | e generated by the toolkit has a rule to run the
IDL compiler automatically.

After defining your IDL, compile it using the Orbix IDL compiler. The IDL
compiler checks the validity of the specification and generates code in C++
that you use to write the client and server programs.

Compile the Bui | di ng interface by running the IDL compiler as follows:
idl -base -poa building.idl

The - base option generates client stub and header code in C++. The - poa
option generates server-side code for the portable object adapter (POA).

Run the IDL compiler with the - f | ags option to get a complete description of
the supported options.

Output from IDL Compilation

The IDL compiler produces several C++ files when it compiles the
bui I di ng.idl file. These files contain C++ definitions that correspond to
your IDL definitions. You should never modify this code.

The generated files can be divided into two categories:

45

Chapter 3 | First Application

® Client stub code.
This code is compiled and linked with client programs to enable them to
make remote invocations on Bui | di ng CORBA objects.
® Server skeleton code.
This code is compiled and linked with server programs to enable
them to service invocations on Bui | di ng CORBA objects.

Client Stub Code

The stub code is used by clients and consists of the following files:

bui | di ng. hh A header file containing definitions that correspond to
the various IDL type definitions. Client source code
must include this file using a #i ncl ude preprocessor
directive.

bui | di ngC. cxx A file containing code that enables remote access to
Bui | di ng objects. This file must be compiled and
linked with the client executable.

Any clients that want to invoke on CORBA objects that support the Bui I di ng
interface must include the header file bui | di ng. hh and link with the stub
code bui | di ngC. cxx.

Server Skeleton Code
The skeleton code is used by servers and consists of the following files:

bui | di ngS. hh A header file containing type definitions for implement-
ing servant classes. Server source code must include
this file using a #i ncl ude preprocessor directive.

bui | di ngS. cxx A file containing skeleton code that enables servers to
accept calls to Bui | di ng objects. This file must be
compiled and linked with the server executable.

bui | di ng. hh A header file common to client stub code and server
skeleton code. This file is included by bui I di ngS. hh,
so server files do not need to explicitly include it.

46

Step 3—Compile the IDL Definitions

bui | di ngC. cxx Source file common to client stub code and server skel-
eton code. This file must be compiled and linked with
the server executable.

The skeleton code is a superset of the stub code. The additional files contain
code that allows you to implement servants for the Bui | di ng interface.

Server files include the bui | di ngS. hh header file, which recursively includes
the file bui | di ng. hh. The server must be linked with both bui | di ngC. cxx
and bui | di ngS. cxx.

IDL to C++ Mapping

The IDL compiler translates IDL into stub and skeleton code for a given
language—in this case, C++. As long as the client and server programs
comply with the definitions in the generated header files, bui | di ng. hh and
bui | di ngS. hh, the runtime ORB enables type-safe interaction between the
client and the server.

Both the client and the server source files include the generated header file
bui | di ng. hh, which contains the C++ mappings for the Bui | di ng interface
(see “Step 1—Define the IDL Interfaces” on page 42):

/] CH+
1 class Building : public virtual OORBA : (bj ect
{
publ i c:
2 virtual char* address() = 0;
3 virtual CCRBA : Bool ean avail abl e(CCRBA: : Long date) = O;
4 virtual CCRBA : Bool ean reserveDat e(
OCRBA: : Long dat e,
OCRBA: : Long_out confirmation
) =0;
b

The code can be explained as follows:

47

Chapter 3 | First Application

1. The Bui I di ng class defines proxy objects for the Bui | di ng interface.
This class includes member methods that correspond to the attributes
and operations of the IDL interface. When a client program calls
methods on an object of type Bui | di ng, Orbix forwards the method calls
to a server object that supports the Bui | di ng interface.

2. The C++ pure virtual member method addr ess() maps to the readonly
IDL string attribute addr ess. Clients call this method to get the
attribute’s current value, which returns the C+ + type char*.

3. The pure virtual C4++ member method avai | abl e() maps to the IDL
operation of the same name. It returns type OORBA: : Bool ean, which
maps to the equivalent IDL type bool ean. Its single parameter is of
QCRBA: : Long type, which is a t ypedef of a basic C++ integer type. This
maps to the operation parameter of IDL type | ong.

4. The operation reserveDat e() has one input parameter, dat e, and one
output parameter, confi rmati on, both of IDL type | ong. The return type
is QCRBA : Bool ean. Input parameters (specified as IDL i n parameters)
are passed by value in C++.

Output parameters are passed by reference. Every CORBA data type has
a corresponding _out type that is used to declare output parameters. For
basic types, such as short and | ong, the _out type is a t ypedef of a
reference to the corresponding C++ type. For example, the OCRBA: :
Long_out type is defined in the CORBA namespace as:

t ypedef CCRBA: : Long& OCRBA: : Long_out;

Other helper data types and methods generated in this file are described
when they are used in this chapter.

Step 4—Develop the Server Program

The main programming task on the server side is the implementation of
servant classes. In this demonstration there is one interface, Bui | di ng, and
one corresponding servant class, Bui | di ngl npl .

For each servant class:

* Declare the servant class.

48

Step 4—Develop the Server Program

The code generation toolkit generates an outline servant header file for
every interface. The Bui | di ngl npl servant class is declared in the
header file Bui | di ngl npl . h.

* Define the servant class.

The code generation toolkit generates a dummy definition of every
servant class. The Bui | di ngl npl servant class is defined in the file
Bui | di ngl npl . cxx.

The other programming task on the server side is the implementation of the
server mai n() . For this simple demonstration, the generated server mai n()
does not require any modification. It is discussed in detail in “Learning More
About the Server” on page 61.

Declare the Buildinglmpl Servant Class
The code generation toolkit generates a header file, Bui | di ngl npl . h, that

declares the Bui | di ngl npl servant class. You can use this starting point code
to implement the Bui | di ng interface.

Note: The name of the Bui | di ngl npl servant class is not significant but
simply conforms to a naming convention that helps distinguish servant code
from other application code.

You can modify the generated code in Bui I di ngl npl . h to add member
variables needed for the implementation. The code shown here provides a
simple implementation of Bui | di ngl npl .

Manual additions to the generated code are shown in bold font.
/1 C++
/1 File: ’Buildinglnpl.h

1 #include "buil di ngS. hh"
#include "it_servant_base_overrides. h"

2 class Buil di ngl npl

public virtual |T_ServantBaseOverrides,
public virtual PQA Building

49

Chapter 3 | First Application

publi c:
Bui | di ngl npl (Port abl eServer:: PQA ptr);
virtual ~Buildinglnpl();

/] _create() -- create a new servant.
static POA Building* _create(Portabl eServer::PQA ptr);

/1 1DL operations
I
3 virtual CCRBA: : Bool ean avail abl e(
OCRBA: : Long date
) | T_THROWN DECL((GORBA: : Syst enException));

virtual COCRBA : Bool ean reserveDat e(

QCRBA: : Long dat e,

OCRBA: : Long_out confirmation
) | T_THROWN DECL((GORBA: : Syst enException));

// 1DL attributes

/1
4 virtual char* address()
I T_THRON DECL((OCRBA: : Syst enException));
private:
5 N LT PP
/'l Private Menber Variabl es
R e T PR
CCRBA: : Long m_ conf i rmati on_counter;
CCRBA: : Long m reservati on[366] ;
/1l Instance variables for attributes.
6 CCORBA: : String_var m addr ess;
h

This code can be described as follows:

1. Servers include the bui | di ngS. hh skeleton file, which declares the C+ +
PQA Bui | di ng class.

The PQA Bui | di ng class is a class generated by the IDL compiler that
allows you to implement the Bui | di ng interface using the inheritance

50

Step 4—Develop the Server Program

approach. In general, for any interface, InterfaceName, a corresponding
class, PQA_InterfaceName, is generated by the IDL compiler.

The Bui | di ngl npl servant class inherits from PQA Bui | di ng and
| T_Servant BaseOverri des.

The PQA Bui | di ng class is a standard name for the base class generated
for the Bui | di ng interface. By inheriting from PQOA Bui | di ng, you are
indicating to the ORB that Bui | di ngl npl is the servant class that
implements Bui | di ng. This approach to associating a servant class with
an interface is called the inheritance approach.

The | T_Servant BaseOverri des class is used to override the definition of
some standard virtual methods. For a discussion of this class, see
page 239.

A member method declaration is generated for each of the operations in
the Bui | di ng interface.

The | T_THROW DECQL((ExceptionList)) macro is used by Orbix to insulate
generated code from variations between C++ compilers. The macro
maps to t hr ow(ExceptionList) for compilers that support exceptions, or
to an empty string, ", for compilers that do not.

Member method declarations are generated for each of the attributes in
the Bui | di ng interface.

Read-only attributes require a single method that returns the current
value of the attribute. Read/write attributes require two methods: one
that returns the current value, and another that takes an input parameter
to set the value.

The lines of code shown in bold font are added to the generated code to
complete the application. Two additional private member variables are
declared to store the state of a Bui | di ngl npl object.

+ The mconfirmation_counter index counter is incremented each
time a reservation is confirmed.

+ Themreservation array has 366 elements (representing the 365
or 366 days in a year). The elements are equal to zero when
unreserved or a positive integer (the confirmation number) when
reserved.

The m addr ess is a CORBA string that stores the address of the building.

The declared type of m address, OQORBA: : Stri ng_var, is a smart pointer
type that functions as a memory management aid. String pointers

51

Chapter 3 | First Application

declared as QCRBA: : String_var are used in a similar way to plain
char * pointers, except that it is never necessary to delete the string
explicitly.

Note: The code generation toolkit automatically generates a private member
m addr ess to represent the state of the IDL addr ess attribute. However, this
generated class member is not part of the standard IDL-to-C++ mapping. It
is generated solely for your convenience and you are free to remove this line
from the generated code if you so choose.

Define the Buildinglmpl Servant Class

52

The code generation toolkit also generates the Bui | di ngl npl . cxx file, which
contains an outline of the method definitions for the Bui | di ngl npl servant
class. You should edit this file to fill in the bodies of methods that correspond
to the operations and attributes of the Bui | di ng interface. It is usually
necessary to edit the constructor and destructor of the servant class as well.

Manual additions made to the generated code are shown in bold font. In
some cases, the additions replace existing generated code requiring you to
manually delete the old code.

Il G+
/1 File: ’Buildinglnpl.cxx’

#i ncl ude "Bui | di ngl npl . h"

[/l _create() -- create a new servant.

PQA Bui | di ng*

Bui I di ngl npl :: _create(Portabl eServer:: POA ptr the_poa)
{

}

return new Bui | di ngl npl (the_poa) ;

/1 Buildinglnpl constructor

/1

/1 Note: since we use virtual inheritance, we nust include an
// initialiser for all the virtual base class constructors that
/1 require argunents, even those that we inherit indirectly.

/1

Step 4—Develop the Server Program

Bui | di ngl npl : : Bui | di ngl npl (
Port abl eServer:: POA ptr the_poa

)
| T_Servant BaseOQverri des(t he_poa),
m address("200 Vst Street, Waltham NA "),
m confirmation_counter (1)
{
for (int i=0; i<366; i++) { mreservation[i] =0; }
}
/1 ~Bui Il dingl npl destructor.
11l
Bui | di ngl npl : : ~Bui | di ngl npl ()
{
/1 Intentionally enpty.
}
[l available() -- Inplenents |DL
/1 operation "Building::available()".
I

CCRBA: : Bool ean
Bui | di ngl npl : : avai | abl e(
OCRBA: : Long date
) | T_THRON DECL((GORBA: : Syst enExcepti on))

{

if (l<=date &% dat e<=366) {

return (mreservation[date-1] ==0);

}

return O;
}
/1l reserveDate() -- Inplements IDL
/1 operation "Building::reserveDate()".
Il

CGCRBA: : Bool ean
Bui | di ngl npl : : reser veDat e(
OCRBA: : Long dat e,
OCRBA: : Long_out confirnation
) | T_THRON DECL((GCORBA: : Syst enExcepti on))
{

confirmation = O;

53

Chapter 3 | First Application

54

if (l<=date && dat e<=366) {
if (mreservation[date-1]==0) {
m reservation[dat e- 1] =m confirmati on_counter;
confirmation = mconfirnation_counter;
m confirmation_count er ++;
return 1;
}
}

return O;

}

/] address() -- Accessor for IDL attribute "Buil ding::address".
I

char *

Bui I di ngl npl : : address() | T_THROW DECL((OCRBA: : Syst enExcepti on))
{

}

The code can be explained as follows:

return GORBA: :string_dup(maddress);

1. _create() is a static member method of Bui | di ngl npl that creates
Bui | di ngl npl instances.

Note that _create() is not a standard part of CORBA. It is generated by

the code generation toolkit for convenience. You are free to call the
constructor directly, or remove the _create() method entirely.

2. The Bui | di ngl npl constructor is an appropriate place to initialize any
member variables. The three private member variables—m addr ess,
m confirmati on_counter and mreservati on—are initialized here.

3. The Bui I di ngl npl destructor is an appropriate place to free any member

variables that were allocated on the heap. In this example it is empty.
4. A few lines of code are added here to implement the avai | abl e()

operation. If an element of the array mreservati on is zero, that means
the date is available. Otherwise the array element holds the confirmation

number (a positive integer).

5. A few lines of code are added here to implement the reser veDat e()
operation. Because confirnation is declared as an out parameter in
IDL, it is passed by reference in C++. The value assigned to it is
therefore readable by the code that called reserveDat e() .

Step 5—Develop the Client Program

6. OCRBA :string_dup() is used to allocate a copy of the string m addr ess
on the free store.

It would be an error to return the private string pointer directly from the
operation because the ORB automatically deletes the return value after
the operation has completed.

It would also be an error to allocate the string copy using the C++ new
operator.

Step 5—Develop the Client Program

The generated code in the cli ent. cxx file takes care of initializing the ORB
and getting a Bui | di ng object reference. This allows the client programmer to
focus on the business logic of the client application.

You modify the generated client code by implementing the logic of the client
program. Use the Bul di ng object reference to access an object’s attributes
and invoke its operations.

Client main()

The code in the client mai n() initializes the ORB, reads a Bui | di ng object
reference from the file Bui | di ng. ref and hands over control to

run_war ehouse_nenu(), which is described in the next section. When
run_war ehouse_nenu() returns, the generated code shuts down the ORB.

Changes or additions to the code are shown in bold font.
[C++
[IFile: "client.cxx

#i ncl ude "bui | di ng. hh"

/1 global _orb -- make ORB global so all code can find it.
/1
CCRBA: : CRB var

1 global _orb = CCRBA : CRB:: _nil ();

/1l read_reference() -- read an object reference fromfile.
/1

55

Chapter 3 | First Application

56

static CORBA : (hject_ptr
read_reference(

const char* file
)
{
cout << "Reading stringified object reference from"
<< file << endl;
ifstreamifs(file);
CCORBA: : String_var str;
ifs >> str;
if (lifs) {
cerr << "Error reading object reference from"
<< file << endl;
return CORBA : hject::_nil();
}
return gl obal _orb->string_to_object(str);
}
/1 main() -- the nain client program
i nt
mai n(int argc, char **argv)
{
int exit status = 0;
try
{

/1l For tenporary object references.
OCRBA: : (hj ect _var tnp_ref;

/1l Initialise the CRB.
/1
gl obal _orb = CORBA': CRB init(argc, argv);

/1 Exercise the Building interface.

/1l

tnp_ref = read_reference("Building.ref");

Bui | di ng_var Buildingl = Building::_narrow(tnp_ref);
if (OCRBA: :is_nil(Buildingl))

{

cerr << "Qould not narrow reference to interface "

<< "Buil ding" << endl;

Step 5—Develop the Client Program

}

el se
{
run_war ehouse_nenu(Bui | di ngl);
}
}
cat ch(CCRBA: : Exception &ex)
{
cerr << "Unexpected CORBA exception: " << ex << endl;
exit_status = 1;
}

/1l Ensure that the CRB is properly shutdown and cl eaned up.
/1
try
{
gl obal _or b->shut down(1);
gl obal _or b->destroy();

}
catch (...)
{
/1 Do not hi ng.
}

return exit_status;

The code can be explained as follows:

1.

Declare the variable gl obal _or b in the global scope so that all parts of
the program can easily access the ORB object.

The gl obal _orb is temporarily set equal to the value GORBA : CRB: :
_nil (), which represents a blank object reference of type GCRBA: :
CRB ptr.

Define read_ref erence() to read an object reference from a file. This
method reads a stringified object reference from a file and converts the
stringified object reference to an object reference using CCRBA: : CRB: :
string_to_object(). The return type of read_ref erence() is OCRBA: :
bj ect _pt r—the base type for object references.

If there is an error, read_reference() returns QORBA : (hject:: _nil (),
which represents a blank object reference of type CCRBA: : (hj ect _ptr.

Call OORBA : CRB i ni t () to get an object reference to the initialized
ORB.

57

Chapter 3 | First Application

A client must associate itself with the ORB in order to get object
references to CORBA services such as the naming service or trader
service.

4. Get a reference to a CORBA object by calling read_ref erence(),
passing the name of a file that contains its stringified object reference.

The tnp_ref variable is of OCRBA: : bj ect _var type. This is a smart
pointer type that automatically manages the memory it references.

5. Narrow the CORBA object to a Bui | di ng object, to yield the Bui | di ngl
object reference.

The mapping for every interface defines a static member method
_narrow() that lets you narrow an object reference from a base type to a
derived type. It is similar to a C++ dynamic cast operation, but is used
specifically for types related via IDL inheritance.

6. Replace the lines of generated code in the el se clause with a single call
to run_war ehouse_nenu() .

run_war ehouse_nenu() uses the Bui | di ngl object reference to make
remote invocations on the server.

7. The ORB must be explicitly shut down before the client exits.

QCRBA: : CRB: : shut down() stops all server processing, deactivates all
POA managers, destroys all POAs, and causes the run() loop to
terminate. The boolean argument, 1, indicates that shut down() blocks
until shutdown is complete.

QOCRBA: : CRB: : dest roy() destroys the ORB object and reclaims all
resources associated with it.

When an object reference enters a client’s address space, Orbix creates a
proxy object that acts as a stand-in for the remote servant object. Orbix
forwards method calls on the proxy object to corresponding servant object
methods.

Client Business Logic
You access an object’s attributes and operations by calling the appropriate

the Bui | di ng class method using the proxy object. The proxy object redirects
the C++ calls across the network to the appropriate servant method.

58

Step 6—Build and Run the Application

The following code uses the C++ arrow operator (->) on the Bui | di ng_ptr
object war ehouse to access Bui |l di ng class methods.

Additions to the code are shown in bold font.

/] CH+

[IFile: "client.cxx

voi d

r un_war ehouse_nenu(Bui | di ng_ptr war ehouseP)
{

OCRBA: : String_var addressV = warehouseP->addr ess() ;
cout << "The warehouse address is:" << endl
<< addressV.in() << endl;

OCRBA: : Long dat e;
OCRBA: : Long confirmnation;
char quit ='n';
do {

cout << "Enter day to reserve warehouse (1,2,...): ";

cin >> date;

i f (war ehouseP->avai | abl e(date)) {

i f (warehouseP->reserveDat e(date, confirnation))
cout << "Confirmation nunber: "
<< confirmation << endl ;

el se
cout << "Reservation attenpt failed!'" << endl;
}
el se {
cout << "That date is unavailable." << endl;
}

cout << "Qit? (y,n)";
cin >> quit;

}

while (quit =='n");

Step 6—Build and Run the Application

The prerequisites for running this application are:

* The Orbix runtime is installed on the machine where the demonstration
is run.

59

Chapter 3 | First Application

® Orbix has been correctly configured. See the Orbix 2000 Administrator’s
Guide for details.

This demonstration assumes that both the client and the server run in the
same directory.

Build the Application

The makefile generated by the code generation toolkit has a complete set of
rules for building both the client and server applications.

To build the client and server, go to the example directory and at a command
line prompt enter:

Windows

> nnmake

UNIX
% nmake -e

Run the Application

60

Perform the following steps to run the application:

1. Run the Orbix services (if required).

If you have configured Orbix to use file-based configuration, no services
need to run for this demonstration. Proceed to step 2.

If you have configured Orbix to use configuration repository based
configuration, start up the basic Orbix services.

Open a new DOS prompt in Windows, or xt ermin UNIX. Enter:
st art _Domai nNane_ser vi ces

Where DomainName is the name of the default configuration domain
(usually or bi x2000).

2. Run the server program.
Open a new DOS prompt in Windows, or xt er min UNIX. The executable
file is called server. exe (Windows) or server (UNIX).

The server outputs the following lines to the screen:

Learning More About the Server

Initializing the CRB
Witing stringified object reference to Building.ref
Wi ting for requests...

At this point the server is blocked while executing CORBA: : CRB: : run() .

Run the client program.

Open a new DOS prompt in Windows, or xt er min UNIX. The executable
file is called cl i ent . exe (Windows) or cl i ent (UNIX).When you are
finished, terminate all processes.

The server can be shut down by typing Ctrl-C in the window where it is
running.

Stop the Orbix services (if they are running).
From a DOS prompt in Windows, or xt er min UNIX, enter:
st op_Domai nNane_ser vi ces

Where DomainName is the name of the default configuration domain
(usually or bi x2000).

Learning More About the Server

In this demonstration, the default implementation of mai n() suffices so there
is no need to edit the server. cxx file.

However, for realistic applications, you need to customize the server mai n()
to specify what kind of POAs are created. You also need to select which
CORBA objects get activated as the server boots up.

The default server mai n() contains code to:

1.

SN

Create a termination handler object.
Initialize the ORB.

Create a POA for transient objects.
Create servant objects.

Activate CORBA objects.

The default server code activates one CORBA object for each of the
interfaces defined in the IDL file.

Export object references.

61

Chapter 3 | First Application

An object reference is exported for each of the activated CORBA objects.
7. Put the ORB into an active state.

Put the ORB into a state where it is ready to receive and process
invocations on CORBA objects.

8. Shut down the ORB.
The ORB should be shut down cleanly before exiting and any
heap-allocated memory should be deleted.

In this demonstration, there is only one interface, Bui | di ng, and a single
CORBA object of this type is activated.

The following subsections discuss the code in the server. cxx file piece by
piece. For a complete source listing of server. cxx, see page 72.

Create a Termination Handler Object

62

Orbix provides its own | T_Ter mi nat i onHandl er class, which handles server
shutdown in a portable manner.

On UNIX, the termination handler handles the following signals:

SIA NT
S| GTERM

SIGUT

On Windows, the termination handler is just a wrapper around
Set Consol eCt r| Handl er, which handles delivery of the following control
events:

CTRL_C EVENT
CTRL_BREAK_EVENT
CTRL_SHUTDOM_EVENT
CTRL_LOGCFF_EVENT
CTRL_CLOSE_EVENT

The main routine can create a termination handler object on the stack. On
POSIX platforms, it is critical to create this object in the main thread before
creation of any other thread, especially before calling CRBi ni t (), as follows:
i nt

mai n(int argc, char** argv)

{

| T_Term nat i onHandl er

Learning More About the Server

ternination_handl er (term nati on_handl er _cal | back) ;
...

You can create only one termination handler object in a program. The server
shutdown mechanism and t er ni nati on_handl er _cal | back() are discussed
in detail in “Shut Down the ORB"” on page 70.

Initialize the ORB

Before a server can make its objects available to the rest of an enterprise
application, it must initialize the ORB:

/| G++
/1 global _orb -- make CRB global so all code can find it.

CCRBA: : CRB_var
1 global _orb = GORBA : CRB:: _nil();

int
mai n(i nt argc, char **argv)
{
cout << "Initializing the CRB" << endl;

2 gl obal _orb = CORBA': CRB init(argc, argv);

The code can be explained as follows:

1. The type QCRBA : ORB var is a smart pointer class that can be used to
refer to objects of type GCRBA: : ORB. Syntactically, a OORBA: : CRB var is
similar to the pointer type OORBA: : CRB*. The advantage of using a smart
pointer is that it automatically deletes the memory pointed at as soon as
it goes out of scope. This helps to prevent memory leaks.

The value CORBA: : CRB:: _ni | () is an example of a nil object reference. A
nil object reference is a blank value that can legally be passed as a
CORBA parameter or return value.

63

Chapter 3 | First Application

2.

QCRBA: : CRB i ni t () is used to create an instance of an ORB.
Command-line arguments can be passed to the ORB via ar gc and ar gv.
CRB i ni t () searches ar gv for arguments of the general form - CRBsuffix,
parses these arguments, and removes them from the argument list.

Create a POA for Transient Objects

A simple POA object is created using the following lines of code:

/] G+
try {

/1 For tenporary object references.
CCORBA: : (hj ect _var tnp_ref;

tnp_ref = global _orb->resol ve_initial_references("Root PQA");
Port abl eServer: : POA var root_poa =

Port abl eServer:: POA : _narrow(tnp_ref);
assert (! GORBA :is_nil (root_poa));

Port abl eSer ver: : POAManager _var root _poa_nanager
= root _poa- >t he_PQAManager () ;
assert (! GORBA :is_nil (root_poa_manager));

/1 Now create our own PQA
Port abl eServer: : POA var ny_poa =
create_sinpl e_poa("ny_poa", root_poa, root_poa_nanager);

The code can be explained as follows:

1.

64

Get a reference to the root POA object by calling
resol ve_initial _references() on the ORB with the argument
" Root PQA".

resolve initial references() provides a bootstrap mechanism for
obtaining access to key Orbix objects. It contains a mapping of
well-known names to important objects such as the root POA

" Root PQA", the naming service " NaneSer vi ce", and other objects and
services.

Learning More About the Server

2. Narrow the root POA reference, t np_r ef , to the type Port abl eSer ver : :
PQA ptr using Port abl eServer:: POA : _narrow().

Because tnp_ref is of QORBA: : (bj ect type, which is the generic base
class for object references, methods specific to the Port abl eServer: :
PQA class are not directly accessible. It is therefore necessary to
down-cast the t np_ref pointer to the actual type of the object reference
using _narrow().

3. Obtain a reference to the root POA manager object.

A POA manager controls the flow of messages to a set of POAs. CORBA
invocations cannot be processed unless the POA manager is in an active
state (see page 69).

4. Create the ny_poa POA as a child of root _poa. The ny_poa POA
becomes associated with the root _poa_nanager POA manager. This
means that the root _poa_manager object controls the flow of messages
into ny_poa.

create_sinpl e_poa() is defined as follows:

/] CH+
Port abl eServer: : POA ptr
creat e_si npl e_poa(

const char* poa_nane,
Port abl eServer:: POA ptr par ent _poa,
Por t abl eSer ver : : POAManager _ptr poa_nanager
)
{

/I Oreate a policy list.

/1l Policies not set inthe list get default val ues.
/1

QCORBA: : Pol i cyLi st polici es;

policies.length(1);

int i =0;
/1 NMake the PQA single threaded.
/1l

pol i ci es[i++] = parent_poa->create_t hread_pol i cy(
Port abl eSer ver: : SI NALE_THREAD MODEL
)s

assert (i ==1);

return parent_poa->creat e PO\
poa_nane,

65

Chapter 3 | First Application

poa_manager ,
pol icies);

A POA is created by invoking Port abl eServer:: POA : create_PQX) on an
existing POA object. The POA on which this method is invoked is known as
the parent POA and the newly created POA is known as the child POA.

create_PQA() takes the following arguments:

® poa_nane is the adapter name. This name is used within the ORB to
identify the POA instance relative to its parent.

®* poa_manager is a reference to a POA manager object with which the
newly created POA becomes associated.

®* policies is a list of policies that configure the new POA. For more
information, see “Using POA Policies” on page 228.

The POA instance returned by creat e_si npl e_poa() accepts default values
for most of its policies. The resulting POA is suitable for activating transient
CORBA objects. A transient CORBA object is an object that exists only as long
as the server process that created it. When the server is restarted, old
transient objects are no longer accessible.

Create Servant Objects

66

A number of servant objects must be created. A servant is an object that does
the work for a CORBA object. For example, the Bui | di ngl npl servant class
contains the code that implements the Bui | di ng IDL interface.

A single Bui | di ngl npl servant object is created as follows:

Il CH
#i ncl ude <Bui | di ngl npl . h>

/1 Note: Portabl eServer::Servant is a pointer type - it's
/1 actually a typedef for Portabl eServer:: Servant Base*.
11

Port abl eServer: : Servant the Building = 0;

the_Buil ding = Buildinglnpl:: _create(ny_poa);

Learning More About the Server

In thisexample, _create() creates an instance of a Bui | di ngl npl servant.
The POA reference ny_poa that is passed to _create() must be the same
POA that is used to activate the object in the next section “Activate CORBA
Objects”.

_create() is not a standard CORBA method. It is a convenient pattern
implemented by the code generation toolkit. You can use the Bui | di ngl npl
constructor instead, if you prefer.

Activate CORBA Objects

A CORBA object must be activated before it can accept client invocations.
Activation is the step that establishes the link between an ORB, which
receives invocations from clients, and a servant object, which processes
these invocations.

In this step, two fundamental entities are created that are closely associated
with a CORBA obiject:

* Anobject ID.

This is a CORBA object identifier that is unique with respect to a
particular POA instance. In the case of a persistent CORBA object, the
object ID is often a database key that is used to retrieve the state of the
CORBA object from the database.

* An object reference.

This is a handle on a CORBA object that exposes a set of methods
mapped from the operations of its corresponding IDL interface. It can be
stringified and exported to client programs. Once a client gets hold of an
object reference, the client can use it to make remote invocations on the
CORBA object.

A single Bui | di ng object is activated using the following code:

Il Ct+
#i ncl ude <Bui | di ngl npl . h>

CCORBA: : (hj ect _var tnp_ref;
Port abl eServer:: hject |l d_var oid;

1 oid = ny_poa->activate_object (the_Building);

67

Chapter 3 | First Application

2 tnp_ref = ny_poa->id_to_reference(oid);

The code can be explained as follows:

1. Activate the CORBA object.
A number of things happen when acti vat e_obj ect () is called:
+ An unique object ID, oi d, is automatically generated by ny_poa to

represent the CORBA object’s identity. Automatically generated
object IDs are convenient for use with transient objects.

+ The CORBA object becomes associated with the POA, ny_poa.

+ The POA records the fact that the t he_Bui | di ng servant provides
the implementation for the CORBA object identified by oi d.

2. Use Portabl eServer::POA :id_to_reference() to generate an object
reference, t np_ref , from the given object ID.

You can activate a CORBA object in various ways, depending on the policies
used to create the POA. For information about activating objects in the POA,
see “Activating CORBA Objects” on page 202; for information about
activating objects on demand, see Chapter 11 on page 249.

Export Object References

68

A server must advertise its objects so that clients can find them. In this
demonstration, the Bui | di ng object reference is exported to clients using
wite reference():

/] G+

wite reference(tnp_ref,"Building.ref");
This call writes the t np_ref object reference to the Bui | di ng. ref file.

write_reference() writes an object reference to a file in stringified form. It is
defined as follows:

[/ G+
voi d
wite_reference(
CORBA: : (hj ect _ptr ref, const char* objref _file
)

{
OCRBA: : String_var stringified ref =

Learning More About the Server

gl obal _orb->o0bj ect _to_string(ref);
cout << "Witing stringified object reference to "
<< objref_file << endl;

of stream os(objref _file);
0s << stringified_ref;

if (!os.good())

{

}

cerr << "Failed to wite to " << objref_file << endl;

}

The ref object reference is converted to a string, of type char * by passing
ref as an argument to OORBA : CRB: : obj ect _to_string() . The string is then
written to the objref _fil e file.

Note that a smart pointer of GORBA: : Stri ng_var type is used to reference the
stringified object reference. The smart pointer automatically deletes the string
when it goes out of scope, thereby avoiding a memory leak.

CORBA clients can read the objref fil e file to obtain the object reference.

This approach to exporting object references is convenient to use for this
simple demonstration. Realistic applications, however, are more likely to use
the CORBA naming service instead.

Put the ORB into an Active State

After a server has set up the objects and associations it requires during
initialization, it must tell the ORB to start listening for requests:

/1 G+

/1 Activate the POA Manager and |l et the CRB process requests.
Il

1 root_poa_nanager->activate();

2 global _orb->run();

The code can be explained as follows:

1. A POA manager can be in four different states: active, holding, discarding,
and inactive. A POA can accept object requests only after its manager is
activated by calling Por t abl eSer ver : : POAManager : : acti vat e() .

69

Chapter 3 | First Application

2. QOCRBA : CRB: :run() puts the ORB into a state where it listens for client
connection attempts and accepts request messages from existing client
connections.

QOCRBA: : CRB: : run() is a blocking method that returns only when GORBA:
: ORB: : shut down() is invoked.

Shut Down the ORB

70

1

2

The shutdown mechanism for the demonstration application uses Orbix’s
own | T_Ter m nati onHandl er class, which enables server applications to
handle delivery of CTRL- Cand similar events in a portable manner (see
page 62 and “Termination Handler” on page 219).

Before shutdown is initiated, the server is blocked in the execution of CORBA:
CRB :run().

Shutdown is initiated when a Ctrl-C or similar event is sent to the server from
any source. You can shut down the server application as follows:

®* On Windows platforms, switch focus to the MS-DOS box where the
server is running and type Ctrl-C.

®* On UNIX platforms, switch focus to the xterm window where the server
is running and type Ctrl-C.

®* On UNIX, send a signal to a background server process using the ki I |
system command.

The Orbix termination handler can handle a number of signals or events (see
“Create a Termination Handler Object” on page 62). As soon as the server

receives one of these signals or events, a thread started by Orbix executes the
registered termination handler callback, termi nati on_handl er _cal | back() .

The termination handler function is defined as follows:

/] C++
static void
term nati on_handl er _cal | back(
I ong signal

)
{

if ('QORBA :is_nil(orb))

{

gl obal _or b->shut down(1 T_FALSE) ;

Learning More About the Server

}

The code executes as follows:

1. A check is made to ensure that the gl obal _orb variable is initialized.

2. OCORBA : CRB:: shut down() is invoked. It takes a single boolean
argument, the wai t_for_conpl eti on flag.

When shut down() is called with its wait _for_conpl eti on flag set to
false, a background thread is created to handle shutdown and the call
returns immediately. See “Explicit Event Handling” on page 218.

As soon as ternmnati on_handl er () returns, the operating system returns to
the prior execution point and the server resumes processing in CCRBA : CRB: :
run().

Server execution now reverts to mai n() :
/] CH+
gl obal _orb->run();

/] Delete the servants.
del ete the_Buil ding;

/1 Destroy the CRB and recl ai mresources.

try
{
gl obal _orb->destroy();
}
catch (...)
{
/1 Do not hi ng.
}

return exit_status;
The code executes as follows:

1. After the termination handler completes shutdown, GCRBA: : CRB: : run()
unblocks and returns.

2. The Bui I di ngl npl servant must be explicitly deleted because it is not
referenced by a smart pointer.

3. OORBA : (RB::destroy() destroys the ORB object.

71

Chapter 3 | First Application

Note: The shut down() function is not called after GCRBA: : GRB: : run()
returns, because shut down() is already called in the signal handler. It is
illegal to call shut down() more than once on the same ORB object.

Complete Source Code for server.cxx

/1 G+

/] Edit idlgen config file to get your own copyright notice
/1 placed here.
R e LR R

/1 Autonatically generated server for the follow ng | DL
/'l interfaces:

I Bui | di ng

I

#include "it_random funcs. h"

#i ncl ude <i ostream h>

#i ncl ude <fstream h>

#i ncl ude <string. h>

#incl ude <stdlib. h>

#include <it_ts/termnation_handl er. h>
#i ncl ude <ong/ Port abl eServer. hh>

#i ncl ude "Bui | di ngl npl . h"

/1 global _orb -- make CRB global so all code can find it.
11

QCRBA: : CRB var

global _orb = CORBA : CRB:: _nil();

/1 termnation handl er callback handles Qrl-Glike signal s/events
/1 by shutting down the CRB. This causes ORB::run() to return,
/1 and allows the server to shut down gracefully.

static void
terninati on_handl er _cal | back(
I ong signal

)

72

Complete Source Code for server.cxx

{
cout << "Processing shutdown signal " << signal << endl;
if ('!OQORBA :is_nil(orb))
{
cout << "CRB shutdown ... " << flush;
or b- >shut down(1 T_FALSE) ;
cout << "done." << endl;
}
}
Il wite_reference() -- export object reference to file.

/1 This is a useful way to advertise objects for sinple tests and
denos.

/1 The OCORBA naning service is a nmore scal abl e way to adverti se
r ef erences.

/1
void
wite_ reference(
OCRBA: : (hj ect _ptr ref,
const char* objref_file
)
{
OCRBA: : String_var stringified_ref =
gl obal _orb->o0bj ect _to_string(ref);
cout << "Witing stringified object reference to "
<< objref_file << endl;
of stream os(objref _file);
0s << stringified_ref;
if (!os.good())
{
cerr << "Failed to wite to " << objref_file << endl;
}
}
/]l create_sinple_poa() -- reate a POA for sinple servant
nmanagenent .
/1

Port abl eServer: : POA ptr

creat e_si npl e_poa(
const char* poa_nane,
Port abl eServer:: POA ptr par ent _poa,

73

Chapter 3 | First Application

74

Port abl eSer ver: : POAManager _ptr poa_nanager

)
{
/1 Oeate a policy list.
/1 Policies not set inthe list get default val ues.
/1
CCRBA: : Pol i cyLi st poli ci es;
policies.length(1);
int i =0;
/1 Make the PQA single threaded.
/1
pol i ci es[i++] = parent_poa->create_t hread_policy(
Por t abl eServer: : SI NGALE THREAD MCDEL
)s
assert (i==1);
return parent_poa- >creat e_PQA(poa_nane,
poa_nanager ,
pol i ci es);
}
/1 main() -- set up a POA create and export object references.
I
i nt
mai n(int argc, char **argv)
{
int exit_status = 0; /1 Return code fromnain().

/1l Instantiate termnation handl er
| T_Term nati onHandl er
terninati on_handl er (terninati on_handl er_cal | back) ;

/1l Variables to hold our servants.

/1 Note: PortableServer::Servant is a pointer type - it's
/1l actually a typedef for Portabl eServer:: Servant Base*.
/1

Portabl eServer: : Servant the Building = 0O;

try

{
/1 For tenporary object references.
OCRBA: : (hj ect _var tnp_ref;

Complete Source Code for server.cxx

/1l Initialise the CRB and Root PQA
I
cout << "Initializing the GRB' << endl;
global _orb = CORBA : GRB_init(argc, argv);
tnp_ref =
gl obal _orb->resol ve_initial_references("Root PQA");
Port abl eServer:: POA var root_poa =
Port abl eServer:: POA : _narrow(tnp_ref);
assert (! CORBA: :is_nil (root_poa));
Port abl eSer ver: : POAVanager _var root _poa_nanager
= root _poa- >t he_PQAManager () ;
assert (! CORBA: :is_nil (root_poa_manager));

/1 Now create our own PQA
I
Port abl eServer: : POA var ny_poa =
create_sinpl e_poa("ny_poa", root_poa, root_poa nanager);

/1 Create servants and export object references.

11

/1 Note: _create is a useful convenience function
/]l created by the genie; it is not a standard OCORBA
/1 function.

/1

Port abl eServer:: (hjectl d_var oid;

I/l Oeate a servant for interface Building.
I

the_Building = Buildinglnpl::_create(ny_poa);
oid = ny_poa->acti vat e_obj ect (t he_Bui | di ng);
tnp_ref = ny_poa->id_ to_reference(oid);

wite reference(tnp_ref,"Building. ref");

/1 Activate the POA Manager and let the CRB process
/'l requests.

I

root _poa_nanager->activate();

cout << "Waiting for requests..." << endl;
gl obal _orb->run();
}
cat ch (CORBA: : Exception& e)
{
cout << "lnexpected OORBA exception: " << e << endl;

75

Chapter 3 | First Application

76

exit_status = 1;
}
/] Delete the servants.
/1
del ete the_Buil ding;

/1 Destroy the CRB and recl ai mresources.
Il

try
{
gl obal _or b->destroy();
}
catch (...)
{
/1 Do not hi ng.
}

return exit_status;

Defining Interfaces

The CORBA Interface Definition Language (IDL) is used to
describe interfaces of objects in an enterprise application.
An object’s interface describes that object to potential

clients—its attributes and operations, and their signatures.

An IDL-defined object can be implemented in any language that IDL maps to,
such as C++, Java, and COBOL. By encapsulating object interfaces within a
common language, IDL facilitates interaction between objects regardless of
their actual implementation. Writing object interfaces in IDL is therefore
central to achieving the CORBA goal of interoperability between different
languages and platforms.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, and Smalltalk. Each IDL mapping specifies
how an IDL interface corresponds to a language-specific implementation.
Orbix's IDL compiler uses these mappings to convert IDL definitions to
language-specific definitions that conform to the semantics of that language.

This chapter describes IDL semantics and uses. For mapping information,
refer to language-specific mappings in the Object Management Group's latest
CORBA specification.

Modules and Name Scoping

You create an application’s IDL definitions within one or more IDL modules.
Each module provides a naming context for the IDL definitions within it.

Modules and interfaces form naming scopes, so identifiers defined inside an
interface need to be unique only within that interface. To resolve a name, the
IDL compiler conducts its search among the following scopes, in this order:

1. The current interface
2. Base interfaces of the current interface (if any)

77

Chapter 4 | Defining Interfaces

3. The scopes that enclose the current interface

In the following example, two interfaces, Bank and Account , are defined
within module BankDeno:

nodul e BankDerno

}{nterface Bank {
/...
b
i nterface Account {
/...
b
b

Within the same module, interfaces can reference each other by name alone.
If an interface is referenced from outside its module, its nhame must be fully
scoped with the following syntax:

nodul e- nare: : i nt er f ace- nane

For example, the fully scoped names of interfaces Bank and Account are
BankDeno: : Bank and BankDeno: : Account , respectively.

Nesting Restrictions

78

A module cannot be nested inside a module of the same name. Likewise, you
cannot directly nest an interface inside a module of the same name. To avoid
name ambiguity, you can provide an intervening name scope as follows:

nodul e A

{

nodul e B
{
interface A {
/...

Interfaces

Interfaces

Interfaces are the fundamental abstraction mechanism of CORBA. An
interface defines a type of object, including the operations that the object
supports in a distributed enterprise application.

An IDL interface generally describes an object’s behavior through operations
and attributes:

® Qperations of an interface give clients access to an object’s behavior.
When a client invokes an operation on an object, it sends a message to
that object. The ORB transparently dispatches the call to the object,
whether it is in the same address space as the client, in another address
space on the same machine, or in an address space on a remote
machine.

* An IDL attribute is short-hand for a pair of operations that get and,
optionally, set values in an object.

For example, the Account interface in module BankDeno describes the objects
that implement bank accounts:

nodul e BankDeno

{
typedef float CashAmount; // Type for representing cash

typedef string Accountld; // Type for representing account ids
/...
interface Account {

readonly attribute Accountld account_id;

readonly attribute CashAnount bal ance;

voi d
wi t hdraw(i n CashArmount arount)
rai ses (InsufficientFunds);

voi d
deposi t (i n CashAmount anount);
b

b
This interface declares two readonly attributes, Account | d and bal ance,
which are defined as typedefs of string and fl oat, respectively. The
interface also defines two operations that a client can invoke on this object,
wi t hdraw() and deposit().

79

Chapter 4 | Defining Interfaces

Because an interface does not expose an object’s implementation, all
members are public. A client can access variables in an object’s
implementations only through an interface’s operations or attributes.

While every CORBA object has exactly one interface, the same interface can
be shared by many CORBA objects in a system. CORBA object references
specify CORBA objects—that is, interface instances. Each reference denotes
exactly one object, which provides the only means by which that object can
be accessed for operation invocations.

Interface Contents

Operations

80

An IDL interface definition typically has the following components:

® Qperation definitions
® Attribute definitions

* Exception definitions
® Type definitions

® Constant definitions

Of these, operations and attributes must be defined within the scope of an
interface; all other components can be defined at a higher scope.

IDL operations define the signatures of an object’s function, which client
invocations on that object must use. The signature of an IDL operation is
generally composed of three components:

® Return value data type
® Parameters and their direction
® Exception clause

A operation’s return value and parameters can use any data types that IDL
supports (see “Abstract Interfaces” on page 91).

For example, the Account interface defines two operations, wi t hdraw() and
deposi t () ; it also defines the exception | nsuf fi ci ent Funds:

nodul e BankDerno
{

Interfaces

typedef float CashAmount; // Type for representing cash
/...
interface Account {

exception I nsufficientFunds {};

voi d
wi t hdraw(i n CashAmount arount)
rai ses (InsufficientFunds);

voi d
deposi t (i n CashAmount anount);
h
b
On each invocation, both operations expect the client to supply an argument
for parameter anount, and return voi d. Invocations on wi t hdraw() can also
raise the exception I nsuf fi ci ent Funds, if necessary.

Parameter Direction

Each parameter specifies the direction in which its arguments are passed
between client and object. Parameter passing modes clarify operation
definitions and allow the IDL compiler to map operations accurately to a
target programming language. At runtime, Orbix uses parameter passing
modes to determine in which direction or directions it must marshal a
parameter.

A parameter can take one of three passing mode qualifiers:
in: The parameter is initialized only by the client and is passed to the object.
out: The parameter is initialized only by the object and returned to the client.

inout: The parameter is initialized by the client and passed to the server; the
server can modify the value before returning it to the client.

In general, you should avoid using i nout parameters. Because an i nout
parameter automatically overwrites its initial value with a new value, its
usage assumes that the caller has no use for the parameter’s original value.
Thus, the caller must make a copy of the parameter in order to retain that
value. By using two parameters, i n and out , the caller can decide for itself
when to discard the parameter.

81

Chapter 4 | Defining Interfaces

Attributes

82

One-way Operations

By default, IDL operations calls are synchronous—that is, a client invokes an
operation on an object and blocks until the invoked operation returns. If an
operation definition begins with the keyword oneway, a client that calls the
operation remains unblocked while the object processes the call.

Three constraints apply to a one-way operation:

® The return value must be set to voi d.
o Directions of all parameters must be set to i n.
o No rai ses clause is allowed.

For example, interface Account might contain a one-way operation that sends
a notice to an Account object:

nmodul e BankDeno {
/...
i nterface Account {
oneway void notice(in string text);
/...
b
b
Orbix cannot guarantee the success of a one-way operation call. Because
one-way operations do not support return data to the client, the client cannot
ascertain the outcome of its invocation. Orbix only indicates failure of a
one-way operation if the call fails before it exits the client’s address space; in
this case, Orbix raises a system exception.

A client can also issue non-blocking, or asynchronous, invocations. For more
information, see Chapter 12 on page 267.

An interface’s attributes correspond to the variables that an object
implements. Attributes indicate which variables in an object are accessible to
clients.

Unqualified attributes map to a pair of get and set functions in the
implementation language, which let client applications read and write
attribute values. An attribute that is qualified with the keyword r eadonl y
maps only to a get function.

Interfaces

Exceptions

For example, the Account interface defines two r eadonl y attributes,
Account | d and bal ance. These attributes represent information about the
account that only the object implementation can set; clients are limited to
read-only access.

IDL operations can raise one or more CORBA-defined system exceptions. You
can also define your own exceptions and explicitly specify these in an IDL
operation. An IDL exception is a data structure that can contain one or more
member fields, formatted as follows:

exception exception-nane {

[menber;]. ..
b
After you define an exception, you can specify it through a rai ses clause in
any operation that is defined within the same scope. A rai ses clause can
contain multiple comma-delimited exceptions:

return-val operation-name([parans-list])
rai ses(exception-nane[, exception-nane]);

Exceptions that are defined at module scope are accessible to all operations
within that module; exceptions that are defined at interface scope are
accessible only to operations within that interface.

For example, interface Account defines the exception I nsuf fi ci ent Funds
with a single member of data type stri ng. This exception is available to any
operation within the interface. The following IDL defines the wi t hdr aw()
operation to raise this exception when the withdrawal fails:

nmodul e BankDeno
{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception InsufficientFunds {};

voi d

wi thdraw(i n CashAnount anount)
rai ses (InsufficientFunds);
/...

83

Chapter 4 | Defining Interfaces

b
h
For more information about exception handling, see Chapter 13 on
page 277.

Empty Interfaces

IDL allows you to define empty interfaces. This can be useful when you wish
to model an abstract base interface that ties together a number of concrete
derived interfaces. For example, the CORBA Por t abl eSer ver module defines
the abstract Ser vant Manager interface, which serves to join the interfaces for
two servant manager types, servant activator and servant locator:

nodul e Port abl eSer ver

{
i nterface Servant Manager {};
i nterface Servant Activator : Servant Manager {
/...
b
i nterface ServantLocator : Servant Manager {
/...
b
h

Inheritance of IDL Interfaces

84

An IDL interface can inherit from one or more interfaces. All elements of an
inherited, or base interface, are available to the derived interface. An interface
specifies the base interfaces from which it inherits as follows:

interface newinterface : base-interface[, base-interface]...
{...}

For example, the following interfaces, Checki ngAccount and

Savi ngsAccount , inherit from interface Account and implicitly include all of
its elements:

nodul e BankDeno{
typedef float CashAmount; // Type for representing cash

Interfaces

interface Account {
...

}

i nterface Checki ngAccount : Account {
readonly attribute CashAnount overdraftLimt;
bool ean or der CheckBook () ;

}

interface SavingsAccount : Account {
float cal culatelnterest ();

h
b
An object that implements Checki ngAccount can accept invocations on any
of its own attributes and operations and on any of the elements of interface
Account . However, the actual implementation of elements in a
Checki ngAccount object can differ from the implementation of corresponding
elements in an Account object. IDL inheritance only ensures
type-compatibility of operations and attributes between base and derived
interfaces.

Multiple Inheritance

The following IDL definition expands module BankDeno to include interface
Prem umAccount , which inherits from two interfaces, Checki ngAccount and
Savi ngsAccount :

nmodul e BankDeno {
interface Account {
1. ..

}

i nterface Checki ngAccount : Account {
/...

s

interface SavingsAccount : Account {
/...

}

interface Prenm umAccount :
Checki ngAccount, Savi ngsAccount {

85

Chapter 4 | Defining Interfaces

86

/...
}s
}s

Figure 16 shows the inheritance hierarchy for this interface.

| Account |

Checki ngAccount Savi ngsAccount

| Prem unAccount |

Figure 16: Multiple inheritance of IDL interfaces

Multiple inheritance can lead to name ambiguity among elements in the base
interfaces. The following constraints apply:

* Names of operations and attributes must be unique across all base
interfaces.

* If the base interfaces define constants, types, or exceptions of the same
name, references to those elements must be fully scoped.

Inheritance of the Object Interface

All user-defined interfaces implicitly inherit the predefined interface Qoj ect .
Thus, all (bj ect operations can be invoked on any user-defined interface.
You can also use (hj ect as an attribute or parameter type to indicate that
any interface type is valid for the attribute or parameter. For example, the
following operation get AnyQbj ect () serves as an all-purpose object locator:

Interfaces

i nterface bjectlLocator {
voi d get AnyChj ect (out Chject obj);
b

Note: It is illegal IDL syntax to inherit interface (oj ect explicitly.

Inheritance Redefinition

A derived interface can modify the definitions of constants, types, and
exceptions that it inherits from a base interface. All other components that
are inherited from a base interface cannot be changed. In the following
example, interface Checki ngAccount modifies the definition of exception

I nsuf fi ci ent Funds, which it inherits from Account :

nodul e BankDeno

{
typedef float CashAmount; // Type for representing cash
/...
interface Account {
exception I nsufficientFunds {};
...
I8
i nterface Checki ngAccount : Account {
exception InsufficientFunds {
CashAmount overdraftLinit;
h
1
/1.
b

Note: While a derived interface definition cannot override base operations or
attributes, operation overloading is permitted in interface implementations for
those languages such as C++ that support it.

87

Chapter 4 | Defining Interfaces

Forward Declaration of IDL Interfaces

An IDL interface must be declared before another interface can reference it. If
two interfaces reference each other, the module must contain a forward
declaration for one of them; otherwise, the IDL compiler reports an error. A
forward declaration only declares the interface’s name; the interface’s actual
definition is deferred until later in the module.

For example, IDL interface Bank defines two operations that return references
to Account objects—create_account () and find_account (). Because
interface Bank precedes the definition of interface Account, Account is
forward-declared as follows:

nodul e BankDerno

{
typedef float CashAnmount; // Type for representing cash
typedef string Accountld; // Type for representing account ids
/1 Forward decl aration of Account
i nterface Account;
/1 Bank interface...used to create Accounts
i nterface Bank {
excepti on Account Al readyExi sts { Accountld account_id; };
excepti on Account Not Found { Accountld account _id; };
Account
find_account (in Accountld account _id)
rai ses(Account Not Found) ;
Account
creat e_account (
in Accountld account _id,
in CashAmount initial_bal ance
) raises (AccountAl readyExists);
b
/1 Account interface...used to deposit, wthdraw, and query
/1 availabl e funds.
i nterface Account {
/...
b
h

88

Interfaces

Local Interfaces

An interface declaration that contains the keyword | ocal defines a local
interface. An interface declaration that omits this keyword can be referred to
as an unconstrained interface, to distinguish it from local interfaces. An object
that implements a local interface is a local object.

Local interfaces differ from unconstrained interfaces in the following ways:

A local interface can inherit from any interface, whether local or
unconstrained. However, an unconstrained interface cannot inherit from
a local interface.

Any non-interface type that uses a local interface is regarded as a local
type. For example, a struct that contains a local interface member is
regarded as a local struct, and is subject to the same localization
constraints as a local interface.

Local types can be declared as parameters, attributes, return types, or
exceptions only in a local interface, or as state members of a valuetype.

Local types cannot be marshaled, and references to local objects cannot
be converted to strings through CRB: : obj ect _to_string(). Attempts to
do so throw a GCRBA: : MARSHAL exception.

Any operation that expects a reference to a remote object cannot be
invoked on a local object. For example, you cannot invoke any DI|
operations or asynchronous methods on a local object; similarly, you
cannot invoke pseudo-object operations such asis_a() or

val i dat e_connecti on() . Attempts to do so throw a OCRBA: :

NO | MPLEMENT exception.

The ORB does not mediate any invocation on a local object. Thus, local
interface implementations are responsible for providing the parameter
copy semantics that a client expects.

Instances of local objects that the OMG defines as supplied by ORB
products are exposed either directly or indirectly through CRB: :

resol ve_initial _references().

Local interfaces are implemented by OORBA: : Local (bj ect to provide
implementations of Object pseudo operations, and other ORB-specific
support mechanisms that apply. Because object implementations are
language-specific, the Local Qbj ect type is only defined by each language

mapping.

89

Chapter 4 | Defining Interfaces

The Local (bj ect type implements the following Object pseudo-operations to
throw an exception of NO | MPLEMENT:

is_a()

get _interface()

get _donai n_nanager s()
get _policy()
get_client_policy()
set _policy_overrides()
get _policy_overrides()
val i dat e_connecti on()

QOORBA: : Local bj ect also implements the pseudo-operations shown in
Table 2:

Table 2: CORBA::LocalObject pseudo-operation returns

Operation Always returns:

non_exi stent () False

hash() A hash value that is consistent with the object’s
lifetime

i s_equival ent () True if the references refer to the same Local (bj ect
implementation.

Valuetypes

90

Valuetypes enable programs to pass objects by value across a distributed
system. This type is especially useful for encapsulating lightweight data such
as linked lists, graphs, and dates.

Valuetypes can be seen as a cross between data types such as | ong and
string that can be passed by value over the wire as arguments to remote
invocations, and objects, which can only be passed by reference. When a
program supplies an object reference, the object remains in its original
location; subsequent invocations on that object from other address spaces
move across the network, rather than the object moving to the site of each
request.

Abstract Interfaces

Abstract

Like an interface, a valuetype supports both operations and inheritance from
other valuetypes; it also can have data members. When a valuetype is passed
as an argument to a remote operation, the receiving address space creates a
copy it of it. The copied valuetype exists independently of the original;
operations that are invoked on one have no effect on the other.

Because a valuetype is always passed by value, its operations can only be
invoked locally. Unlike invocations on objects, valuetype invocations are
never passed over the wire to a remote valuetype.

Valuetype implementations necessarily vary, depending on the languages
used on sending and receiving ends of the transmission, and their respective
abilities to marshal and demarshal the valuetype’s operations. A receiving
process that is written in C++ must provide a class that implements
valuetype operations and a factory to create instances of that class. These
classes must be either compiled into the application, or made available
through a shared library. Conversely, Java applications can marshal enough
information on the sender, so the receiver can download the bytecodes for
the valuetype operation implementations.

Interfaces

An application can use abstract interfaces to determine at runtime whether
an object is passed by reference or by value. For example, the following IDL
definitions specify that operation Exanpl e: : di spl ay() accepts any derivation
of abstract interface Descri babl e:

abstract interface Describable {
string get_description();

}

i nterface Exanpl e {
voi d di spl ay(in Describabl e some(hj ect);

b
Given these definitions, you can define two derivations of abstract interface
Descri babl e, valuetype Qurrency and interface Account :

i nterface Account : Describable {
/1 body of Account definition not shown

}

91

Chapter 4 | Defining Interfaces

val uetype Qurrency supports Describabl e {
/1 body of Qurrency definition not shown

h
Because the parameter for di spl ay() is defined as a Descri babl e type,

invocations on this operation can supply either Account objects or Qurrency
valuetypes.

All abstract interfaces implicitly inherit from native type CORBA: :
Abst r act Base, and map to C++ abstract base classes. Abstract interfaces
have several characteristics that differentiate them from interfaces:

®* The GIOP encoding of an abstract interface contains a boolean
discriminator to indicate whether the adjoining data is an IOR (TRUE) or
a value (FALSE). The demarshalling code can thus determine whether
the argument passed to it is an object reference or a value.

® Unlike interfaces, abstract interfaces do not inherit from QORBA: : (bj ect ,
in order to allow support for valuetypes. If the runtime argument
supplied to an abstract interface type can be narrowed to an object
reference type, then OCRBA: : (hj ect operations can be invoked on it.

* Because abstract interfaces can be derived by object references or by
value types, copy semantics cannot be guaranteed for value types that
are supplied as arguments to its operations.

® Abstract interfaces can only inherit from other abstract interfaces.

IDL Data Types

In addition to IDL module, interface, valuetype, and exception types, IDL
data types can be grouped into the following categories:

® Built-in types such as short, | ong, and f | oat

® Extended built-in types such as | ong | ong and wst ri ng

® Complex types such as enumand struct, and string

* Pseudo objects

92

IDL Data Types

Built-in Types

Table 3 lists built-in IDL types.

Table 3: Built-in IDL types

Data type Size Range of values

short > 16 bits 2152191

unsi gned short > 16 bits 0..216.1

l ong > 32 bits 231 2311

unsi gned | ong > 32 bits 0...232.1

fl oat > 32 bits IEEE single-precision floating point numbers
doubl e > 64 bits IEEE double-precision floating point numbers
char >8 bits ISO Latin-1

string variable length ISO Latin-1, except NUL

st ri ng<bound>
bool ean
oct et

any

variable length
unspecified
>8 bits

variable length

ISO Latin-1, except NUL
TRUE or FALSE
0x0 to Oxf f

Universal container type

Integer Types

IDL supports short and | ong integer types, both signed and unsigned. IDL
guarantees the range of these types. For example, an unsigned short can hold
values between 0-65535. Thus, an unsigned short value always maps to a
native type that has at least 16 bits. If the platform does not provide a native
16-bit type, the next larger integer type is used.

93

Chapter 4 | Defining Interfaces

94

Floating Point Types

Types f1 oat and doubl e follow IEEE specifications for single- and
double-precision floating point values, and on most platforms map to native
IEEE floating point types.

char

Type char can hold any value from the ISO Latin-1 character set. Code
positions 0-127 are identical to ASCII. Code positions 128-255 are reserved
for special characters in various European languages, such as accented
vowels.

String Types

Type string can hold any character from the ISO Latin-1 character set
except NUL. IDL prohibits embedded NUL characters in strings. Unbounded
string lengths are generally constrained only by memory limitations. A
bounded string, such as st ri ng<10>, can hold only the number of characters
specified by the bounds, excluding the terminating NUL character. Thus, a

st ri ng<6> can contain the six-character string cheese.

The declaration statement can optionally specify the string’s maximum
length, thereby determining whether the string is bounded or unbounded:

string[<l ength>] nane

For example, the following code declares data type Short Stri ng, which is a
bounded string whose maximum length is 10 characters:

typedef string<l0> ShortString;
attribute ShortString shortName; // max length is 10 chars

octet

Cct et types are guaranteed not to undergo any conversions in transit. This
lets you safely transmit binary data between different address spaces. Avoid
using type char for binary data, inasmuch as characters might be subject to
translation during transmission. For example, if client that uses ASCII sends a
string to a server that uses EBCDIC, the sender and receiver are liable to have
different binary values for the string’s characters.

IDL Data Types

any

Type any allows specification of values that express any IDL type, which is
determined at runtime. An any logically contains a TypeCode and a value that
is described by the TypeCode. For more information about the any data type,
see Chapter 15 on page 303.

Extended Built-in Types

Table 4 lists extended built-in IDL types.

Table 4: Extended built-in IDL types

Data type Size Range of values

I ong | ong > 64 bits 263 20631

unsigned long long = 64 bits 0...-264.1

| ong doubl e >79 bits IEEE double-extended floating point number, with
an exponent of at least 15 bits in length and
signed fraction of at least 64 bits. | ong doubl e
type is currently not supported on Windows NT.

wchar Unspecified Arbitrary codesets

wstring Variable length Arbitrary codesets

fixed Unspecified >31 significant digits

long long

The 64-bit integer types | ong | ong and unsi gned | ong | ong support
numbers that are too large for 32-bit integers. Platform support varies. If you
compile IDL that contains one of these types on a platform that does not
support it, the compiler issues an error.

long double

Like 64-bit integer types, platform support varies for | ong doubl e, so usage
can yield IDL compiler errors.

95

Chapter 4 | Defining Interfaces

96

wchar

Type wchar encodes wide characters from any character set. The size of a
wchar is platform-dependent. Because Orbix currently does not support
character set negotiation, use this type only for applications that are
distributed across the same platform.

wstring

Type wst ri ng is the wide-character equivalent of type stri ng (see page 94).
Like st ri ng-types, wst ri ng types can be unbounded or bounded. Wide
strings can contain any character except NUL.

fixed

Type fi xed provides fixed-point arithmetic values with up to 31 significant
digits. You specify a fi xed type with the following format:

typedef fixed< digit-size, scale > name

di gi t - si ze specifies the number’s length in digits. The maximum value for
digit-sizeis 31 and must be greater than scal e. A fixed type can hold any
value up to the maximum value of a doubl e.

If scal e is a positive integer, it specifies where to place the decimal point
relative to the rightmost digit. For example the following code declares fixed
data type CashAnount to have a digit size of 8 and a scale of 2:

typedef fixed<10.2> CashAmount;

Given this typedef, any variable of type CashAnount can contain values of up
to (+/-)99999999.99.

If scal e is negative, the decimal point moves to the right scal e digits,
thereby adding trailing zeros to the fixed data type's value. For example, the
following code declares fixed data type bi gNumto have a digit size of 3 and a
scale of - 4:

typedef fixed <3, -4> bi ghum
bi gNum nyBi gNum

If nyBi gNumhas a value of 123, its numeric value resolves to 1230000.
Definitions of this sort let you store numbers with trailing zeros efficiently.

IDL Data Types

Constant fixed types can also be declared in IDL, where di gi t - si ze and
scal e are automatically calculated from the constant value. For example:

nmodule Grcle {
const fixed pi = 3.142857;
H
This yields a fixed type with a digit size of 7, and a scale of 6.

Unlike IEEEE floating-point values, type fi xed is not subject to
representational errors. IEEE floating point values are liable to inaccurately
represent decimal fractions unless the value is a fractional power of 2. For
example, the decimal value 0.1 cannot be represented exactly in IEEE
format. Over a series of computations with floating-point values, the
cumulative effect of this imprecision can eventually yield inaccurate results.

Type fi xed is especially useful in calculations that cannot tolerate any
imprecision, such as computations of monetary values.

Complex Data Types

IDL provides the following complex data types:

® enum
® struct
® union

®* multi-dimensional fixed-size arrays
® sequence

enum

An enum (enumerated) type lets you assign identifiers to the members of a
set of values. For example, you can modify the BankDeno IDL with enum type
bal anceQurrency:

nodul e BankDeno {
enum Qurrency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAnount bal ance;
readonly attribute Qurrency bal anceCQurrency;
/...

}

97

Chapter 4 | Defining Interfaces

98

b
In this example, attribute bal anceQurrency in interface Account can take any
one of the values pound, dol | ar, yen, or franc.

The actual ordinal values of a enumtype vary according to the actual language
implementation. The CORBA specification only guarantees that the ordinal
values of enumerated types monotonically increase from left to right. Thus, in
the previous example, dol | ar is greater than pound, yen is greater than

dol I ar, and so on. All enumerators are mapped to a 32-bit type.

struct

A struct data type lets you package a set of named members of various
types. In the following example, struct Qust oner Det ai | s has several
members. Operation get Qust orer Det ai | s() returns a struct of type
Qust oner Det ai | s that contains customer data:

nmodul e BankDeno{
struct CQustomerDetails {
string custlD
string | nane;
string fnane;
short age;
/...

1

interface Bank {
Qust onerDetai | s get Qust oner Det ai | s
(in string custlD);
[l...
b
h
A struct must include at least one member. Because a struct provides a
naming scope, member names must be unique only within the enclosing
structure.

IDL Data Types

union

A union data type lets you define a structure that can contain only one of
several alternative members at any given time. A union saves space in
memory, as the amount of storage required for a union is the amount
necessary to store its largest member.

You declare a union type with the following syntax:

union nane switch (discrimnator) {

case label 1 : el enent-spec;

case |l abel 2 : el enent -spec;

[...]
case labeln : el enent-spec;

[default : el ement-spec;]
}s
All IDL unions are discriminated. A discriminated union associates a constant
expression (I abel 1. . I abel n) with each member. The discriminator’s value
determines which of the members is active and stores the union’s value.

For example, the following code defines the IDL union Dat e, which is
discriminated by an enumvalue:

enum dat eSt or age
{ nuneric, strMDDYY, strDDMWY };

struct DateStructure {
short Day;
short Month;
short Year;

}s

uni on Date switch (dateStorage) {

case nurreric: |ong digital Format;

case str MDDYY:

case strDDMWY: string stringFormat;

defaul t: DateStructure struct Format;
b
Given this definition, if Dat e’s discriminator value is nuneri c, then
di gi t al For mat member is active; if the discriminator’s value is st r MDDYY
or strDDMWY, then member st ringFor mat is active; otherwise, the default
member st ruct For mat is active.

99

Chapter 4 | Defining Interfaces

The following rules apply to uni on types:

® A union’s discriminator can be i nt eger, char, bool ean or enum or an
alias of one of these types; all case label expressions must be
compatible with this type.

® Because a uni on provides a haming scope, member hames must be
unigue only within the enclosing union.

® Each uni on contains a pair of values: the discriminator value and the
active member.

® |DL unions allow multiple case labels for a single member. In the
previous example, member st ri ngFor mat is active when the
discriminator is either st r MMDDYY or st r DDVMWYY.

® |DL unions can optionally contain a def aul t case label. The
corresponding member is active if the discriminator value does not
correspond to any other label.

Arrays

IDL supports multi-dimensional fixed-size arrays of any IDL data type, with
the following syntax:

[typedef] el enent-type array-nanme [di nension-spec]...

di nensi on- spec must be a non-zero positive constant integer expression. IDL
does not allow open arrays. However, you can achieve equivalent
functionality with sequence types (see page 101).

For example, the following code fragment defines a two-dimensional array of
bank accounts within a portfolio:

typedef Account portfoli o] MAX_ACCT_TYPES] [MAX_ACCTS]

An array must be named by a t ypedef declaration (see “Defining Data
Types” on page 102) in order to be used as a parameter, an attribute, or a
return value. You can omit a t ypedef declaration only for an array that is
declared within a structure definition.

Because of differences between implementation languages, IDL does not
specify the origin at which arrays are indexed. For example C and C+ + array
indexes always start at O, while Pascal uses an origin of 1. Consequently,
clients and servers cannot portably exchange array indexes unless they both

100

IDL Data Types

agree on the origin of array indexes and make adjustments as appropriate for
their respective implementation languages. Usually, it is easier to exchange
the array element itself instead of its index.

sequence
IDL supports sequences of any IDL data type with the following syntax:
[typedef] sequence < el enent-type[, nax-el ements] > sequence-hane

An IDL sequence is similar to a one-dimensional array of elements; however,
its length varies according to its actual number of elements, so it uses
memory more efficiently.

A sequence must be named by a t ypedef declaration (see “Defining Data
Types” on page 102) in order to be used as a parameter, an attribute, or a
return value. You can omit a t ypedef declaration only for a sequence that is
declared within a structure definition.

A sequence’s element type can be of any type, including another sequence
type. This feature is often used to model trees.

The maximum length of a sequence can be fixed (bounded) or unfixed
(unbounded):

* Unbounded sequences can hold any number of elements, up to the
memory limits of your platform.

* Bounded sequences can hold any number of elements, up to the limit
specified by the bound.

The following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

struct LimtedAccounts {
string bankSort Code<10>;
sequence<Account, 50> accounts; // nmax sequence length is 50

}s

struct UnlimtedAccounts {
string bankSort Code<10>;
sequence<Account > accounts; // no nax sequence |ength

}s

101

Chapter 4 | Defining Interfaces

Pseudo Object Types

Defining

102

CORBA defines a set of pseudo object types that ORB implementations use
when mapping IDL to a programming language. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping
for interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

QCRBA: : NanedVal ue

QCRBA: : TypeCode

To use these types in an IDL specification, include the file orb. i dl in the IDL
file as follows:

#i ncl ude <orb.idl>
/...

This statement tells the IDL compiler to allow types NanedVal ue and
TypeCode.

Data Types

With t ypedef , you can define more meaningful or simpler names for existing
data types, whether IDL-defined or user-defined. The following code defines
t ypedef identifier St andar dAccount , so it can act as an alias for type
Account in later IDL definitions:

nmodul e BankDeno {

i nterface Account {
/...

}

typedef Account StandardAccount;
b

Constants

Constants

IDL lets you define constants of all built-in types except type any. To define a
constant’s value, you can either use another constant (or constant
expression) or a literal. You can use a constant wherever a literal is
permitted.

Integer Constants

IDL accepts integer literals in decimal, octal, or hexadecimal:

- 99;

0123;
0x123;
+0xaB; // Hexadecinal ab, decinal 171

const
const
const
const

short
| ong

long long I3
long long 14

11
12

I
I

Cctal 123, decinmal 83
Hexadeci mal 123, deci mal 291

Both unary plus and unary minus are legal.

Floating-Point Constants

Floating-point literals use the same syntax as C++:

const

const
const
const
const
const

fl oat fl
doubl e f2
I ong double f3
doubl e fa
doubl e f5
doubl e fé

3. le-

-3. 14,

.1

1.
.1E12
2E12

Character and String Constants

9;

/!l Integer part, fraction part,
/1 exponent

// Integer part and fraction part
/l Fraction part only

/1l Integer part only

/1l Fraction part and exponent

/1l Integer part and exponent

Character constants use the same escape sequences as C+ +:

const
const
const
const
const
const
const

char
char
char
char
char
char
char

Q8KRRBAA

c

"\ 007" ;
"\x41';
\n' -

I\tl.
I\vl.
I\bl.

I
I
I
I
I
I
I

the character c

ASC | BEL, octal escape
ASC | A hex escape
new i ne

tab

vertical tab

backspace

103

Chapter 4 | Defining Interfaces

const char G = '"\r'; /| carriage return

const char C = "\f'; /1l formfeed

const char Cl0 = '\a'; /1l alert

const char Cl1 = "\\'; /1 backsl ash

const char Cl2 = '\ ?"; /1 question nmark

const char C13 ="\""; /1 single quote

/1l String constants support the sane escape sequences as C++
const string S1L = "Quote: \""; /1l string with double quote
const string S2 = "hello world"; /1 sinple string

const string S3 = "hello" " world"; // concatenate

const string 4 = "\xA' "B"; /! two characters

/1 ("\xA and 'B),
// not the single character '\xAB

Wide Character and String Constants

Wide character and string constants use C++ syntax. Use Universal
character codes to represent arbitrary characters. For example:

const wchar C=LX;
const wstring QGREETING = L"Hello";
const wchar OMVEGA = L'\ u03a9';

const wstring OMEGA STR = L"Qrega: \u3A9";

Note: [DL files themselves always use the ISO Latin-1 code set, they cannot
use Unicode or other extended character sets.

Boolean Constants

Boolean constants use the keywords FALSE and TRUE. Their use is
unnecessary, inasmuch as they create needless aliases:

/] There is no need to define bool ean constants:
const QOONTRAD CTlI ON = FALSE; /1 Pointless and conf usi ng
const TAUTALOGY = TRUE /1 Pointless and conf usi ng

Octet Constants

Octet constants are positive integers in the range 0-255.

104

Constants

const octet QL
const octet @

23;
Oxf 0;

Note: Octet constants were added with CORBA 2.3, so ORBs that are not
compliant with this specification might not support them.

Fixed-Point Constants

For fixed-point constants, you do not explicitly specify the digits and scale.
Instead, they are inferred from the initializer. The initializer must end in d or
D. For example:

[/ Fixed point constants take digits and scale fromthe
[l initialiser:

const fixed vall = 3D /1 fixed<l, 0>
const fixed val 2 = 03. 14d; /1 fixed<3, 2>
const fixed val 3 = -03000.00D, // fixed<4, 0>
const fixed val4 = 0.03D, /1 fixed<3, 2>

The type of a fixed-point constant is determined after removing leading and
trailing zeros. The remaining digits are counted to determine the digits and
scale. The decimal point is optional.

Note: Currently, there is no way to control the scale of a constant if it ends
in trailing zeros.

Enumeration Constants

Enumeration constants must be initialized with the scoped or unscoped
name of an enumerator that is a member of the type of the enumeration. For
example:

enum Size { small, medium large }

const Size DFL_S|I ZE = nedi um
const Size MAX SIZE = ::large;

105

Chapter 4 | Defining Interfaces

Note: Enumeration constants were added with CORBA 2.3, so ORBs that
are not compliant with this specification might not support them.

Constant Expressions

IDL provides a number of arithmetic and bitwise operators.

Arithmetic Operators

106

The arithmetic operators have the usual meaning and apply to integral,
floating-point, and fixed-point types (except for % which requires integral
operands). However, these operators do not support mixed-mode arithmetic;
you cannot, for example, add an integral value to a floating-point value. The
following code contains several examples:

/1 You can use arithmetic expressions to define constants.
const long MN = -10;

const | ong MAX = 30;

const long DFLT = (M N + MAX) / 2;

/] Can't use 2 here
const double TWCE Pl = 3.1415926 * 2.0;

/1 5% di scount
const fixed D SCONT = 0. 05D
const fixed PR CE = 99. 99D,

[/l Can't use 1 here
const fixed NET_PRICE = PRICE * (1.0D - DI SCONT);

Expressions are evaluated using the type promotion rules of C++. The result
is coerced back into the target type. The behavior for overflow is undefined,

so do not rely on it. Fixed-point expressions are evaluated internally with 62
bits of precision, and results are truncated to 31 digits.

Constant Expressions

Bitwise Operators

The bitwise operators only apply to integral types. The right-hand operand
must be in the range 0-63. Note that the right-shift operator >> is
guaranteed to inject zeros on the left, whether the left-hand operand is signed
or unsigned:

/1 You can use bitw se operators to define constants.
const long ALL_QONES = -1; [l Oxffffffff
const |ong LHWNMASK = ALL_QONES << 16; /1 Oxffff0000
const | ong RAWNMNASK = ALL_QONES >> 16; /1 0x0000ffff

IDL guarantees two’s complement binary representation of values.

Precedence

The precedence for operators follows the rules for C++. You can override the
default precedence by adding parentheses.

107

Chapter 4 | Defining Interfaces

108

Developing Applications with
Genies

The code generation toolkit is packaged with several genies
that can help your development effort get off to a fast start.

Two genies generate code that you can use immediately for application
development:

® cpp_poa_genie.tcl reads IDL code and generates C+ + source files
that you can compile into a working application.

cpp_poa_op.tcl generates the C+ + signatures of specified operations
and attributes and writes them to a file. You can use this genie on new
or changed interfaces, then update existing source code with the
generated signatures.

Starting Development Projects

The C++ genie cpp_poa_geni e. tcl creates a complete, working client and
server directly from your IDL interfaces. You can then add application logic to
the generated code. This can improve productivity in two ways:

The outlines of your application—class declarations and operation
signatures—are generated for you.

A working system is available immediately, which you can incrementally
modify and test. With the generated makefile, you can build and test

modifications right away, thereby eliminating much of the overhead that
is usually associated with getting a new project underway.

In a genie-generated application, the client invokes every operation and each
attribute’s get and set methods, and directs all display to standard output.
The server also writes all called operations to standard output.

109

Chapter 5 | Developing Applications with Genies

This client/server application achieves these goals:

* Demonstrates or tests an Orbix client/server application for a particular
interface or interfaces.
* Provides a starting point for your application.

® Shows the right way to initialize and pass parameters, and to manage
memory for various IDL data types.

Genie Syntax

cpp_poa_geni e. tcl uses the following syntax:
i dl gen cpp_poa_geni e.tcl conponent-spec [options] idl-file

You must specify an IDL file. You must also specify the application
components to generate, either all components at once, or individual
components, with one of the arguments in Table 5:

Table 5: Component specifier arguments to cpp_poa_genie.tcl

Component specifier Output

-all All components: server, servant, client,
and makefile (see page 111).

- servant Servant classes to implement the
selected interfaces (see page 114).

- server Server main program (see page 118)
-client Client main program (see page 121).
-nmakefile A makefile to compile server and client

applications (see page 122).

Each component specifier can take its own arguments. For more information
on these, refer to the discussion on each component later in this chapter.

110

Starting Development Projects

You can also supply one or more of the optional switches shown in Table 6:

Table 6: Optional switches to cpp_poa_genie.tc/

Option Description

- conpl et e/ -i nconpl et e Controls the completeness of the code
that is generated for the specified
components (see page 122).

-dir Specifies where to generate file output
(see page 126).

-incl ude Specifies to generate code for included

-interface-spec

-vl-s

files (see page 113).

Specifies to generate code only for the
specified interfaces (see page 112).

Controls the level of verbosity (see
page 126).

Specifying Application Components

The -all argument generates the files that implement all application

components: server, servant, client, and makefile. For example, the following
command generates all the files required for an application that is based on
bankdeno. i dl :

> idl gen cpp_poa_genie.tcl -all bankdeno.i dl

bankdeno. i dl :

i dl gen:
i dl gen:
i dl gen:
i dl gen:
i dl gen:
i dl gen:
i dl gen:
i dl gen:
i dl gen:
i dl gen:

creating
creating
creating
creating
creating
creating
creating
creating
creating
creating

BankDermo_Bankl npl . h
BankDeno_BanklI npl . cxx
BankDeno_Account | npl . h
BankDeno_Account | npl . cxx
Server. cxx

client.cxx

call _funcs. h

cal | _funcs. cxx
it_print_funcs.h
it_print_funcs. cxx

111

Chapter 5 | Developing Applications with Genies

idlgen: creating it_randomfuncs.h
idlgen: creating it_random funcs. cxx
i dl gen: creating Makefile

Alternatively, you can use cpp_poa_geni e. tcl to generate one or more
application components. For example, the following command specifies to
generate only those files that are required to implement a servant:

> idl gen cpp_poa_genie.tcl -servant bankdeno.idl

bankdeno. i dl :

i dl gen: creating BankDenmo_Bankl npl . h

i dl gen: creating BankDeno_Bankl npl . cxx

i dl gen: creating BankDenmo_Account | npl . h

i dl gen: creating BankDemo_Account | npl . cxx
idHgen: creating it_print_funcs.h

idl gen: creating it_print_funcs. cxx

idl gen: creating it_randomfuncs.h

idl gen: creating it_random funcs. cxx

By generating output for application components selectively, you can control
genie processing for each one. For example, the following commands specify
different - di r options, so that server and servant files are output to one
directory, and client files are output to another:

> i dl gen cpp_poa_genie.tcl -servant - server bankdeno.idl
-dir c:\app\server
> jdl gen cpp_poa_genie.tcl -client bankdeno.idl -dir c:
\app\client

Selecting Interfaces

112

By default, cpp_poa_geni e. tcl generates code for all interfaces in the
specified IDL file. You can specify to generate code for specific interfaces
within the file by supplying their fully scoped names. For example, the
following command specifies to generate code for the Bank interface in
bankdeno. i dl :

> i dl gen cpp_poa_genie.tcl -all BankDeno::Bank bankdeno.i dl

You can also use wildcard patterns to specify the interfaces to process. For
example, the following command generates code for all interfaces in module
BankDeno:

Starting Development Projects

> i dl gen cpp_poa_genie.tcl BankDeno::* bankdeno.idl

The following command generates code for all interfaces in foo. i dl with
names that begin with Foo or end with Bar .

> idlgen cpp_poa_genie.tcl foo.idl "Foo*" "*Bar"

Note: For interfaces defined inside modules, the wildcard is matched
against the fully scoped interface name, so Foo* matches FooMdul e: : Y but
not Bar Modul e: : Foo.

Pattern matching is performed according to the rules of the TCL stri ng
mat ch command, which is similar to Unix or Windows filename matching.
Table 7 contains some common wildcard patterns:

Table 7: Wildcard pattern matching to interface names

Wildcard pattern Matches...

* Any string

? Any single character
[xyz] X, Y, or z.

Including Files

By default, j ava_poa_geni e. tcl generates code only for the specified IDL
files. You can specify also to generate code for all #i ncl ude files by supplying
the -i ncl ude option. For example, the following command specifies to
generate code from bankdeno. i dl and any IDL files that are included in it:

> jidlgen cpp_poa_genie.tcl -all -include bankdeno.idl

The default for this option is set in the configuration file through
defaul t. cpp_poa_geni e. want _i ncl ude.

113

Chapter 5 | Developing Applications with Genies

Implementing Servants

114

The - servant option generates POA servant classes that implement IDL
interfaces. For example, this command generates a class header and
implementation code for each interface that appears in IDL file
bankdeno. i dl :

i dl gen cpp_poa_geni e.tcl -servant bankdeno.idl
The genie constructs the implementation class name from the scoped name
of the interface, replacing double colons (: :) with an underscore (_) and

adding a suffix—by default, | npl .. The default suffix is set in the
configuration file through defaul t. cpp. i npl _cl ass_suffi x.

For example, BankDeno: : Account is implemented by class
BankDeno_Account | npl . The generated implementation class contains these
components:

* Astatic _create() member method to create a servant.

* A member method to implement each IDL operation for the interface.

The -servant option can take one or more arguments, shown in Table 8,
that let you control how servant classes are generated:

Table 8: Arguments that control servant generation

Argument Purpose

-tie Choose the inheritance or tie (delegation) method
-notie for implementing servants.

-inherit Choose whether implementation classes follow the
-noi nheri t same inheritance hierarchy as the IDL interfaces

they implement.

Starting Development Projects

Table 8: Arguments that control servant generation

Argument Purpose

-defaul t _poa arg Determines the behavior of implicit activation,
which uses the default POA associated with a
given servant. def aul t _poa can take one of these
arguments:

® per_servant: Set the correct default POA for
each servant.

® exception: Throw an exception on all
attempts at implicit activation.

For more information, see page 237.

-ref count Choose whether or not servants are reference
- nor ef count counted.

The actual content and behavior of member methods is determined by the
- conpl et e or -i nconpl et e flag. For more information, see “Controlling Code
Completeness” on page 122.

-tie/-notie

A POA servant is either an instance of a class that inherits from a POA
skeleton, or an instance of a tie template class that delegates to a separate
implementation class. You can choose the desired approach by supplying
-tieor-notie options. The default for this option is set in the configuration
file through defaul t. cpp_poa_geni e. want _ti e.

With - not i e, the genie generates servants that inherit directly from POA
skeletons. For example:

cl ass BankDeno_Account I npl : public virtual PQA BankDeno:: Account
The _create() method constructs a servant as follows:

Il C++
PQA BankDeno: : Account *
BankDeno_Account | npl : : _creat e(Portabl eServer:: POA ptr the_poa)

{
}

return new BankDeno_Account | npl (t he_poa) ;

115

Chapter 5 | Developing Applications with Genies

116

With -ti e, the genie generates implementation classes that do not inherit
from POA skeletons. The following example uses a _cr eat e method to create
an implementation object (1), and a tie (2) that delegates to it:

Il C++
PQA BankDeno: : Account *
BankDeno_Account | npl : : _creat e(Portabl eServer:: POA ptr the_poa)
{
BankDeno_Account | npl * tied_object =
new BankDero_Account | npl () ;
PQA BankDeno: : Account* the tie =
new PQA BankDeno_Account _t i e<BankDeno_Account | npl >(
tied_object,
t he_poa
)s

return the_tie;

Note: create() is a useful genie convention that provides a consistent way
to create servants whether you use the tie approach or not. This helps
minimize the impact on your code if you change approaches during
development. You can also create servants and tie objects by calling the
constructors directly in your own code.

-inherit/-noinherit

IDL servant implementation classes typically have the same inheritance
hierarchy as the interfaces that they implement, but this is not required.

® -inherit generates implementation classes with the same inheritance
as the corresponding interfaces.

®* -noinherit generates implementation classes that do not inherit from
each other. Instead, each implementation class independently
implements all operations for its IDL interface, including operations that
are inherited from other IDL interfaces.

The default for this option is set in the configuration file through
def aul t. cpp_poa_geni e. want _i nherit.

Starting Development Projects

-default_poa

In the standard CORBA C++ mapping, each servant class provides a

_thi s() method, which generates an object reference and implicitly activates
that object with the servant. Implicit activation calls _def aul t _PQA() on the
same servant to determine the POA in which this object is activated. Unless
you specify otherwise, _defaul t_PQA() returns the root POA, which is
typically not the POA where you want to activate objects.

The code that cpp_poa_geni e. tcl generates always overrides

_defaul t_PQA() in a way that prevents implicit activation. Applications
generated by this genie can only activate objects explicitly. Two options are
available that determine how to override _def aul t _PQA():

® per_servant: (default) Servant constructors and generated _creat e()
methods takes a POA parameter. For each servant, _defaul t_PQA()
returns the POA specified when the servant was created.

® exception: _default_PQA() throws a CORBA : | NTERNAL system
exception. This option is useful in a group development environment, in
that it allows tests to easily catch any attempts at implicit activation.

For more information about explicit and implicit activation, see page 236.

-refcount/-norefcount

Multi-threaded servers need to reference-count their servants in order to
avoid destroying a servant on one thread that is still in use on another. The
POA specification provides the standard functions _add ref () and
_renove_ref () to support reference counting, but by default they do nothing.

®* -refcount generates servants that inherit from the standard class
Por t abl eSer ver : : Ref Count Ser vant Base, which enables reference
counting. For example:
cl ass BankDeno_Account | npl
: public virtual PQA BankDeno:: Account,
public virtual Portabl eServer:: Ref Count Servant Base
®* -norefcount specifies that servants do not inherit from
Ref Count Ser vant Base.

The -ref count option is automatically enabled if you use the -t hr eads
option (see page 119).

117

Chapter 5 | Developing Applications with Genies

The default for this option is set in the configuration file through
def aul t. cpp_poa_geni e. want _ref count .

Note: -refcount is invalid with -ti e. The genie issues a warning if you
combine these options. Tie templates as defined in the POA standard do not
support reference counting, and the genie cannot change their inheritance. It
is recommended that you do not use the tie approach for multi-threaded
servers.

Implementing the Server Mainline

118

The -server option generates a simple server mainline that activates and
exports some objects. For example, the following command generates a file
called ser ver . cxx that contains a nmai n program:

> idl gen cpp_poa_genie.tcl -server bankdeno.i dl
The server program performs the following steps:

1. Initializes the ORB and POA.

2. Installs a signal handler to shut down gracefully if the server is killed via
SIGTERM on Unix or a CTRL-C event on Windows.

3. For each interface:
+ Activates a CORBA object of that interface.

+ Exports a reference either to the naming service or to a file,
depending on whether you set the option - ns or - nons.

4. Catches any exceptions and print a message.

Starting Development Projects

The - server option can take one or more arguments, shown in Table 9, that
let you modify server behavior:

Table 9: Options affecting the server

Command line option Purpose

-threads Choose a single or multi-threaded server. The
- not hr eads -t hreads argument also implies - r ef count
(see page 117).

-strategy sinple Create servants during start-up.

-strategy activator Create servants on demand with a servant

activator.
-strategy | ocator Create servants per call with a servant
locator.
-strategy For each interface, generate a POA that uses
def aul t _servant a default servant.
-ns Determines how to export object references:

- nons . . .
® -ns: use the naming service to publish

object references.
®* -nons: write object references to a file.

-threads/-nothreads

The - not hr eads option sets the SI NALE_ THREAD MODEL policy on all POAs in
the server, which ensures that all calls to application code are made in the
main thread. This policy allows a server to run thread-unsafe code, but might
reduce performance because the ORB can dispatch only one operation at a
time.

The -t hr eads option sets the CRB_CTRL_MXEL policy on all POAs in the
server, allowing the ORB to dispatch incoming calls in multiple threads
concurrently.

The default for this option is set in the configuration file through
defaul t. cpp_poa_geni e. want _t hr eads.

119

Chapter 5 | Developing Applications with Genies

120

Note: If you enable multi-threading, you must ensure that your application
code is thread-safe and application data structures are adequately protected
by thread-synchronization calls.

-strategy Options

The POA is a flexible tool that lets servers manage objects with different
strategies. Some servers can use a combination of strategies for different
objects. You can use the genie to generate examples of each strategy, then
cut-and-paste the appropriate generated code into your own server.

You set a server's object management strategy through one of the following
arguments to the - st rat egy option:

® .-strategy sinple: The server creates a POA with a policy of
USE_ACTI VE_CBIECT_MAP_QONLY (see page 229). For each interface in the
IDL file, the server mai n() creates a servant, activates it with the POA as
a CORBA obiject, and exports an object reference. After the ORB is shut
down, mai n() deletes the servants.

This strategy is appropriate for servers that implement a small, fixed set
of objects.

®* -strategy activator: The server creates a POA and a servant activator
(see “Servant Activators” on page 251). For each interface, the server
exports an object reference. The object remains inactive until a client
first calls on its reference; then, the servant activator is invoked and
creates the appropriate servant, which remains in memory to handle
future calls on that reference. The servant activator deletes the servants
when the POA is destroyed.

This strategy lets the server start receiving requests immediately and
defer creation of servants until they are needed. It is useful for servers
that normally activate just a few objects out of a large collection on each
run, or for servants that take a long time to initialize.

® .-strategy | ocator: The server creates a POA and a servant locator (see
“Servant Locators” on page 256). The server exports references, but all
objects are initially inactive. For every incoming operation, the POA asks

Starting Development Projects

the servant locator to select an appropriate servant. The generated
servant locator creates a servant for each incoming operation, and
deletes it when the operation is complete.

A servant locator is ideal for managing a cache of servants from a very

large collection of objects in a database. You can replace the pr ei nvoke
and post i nvoke methods in the generated locator with code that looks
for servants in a database cache, loads them into the cache if required,
and deletes old servants when the cache is full.

® .strategy default_servant: The server creates a POA for each
interface, and defines a default servant for each POA to handle incoming
requests. A server that manages requests for many objects that all use
the same interface should probably have a POA that maps all these
requests to the same default servant. For more information about using
default servants, see “Setting a Default Servant” on page 264.

-ns/-nons
Determines how the server exports object references to the application:

* -ns: Use the naming service to publish object references. For each
interface, the server binds a reference that uses the interface name, in
naming context | T_Geni eDeno. For example, for interface Deno_Bank, the
genie binds the reference | T_Geni eDeno/ BankDeno_Bank. If you use this
option, the naming service and locator daemon must be running when
you start the server.

For more information about the naming service, see Chapter 18 on
page 377.

* -nons: Write stringified object references to a file. For each interface, the
server exports a reference to a file named after the interface with the
suffix r ef —for example BankDeno_Bank. r ef

The default for this option is set in the configuration file through
def aul t. cpp_poa_geni e.

Implementing a Client

The -cl i ent option generates client source code in cli ent. cxx. For
example:

121

Chapter 5 | Developing Applications with Genies

> idl gen cpp_poa_genie.tcl -client bank.idl
When you run this client, it performs the following actions for each interface:

1. Reads an object reference from the file generated by the server—for
example, BankDeno_Bank. ref .

2. If generated with the - conpl et e option, for each operation:
+ Calls the operation and passes random values.
+ Prints out the results.

3. Catches raised exceptions and prints an appropriate message.

Generating a Makefile

The - makef i | e option generates a makefile that can build the server and

client applications. The makefile provides the following targets

® all: Compile and link the client and server.

® cl ean: Delete files created during compile and link.

®* clean_all: Like clean, it also deletes all the source files generated by
idlgen, including the makefile itself.

To build the client and server, enter nmake (Windows) or make (UNIX).

Controlling Code Completeness

122

You can control the extent of the code that is generated for each interface
through the -conpl et e and -i nconpl et e options. These options are valid for
server, servant, and client code generation.

The default for this option is set in the configuration file through
def aul t. cpp_poa_geni e. want _conpl et e.

For example, the following commands generate complete servant and client
code and incomplete server mainline code:

> i dl gen cpp_poa_genie.tcl -servant -conplete bankdeno.i dl
> i dl gen cpp_poa_genie.tcl -client -conplete bankdeno.idl
> i dl gen cpp_poa_genie.tcl -server -inconplete bankdeno.idl

Setting the - conpl et e option on servant, server, and client components
yields a complete application that you can compile and run. The application
performs these tasks:

Starting Development Projects

® The client application calls every operation in the server application and
passes random values as i n parameters.

* The server application returns random values for i nout /out parameters
and ret ur n values.

* Client and server print a message for each operation call, which includes
the values passed and returned.

Using the - conpl et e option lets you quickly produce a demo or
proof-of-concept prototype. It also offers useful models for typical coding
tasks, showing how to initialize parameters properly, invoke operations,
throw and catch exceptions, and perform memory management.

If you are familiar with calling and parameter passing rules and simply want
a starting point for your application, you probably want to use the

- i nconpl et e option. This option produces minimal code, omitting the bodies
of operations, attributes, and client-side invocations.

The sections that follow describe, for each application component, the
differences between complete and incomplete code generation. All examples
assume the following IDL for interface Account:

/1 1DL:
nodul e BankDeno

/1 Qher interfaces and type definitions omtted...
i nterface Account
{

exception InsufficientFunds {};

readonly attribute Accountld account_id;

readonly attribute CashAnount bal ance;

voi d wi t hdraw

i n CashAmount arount
) raises (InsufficientFunds);

voi d
deposi t (

in CashAmount arount
)

123

Chapter 5 | Developing Applications with Genies

124

Servant Code

Setting - conpl et e servant and -i nconpl ete servant yields the required
source files for each IDL interface. Either option generate the following files
for interface Account :

BankDeno_Account | npl . h
BankDeno_Account | npl . cxx

Incomplete Servant

The -inconpl et e option specifies to generate servant class
BankDeno_Account | npl , which implements the BankDeno: : Account
interface. The implementation of each operation and attribute throws a
QOCRBA: : NO | MPLEMENT exception.

For example, the following code is generated for the deposit () operation:
voi d

BankDeno_Account | npl : : deposi t (
BankDeno: : CashAnount anmount

) throw(
CCRBA: : Syst enExcept i on
)

{
}

All essential elements of IDL code are automatically generated, so you can
focus on writing the application logic for each IDL operation.

t hr ow GORBA: : NO | MPLEMENT() ;

Complete Servant

The -conpl et e option specifies to generate several files that provide the
functionality required to generate random values for parameter passing, and
to print those values:

it_print_funcs.h
it_print_funcs. cxx
i t_random funcs. h

i t_random funcs. cxx

Member methods are fully implemented to print parameter values and, if
required, return a value to the client. For example, the following code is
generated for the deposi t () operation:

Starting Development Projects

voi d
BankDeno_Account | npl : : deposi t (
BankDeno: : CashAnount anount

) throw
OCRBA: : Syst enExcepti on
)

{
// D agnostics: print the values of "in" and "inout" paraneters
cout << "BankDeno_Account|npl::deposit(): "
<< "called with..."
<< endl ;
cout << "\tamount = ";
I T_print_BankDenmo_CashAmount (cout, anount, 3);
cout << endl;

/1 Diagnostics.
cout << "BankDeno_Account | npl ::deposit(): returning"
<< endl ;

Client Code

In a completely implemented client, cpp_poa_geni e. t cl generates the client
source file cal | _funcs. cxx, which contains method calls that invoke on all
operation and attributes of each object. Each method assigns random values
to the parameters of operations and prints out the values of parameters that
they send, and those that are received back as out parameters. Utility
methods to assign random values to IDL types are generated in the file

i t_random funcs. cxx, and utility methods to print the values of IDL types
are generated in the fileit_print_funcs. cxx.

An incomplete client contains no invocations.

Both complete and incomplete clients catch raised exceptions and print
appropriate messages.

125

Chapter 5 | Developing Applications with Genies

General Options

You can supply switches that control cpp_poa_geni e. tcl genie output:

-dir: By default, cpp_poa_geni e. t cl writes all output files to the current
directory. With the -dir option, you can explicitly specify where to generate
file output.

-v/-s: By default, cpp_poa_geni e. tcl runs in verbose (- v) mode. With the - s
option, you can silence all messaging.

Compiling the Application

To compile a genie-generated application, Orbix must be properly installed on
the client and server hosts:

1. Build the application using the makefile.
2. In separate windows, run first the server, then the client applications.

Generating Signatures of Individual Operations

IDL interfaces sometimes change during development. A new operation
might be added to an interface, or the signature of an existing operation
might change. When such a change occurs, you must update existing C++
code with the signatures of the new or modified operations. You can avoid
much of this work with the cpp_poa_op. tcl genie. This genie prints the
C+ + signatures of specified operations and attributes to a file. You can then
paste these operations back into the application source files.

For example, you might add a new operation cl ose() to interface BankDeno:
: Account . To generate the new operation, run the cpp_poa_op. tcl genie:

> idl gen cpp_poa_op.tcl bankdeno.idl "*::close"
idlgen: creating tnp
CGenerating signatures for BankDeno:: Account:: cl ose

As in this example, you can use wildcards to specify the names of operations
or attributes. If you do not explicitly specify any operations or attributes, the
genie generates signatures for all operations and attributes.

126

Configuration Settings

By default, wild cards are matched only against names of operations and
attributes in the specified IDL file. If you specify the -i ncl ude option,
wildcards are also matched against all operations and attributes in the
included IDL files.

By default, cpp_poa_op. tcl writes generated operations to file t np. You can
specify a different file name with the -o command-line option:

> idl gen cpp_poa_op.tcl bankdeno.idl -0 ops.txt "*::close"

bankdeno. i dl :
i dl gen: creating ops.txt
CGenerating signatures for BankDeno:: Account:: cl ose

Configuration Settings

The configuration file i dl gen. cf g contains default settings for the C+ + genie
cpp_poa_geni e. tcl at the scope def aul t. cpp_poa_geni e.

Some other settings are not specific to cpp_poa_geni e. tcl but are used by
the std/ cpp_poa boa_lib. tcl library, which maps IDL constructs to their
C+ + equivalents. cpp_poa_geni e. tcl uses this library extensively, so these
settings affect the output that it generates. They are held in the scope
defaul t. cpp.

For a full listing of these settings, refer to the Orbix 2000 Code Generation
Toolkit Programmer’s Guide.

127

Chapter 5 | Developing Applications with Genies

128

ORB Intialization and
Shutdown

The mechanisms for initializing and shutting down the ORB
on a client and a server are the same.

The mai n() of both sever and client must perform these steps:

® |nitialize the ORB by calling OORBA: : CRB_i ni t ().
® Shut down and destroy the ORB at the end of mai n(), by calling
shut down() and dest roy() on the ORB.

Orbix also provides its own I T_Ter mi nat i onHand| er class, which enables
applications to handle delivery of G rl - Cand similar events in a portable
manner. For more information, see “Termination Handler” on page 219

Initializing the ORB Runtime

Before an application can start any CORBA-related activity, it must initialize
the ORB runtime by calling CRB_init(). CRB_init () returns an object
reference to the ORB object; this, in turn, lets the client obtain references to
other CORBA objects, and make other CORBA-related calls.

Calling within main()

It is common practice to set a global variable with the ORB reference, so the
ORB object is accessible to most parts of the code. However, you should call
CRB i ni t () only after you call mai n() to ensure access to command line
arguments. CRB i ni t () scans its arguments parameter for command-line
options that start with - CRB and removes them. The arguments that remain
can be assumed to be application-specific.

129

Chapter 6 | ORB Intialization and Shutdown

Supplying an ORB Name

You can supply an ORB name as an argument; this name determines the
configuration information that the ORB uses. If you supply null, Orbix uses
the ORB identifier as the default ORB name. ORB names and configuration
are discussed in the Orbix 2000 Administrator’s Guide.

C++ Mapping

CRB i nit () is defined as follows:
namespace CCRBA {

1.,
CRB ptr CRB init(
int & argc,
char ** aaccv,
const char * orb_identifier =""
)
1.,
}

CRB i ni t () expects a reference to ar gc and a non-constant pointer to aaccv.
CRB i ni t () scans the passed argument vector for command-line options that
start with - GRB and removes them.

Registering Portable Interceptors

During ORB intialization, portable interceptors are instantiated and registered
through an ORB intializer. The client and server applications must register
the ORB initializer before calling GRB_i ni t () . For more information, see
“Registering Portable Interceptors” on page 529.

Shutting Down the ORB

For maximum portability and to ensure against resource leaks, a client or
server should always shut down and destroy the ORB at the end of mai n():

130

Shutting Down the ORB

shut down() stops all server processing, deactivates all POA managers,
destroys all POAs, and causes the run() loop to terminate. shut down()
takes a single Boolean argument; if set to true, the call blocks until the
shutdown process completes before it returns control to the caller. If set
to false, a background thread is created to handle shutdown, and the
call returns immediately.

destroy() destroys the ORB object and reclaims all resources
associated with it.

131

Chapter 6 | ORB Intialization and Shutdown

132

Using Policies

Orbix supports a number of CORBA and proprietary policies
that control the behavior of application components.

Most policies are locality-constrained; that is, they apply only to the server or
client on which they are set. Therefore, policies can generally be divided into
server-side and client-side policies:

* Server-side policies generally apply to the processing of requests on
object implementations. Server-side policies can be set
programmatically and in the configuration, and applied to the server's
ORB and its POAs.

* client-side policies apply to invocations that are made from the client
process on an object reference. Client-side policies can be set
programmatically and in the configuration, and applied to the client's
ORB, to a thread, and to an object reference.

The procedure for setting policies programmatically is the same for both

client and server:

1. Create the OCRBA: : Pol i cy object for the desired policy.

2. Add the Pol i cy object to a Pol i cyLi st .

3. Apply the Pol i cyLi st to the appropriate target—ORB, POA, thread, or
object reference.

This chapter discusses issues that are common to all client and server
policies. For detailed information about specific policies, refer to the chapters
that cover client and POA development: “Developing a Client” on page 145,
and “Managing Server Objects” on page 221.

133

Chapter 7 | Using Policies

Creating Policy and PolicyList Objects

Two methods are generally available to create policy objects:

* To apply policies to a POA, use the appropriate policy factory from the
Port abl eSer ver : : PQA interface.
* CallRB: :create policy() onthe ORB.

After you create the required policy objects, you add them to a Pol i cyLi st.
The Pol i cyLi st is then applied to the desired application component.

Using POA Policy Factories

The Port abl eServer : : PQA interface provides factories for creating GCRBA: :
Pol i cy objects that apply only to a POA (see Table 13 on page 226). For
example, the following code uses POA factories to create policy objects that
specify PERSI STENT and USER | D policies for a POA, and adds these policies
to a Pol i cyLi st.

QCRBA: : Pol i cyLi st polici es;

policies.length (2);

/1l Use root PQOA to create PQA policies

policies[0] = poa—>create_|ifespan_policy
(Portabl eServer: : PERSI STENT)

policies[1] = poa—>create_id_assi gnnent_policy
(Portabl eServer: : USER | D)

Orbix also provides several proprietary policies to control POA behavior (see
page 226). These policies require you to call create_pol i cy() on the ORB
to create Pol i cy objects, as described in the next section.

Calling create_policy()

134

You call create_pol i cy() on the ORB to create Pol i cy objects. For example,
the following code creates a Pol i cyLi st that sets a SyncScope policy of
SYNC W TH_SERVER; you can then use this Pol i cyLi st to set client policy
overrides at the ORB, thread, or object scope:

Setting Orb and Thread Policies

#i ncl ude <ong/ messagi ng. hh>;

...

OCRBA: : Pol i cyLi st policies(1);
policies.length(1);

CCRBA: : Any policy_val ue;

pol i cy_any <<= Messagi ng: : SYNC W TH_SERVER

pol i ci es[0] = orb->create_policy(
Messagi ng: : SYNC_SCCPE_PQLI CY_TYPE, policy_val ue);

Setting Orb and Thread Policies

The QCORBA: : Pol i cyManager interface provides the operations that a program
requires to access and set ORB policies. GORBA: : Pol i cyQurrent is an empty
interface that simply inherits all Pol i cyManager operations; it provides
access to client-side policies at the thread scope.

ORB policies override system defaults, while thread policies override policies
set on a system or ORB level. You obtain a PolicyManager or PolicyCurrent
through resol ve_initial _references():

® resolve_ initial _references ("CRBPolicyManager") returns the
ORB's PolicyManager. Both server- and client-side policies can be
applied at the ORB level.

® resolve initial _references ("PolicyQurrent") returns a thread’s
PolicyCurrent. Only client-side policies can be applied to a thread.

The CORBA module contains the following interface definitions and related
definitions to manage ORB and thread policies:

nodul e GORBA {

...
enum Set Overri deType
{
SET_OVERRI CE,
ADD OVERR DE
b

exception InvalidPolicies

{

sequence<unsi gned short> i ndi ces;

135

Chapter 7 | Using Policies

136

}

i nterface PolicyManager {
Pol i cyLi st
get_policy_overrides(in PolicyTypeSeq ts);

voi d
set _policy_overrides(

in PolicyList policies,

in SetQverrideType set_add
) raises (InvalidPolicies);

}s

interface PolicyQurrent : PolicyManager, Qurrent

{

}

...
}

set_policy_overrides() overrides policies of the same Pol i cyType that are set
at a higher scope. The operation takes two arguments:

®* A PolicyList sequence of Pol i cy object references that specify the
policy overrides.
* An argument of type Set Qverri deType:

ADD OVERRI DE adds these policies to the policies already in effect.

SET_OVERRI DE removes all previous policy overrides and establishes the
specified policies as the only override policies in effect at the given
scope.

set_policy_overrides() returns a new proxy that has the specified policies
in effect; the original proxy remains unchanged.

To remove all overrides, supply an empty Pol i cyLi st and SET_OVERRI CE as
arguments.

get_policy_overrides() returns a Pol i cyLi st of object-level overrides that are
in effect for the specified Pol i cyTypes. The operation takes a single
argument, a Pol i cyTypeSeq that specifies the Pol i cyTypes to query. If the

Setting Server-Side Policies

Pol i cyTypeSeq argument is empty, the operation returns with all overrides
for the given scope. If no overrides are in effect for the specified Pol i cyTypes,
the operation returns an empty Pol i cyLi st .

After get _pol i cy_overrides() returns a Pol i cyLi st, you can iterate
through the individual Pol i cy objects and obtain the actual setting in each
one by narrowing it to the appropriate derivation (see “Getting Policies” on
page 141).

Setting Server-Side Policies

Orbix provides a set of default policies that are effective if no policy is
explicitly set in the configuration or programmatically. You can explicitly set
server policies at three scopes, listed in ascending order of precedence:

1. In the configuration, so they apply to all ORBs that are in the scope of a
given policy setting. For a complete list of policies that you can set in the
configuration, refer to the Orbix 2000 Administrator’s Guide.

2. 0On the server's ORB, so they apply to all POAs that derive from that
ORB’s root POA. The ORB has a PolicyManager with operations that let
you access and set policies on the server ORB (see “Setting Orb and
Thread Policies” on page 135).

3. Onindividual POAs, so they apply only to requests that are processed by
that POA. Each POA can have its own set of policies (see “Using POA
Policies” on page 228).

You can set policies in any combination at all scopes. If settings are found for
the same policy type at more than one scope, the policy at the lowest scope
prevails.

Most server-side policies are POA-specific. POA policies are typically
attached to a POA when it is created, by supplying a PolicyList object as an
argument to create_PQA() . The following code creates POA per si st ent PQA
as a child of the root POA, and attaches a PolicyList to it:

//get an object reference to the root PQA
CCORBA: : (hj ect _var obj =

orb->resol ve_initial _references("Root PQA');
Portabl eServer:: POA var poa = POA : _narrow obj);

/lcreate policy object

137

Chapter 7 | Using Policies

OCRBA: : Pol i cyLi st poli ci es;
policies.length (2);

/1 set policy object with desired policies

policies[0] = poa—>create_|ifespan_policy
(Portabl eServer: : PERS| STENT)

pol i ci es[1] = poa—>create_i d_assi gnment _pol i cy
(Portabl eServer: : USER | D)

//create a POA for persistent objects
poa = poa- >create_PQA("persistent POA", NJULL, policies);

In general, you use different sets of policies in order to differentiate among
various POAs within the same server process, where each POA is defined in a
way that best accommodates the needs of the objects that it processes. So, a
server process that contains the POA per si st ent PQA might also contain a
POA that supports only transient object references, and only handles requests
for callback objects.

For more information about using POA policies, see page 228.

Setting Client Policies

138

Orbix provides a set of default policies that are effective if no policy is
explicitly set in the configuration or programmatically. Client policies can be
set at four scopes:

1. In the configuration, so they apply to all ORBs that are in the scope of a
given policy setting. For a complete list of policies that you can set in the
configuration, refer to the Orbix 2000 Administrator’s Guide.

2. 0On the client’s ORB, so they apply to all invocations. The ORB has a
PolicyManager with operations that let you access and set policies on
the client ORB (see “Setting Orb and Thread Policies” on page 135).

3. Onagiven thread, so they apply only to invocations on that thread. Each
client thread has a PolicyCurrent with operations that let you access and
set policies on that thread (see page 135).

Setting Client Policies

4. On individual object references, so they apply only to invocations on
those objects. Each object reference can have its own set of policies; the
Object interface provides operations that let you access and set an object
reference’s quality of service policies (see “Managing Object Reference
Policies” on page 139).

Setting Policies at Different Scopes

You can set policies in any combination at all scopes. If settings are found for

the same policy type at more than one scope, the policy at the lowest scope
prevails.

For example, the SyncScope policy type determines how quickly a client
resumes processing after sending one-way requests. The default SyncScope
policy is SYNC_NONE: Orbix clients resume processing immediately after
sending one-way requests.

You can set this policy differently on the client’s ORB, threads, and individual
object references. For example, you might leave the default SyncScope policy
unchanged at the ORB scope, set a thread to SYNC WTH _SERVER; and set
certain objects within that thread to SYNC W TH _TARGET. Given these quality
of service settings, the client blocks on one-way invocations as follows:

* Qutside the thread, the client never blocks.

* Within the thread, the client always blocks until it knows whether the
invocations reached the server.

® For all objects within the thread that have SYNC W TH TARGET policies,
the client blocks until the request is fully processed.

Managing Object Reference Policies

The QORBA: : hj ect interface contains the following operations to manage
object policies:

interface ject {
/...
Pol i cy
get _client_policy(in PolicyType type);

Pol i cy
get_policy(in PolicyType type);

139

Chapter 7 | Using Policies

140

Pol i cyLi st
get _policy_overrides(in PolicyTypeSeq ts);

oj ect
set _pol i cy_overri des(

in PolicyList policies,

in SetQverrideType set_add
) raises (lnvalidPolicies);

bool ean
val i dat e_connecti on(out Poli cyLi st inconsistent_policies);

}s

get_client_policy() returns the policy override that is in effect for the
specified Pol i cyType. This method obtains the effective policy override by
checking each scope until it finds a policy setting: first at object scope, then
thread scope, and finally ORB scope. If no override is set at any scope, the
system default is returned.

get_policy() returns the object’s effective policy for the specified Pol i cyType.
The effective policy is the intersection of values allowed by the object’s
effective override —as returned by get _client _pol i cy() —and the policy
that is set in the object’s IOR. If the intersection is empty, the method raises
exception I N\V_PCLI CY. Otherwise, it returns a policy whose value is legally
within the intersection. If the IOR has no policy set for the Pol i cyType, the
method returns the object-level override.

get_policy_overrides() returns a Pol i cyLi st of overrides that are in effect for
the specified Pol i cyTypes. The operation takes a single argument, a

Pol i cyTypeSeq that specifies the Pol i cyTypes to query. If the

Pol i cyTypeSeq argument is empty, the operation returns with all overrides
for the given scope. If no overrides are in effect for the specified Pol i cyTypes,
the operation returns an empty Pol i cyLi st .

After get _pol i cy_overrides() returns a Pol i cyLi st, you can iterate
through the individual Pol i cy objects and obtain the actual setting in each
one by narrowing it to the appropriate derivation (see “Getting Policies” on
page 141).

Getting Policies

set_policy_overrides() overrides policies of the same Pol i cyType that are set
at a higher scope, and applies them to the new object reference that it
returns. The operation takes two arguments:

* A PolicyList sequence of Pol i cy object references that specify the
policy overrides.

* An argument of type Set Qverri deType:
+ ADD OVERR DE adds these policies to the policies already in effect.

+ SET_OVERR DEremoves all previous policy overrides and establishes
the specified policies as the only override policies in effect at the
given scope.

To remove all overrides, supply an empty Pol i cyLi st and SET_OVERRI LE as
arguments.

validate_connection() returns true if the object’s effective policies allow
invocations on that object. This method forces rebinding if one of these
conditions is true:

® The object reference is not yet bound.
* The object reference is bound but the current policy overrides have

changed since the last binding occurred; or the binding is invalid for
some other reason.

The method returns false if the object’s effective policies cause invocations to
raise the exception | NvV_PCLI CY. If the current effective policies are
incompatible, the output parameter i nconsi stent _pol i ci es returns with a
Pol i cyLi st of those policies that are at fault.

If binding fails for a reason that is unrelated to policies,
val i dat e_connecti ons() raises the appropriate system exception.

A client typically calls val i dat e_connecti ons() when its Rebi ndPol i cy is
set to NO_REBI ND.

Getting Policies

As shown earlier, OORBA: : Pol i cyManager , OORBA: : Pol i cyQurrent , and
OCRBA: : (hj ect each provide operations that allow programmatic access to
the effective policies for an ORB, thread, and object. Accessor operations

141

Chapter 7 | Using Policies

142

obtain a Pol i cyLi st for the given scope. After you get a Pol i cyLi st, you can
iterate over its Pol i cy objects. Each Pol i cy object has an accessor method
that identifies its Pol i cyType. You can then use the Pol i cy object’s

Pol i cyType to narrow to the appropriate type-specific Pol i cy derivation—for
example, a SyncScopePol i cy object. Each derived object provides its own
accessor method that obtains the policy in effect for that scope.

The Messaging module provides these Pol i cyType definitions:

nodul e Messagi ng

{
/1 Messaging Quality of Service

typedef short Rebi ndMvbde;

const Rebi ndMbde TRANSPARENT = 0;
const Rebi ndMbde NO REBIND = 1;
const Rebi ndMbde NO RECONNECT = 2;

typedef short SyncScope;

const SyncScope SYNC NONE = 0;

const SyncScope SYNC W TH TRANSPCRT = 1;
const SyncScope SYNC WTH SERVER = 2;
const SyncScope SYNC WTH TARGET = 3;

/1 PolicyType constants

const OCRBA: : Pol i cyType REBI ND PCLI CY_TYPE
const COCRBA: : Pol i cyType SYNC SCCPE PCLI CY_TYPE

23;
24;

/1 Local l y-Constrai ned Policy (hjects
/1 Rebind Policy (default = TRANSPARENT)
interface RebindPolicy : CCRBA :Policy {

readonly attribute Rebi ndMbde rebi nd_node;
¥

/1 Synchronization Policy (default = SYNC W TH TRANSPCRT)

Getting Policies

interface SyncScopePolicy : OORBA : Policy {
readonly attribute SyncScope synchroni zati on;
b
}
For example, the following code gets the ORB’s SyncScope policy:

#i ncl ude <ony/ messagi ng. hh>
/'l get reference to PolicyManager

CCORBA: : (hj ect _var obj ect;
obj ect = orb->resolve_initial_references("CRBPol i cyManager");

/'l narrow
CCRBA: : Pol i cyManager _var policy_mgr =
OCRBA: : Pol i cyManager : : _narrow(obj ect);

/1 set SyncScope policy at ORB scope (not shown)
...

/1 get SyncScope policy at ORB scope
CCRBA: : Pol i cyTypeSeq t ypes;

types. |l ength(1);

types[0] = SYNC SCCPE PCLI CY_TYPE;

/1 get PolicyList fromORB s PolicyManager
CCRBA: : Pol i cyList_var pList =
pol i cy_ngr->get _pol i cy_overrides(types);
/1 evaluate first Policy in PolicylList
Messagi ng: : SyncScopePol i cy_var sync_p =
Messagi ng: : SyncScopePolicy:: _narrow(pList[0]);

Messagi ng: : SyncScope sync_pol i cy = sync_p->synchroni zation();

cout << "Effective SyncScope policy at CRB level is "
<< sync_policy << endl;

143

Chapter 7 | Using Policies

144

Developing a Client

A CORBA client initializes the ORB runtime, handles object
references, invokes operations on objects, and handles
exceptions that these operations throw.

This chapter covers the following topics:

* Mapping of IDL interfaces to proxies and references.
* Handling object reference types.

® |nitializing the ORB runtime.

* |nvoking operations and parameter passing rules.

® Using quality of service policies.

For information about exception handling, see Chapter 13.

Interfaces and Proxies

When you compile IDL, the compiler maps each IDL interface to a client-side
proxy class of the same name. Proxy classes implement the client-side call
stubs that marshal parameter values and send operation invocations to the
correct destination object. When a client invokes on a proxy method that
corresponds to an IDL operation, Orbix conveys the call to the corresponding
server object, whether remote or local.

The client application accesses proxy methods only through an object
reference. When the client brings an object reference into its address space,
the client runtime ORB instantiates a proxy to represent the object. In other
words, a proxy acts as a local ambassador for the remote object.

For example, interface Bank: : Acount has this IDL definition:

nodul e BankDeno

{
typedef float CashAnount;
exception InsufficientFunds {};

145

Chapter 8 | Developing a Client

146

...

i nterface Account {
voi d withdraw(in CashAnount anount)
rai ses (InsufficientFunds);

/l ... other operations not shown
b
b
Given this IDL, the IDL compiler generates the following proxy class definition
for the client implementation:

namespace BankDeno

{
typedef CCRBA: : Fl oat CashAmount;
...
class Account : public virtual CORBA : (hject
{
...
virtual void wthdraw CashAmount anount) = O;
}
/1 other operations not shown ...
}

This proxy class demonstrates several characteristics that are true of all proxy
classes:

* Member methods derive their names from the corresponding interface
operations—in this case, wi t hdr awal ().

* The proxy class inherits from OORBA: : (bj ect, so the client can access all
the inherited functionality of a CORBA object.

® Account::wthdrawal and all other member methods are defined as
pure virtual, so the client code cannot instantiate the Account proxy
class or any other proxy class. Instead, clients can access the Account
object only indirectly through object references.

Using Object References

Using Object References

For each IDL interface definition, a POA server can generate and export
references to the corresponding object that it implements. To access this
object and invoke on its methods, a client must obtain an object reference—
generally, from a CORBA naming service. For each generated proxy class, the
IDL compiler also generates two other classes: i nterface_var and
interface ptr, whereinterface is the name of the proxy class. Briefly,
_ptr types are unmanaged reference types, while _var types can be
characterized as smart pointers.

Both reference types support the indirection operator - >; when you invoke an
operation on a _var or _ptr reference, the corresponding proxy object
redirects the C++ call across the network to the appropriate member
method of the object’s servant.

While _ptr and _var references differ in a number of ways, they both act as
handles to the corresponding client proxy. The client code only needs to
obtain an object reference and use it to initialize the correct _ptr or _var
reference. The underlying proxy code and ORB runtime take all responsibility
for ensuring transparent access to the server object

For example, given the previous IDL, the IDL compiler generates two object
reference types to the CORBA object, Bank: : Account : Account _ptr and
Account _var. You can use either reference type to invoke operations such as
wi t hdrawal () on the Bank: : Account object. Thus, the following two
invocations are equivalent:

...
[l withdraw amt is already initialized

/1 Use a _ptr reference
Account _ptr accp = ...; /1 get reference...
bal ance = accp->wi thdrawal (w thdraw anmt);

/1 Use a _var reference

Account _var accv = ...; /1l get reference...
bal ance = accv->wi thdrawal (withdraw anmt);

147

Chapter 8 | Developing a Client

Note: Because ptr types are not always implemented as actual C+ +
pointers, you should always use the _ptr definition. Regardless of the
underlying mapping, a _ptr type is always guaranteed to behave like a
pointer, so it is portable across all platforms and language mappings.

Counting References

148

When you initialize a _var or _ptr reference with an object reference for the
first time, the client instantiates a proxy and sets that proxy’s reference count
to one. Each proxy class has a _dupl i cat e() method, which allows a client
to create a copy of the target proxy. In practice, this method simply
increments the reference count on that proxy and returns a new _ptr
reference to it. Actual methods for copying ptr and _var references differ
and are addressed separately in this chapter; conceptually, however, the
result is the same.

For example, given an object reference to the Account interface, the following
client code initializes a _ptr reference as follows:

Account _ptr accpl = ...; // get reference somehow

This instantiates an Account object proxy and automatically sets its reference
count to one:

Account

Figure 17: Reference count for Account proxy is set to one.

The following code copies accpl into reference accp2, thus incrementing the
Account proxy’s reference count to 2

Account _ptr accp2 = Account:: _duplicate(accpl);

Using Object References

The client now has two initialized _ptr references, accpl and accp2. Both
refer to the same proxy, so invocations on either are treated as invocations on
the same object.

Account

Figure 18: Reference for Account proxy is incremented to 2.

When you release a reference, the reference count of the corresponding proxy
is automatically decremented. When the reference count is zero, Orbix
deallocates the proxy. You can release references in any order, but you can
only release a reference once, and you must not use any reference after it is
released.

Note: A server object is completely unaware of its corresponding client
proxy and its life cycle. Thus, calling rel ease() and _duplicate() on a
proxy reference has no effect on the server object.

Nil References

Nil references are analogous to C++ null pointers and contain a special
value to indicate that the reference points nowhere. Nil references are useful
mainly to indicate “not there” or optional semantics. For example, if you have
a lookup operation that searches for objects via a key, it can return a nil
reference to indicate the “not found” condition instead of raising an
exception. Similarly, clients can pass a nil reference to an operation to
indicate that no reference was passed for this operation—that is, you can use
a nil reference to simulate an optional reference parameter.

149

Chapter 8 | Developing a Client

You should only use the OCRBA :is_ni | () method to test whether a
reference is nil. All other attempts to test for nil have undefined behavior. For
example, the following code is not CORBA-compliant and can yield
unpredictable results:

oj ect _ptr ref = ...;
if (ref '=0) { /1 WRONG Use OCRBA :is_nil
/1 Use reference...

}

You cannot invoke operations on a nil reference. For example, the following
code has undefined behavior:

Account _ptr accp = Account::_nil();

...
QCRBA: : CashAnount bal = accp->bal ance(); // Qash inmnent!

Object Reference Operations

150

Because all object references inherit from OORBA: : (oj ect , you can invoke its
operations on any object reference. CCRBA: : (hj ect is a pseudo-interface with
this definition:

nodul e CORBA{ /1Pl DL

/..
i nterface oject{
hj ect dupl i cat e()
voi d rel ease();
bool ean is_nil();
bool ean is_a(in string repository_id);
bool ean non_exi stent ();
bool ean i s_equival ent(in Cbject other_object);
bool ean hash(i n unsi gned | ong max);
/...
}
b

In C++, these operations are mapped to OCRBA : (bj ect member methods
as follows:

/1 I'n namespace CCRBA

class ject {
publi c:

Using Object References

static Cbject_ptr _duplicate(Cbject_ptr obj);

voi d rel ease(Type_ptr);

Bool ean is_nil (Type_ptr p);

Bool ean _is_a(const char * repository_id);

Bool ean _non_exi stent();

Bool ean _i s_equi val ent (Chj ect _ptr ot her_obj);

Uong _hash(U,ong nax);

...
b
The i s_nil () method is discussed earlier in this chapter (see page 149).
Methods _duplicate(), and rel ease() are discussed later in this chapter
(see page 153). This section covers the remaining methods.

_is_a

The _is_a() method is similar to _narrow() in that it lets you to determine
whether an object supports a specific interface. For example:

CORBA: : (hj ect _ptr obj = ...; /1 Get a reference

if (!CORBA :is_nil(obj) &% obj->_is_a("lDL: BankDeno/ Account: 1. 0"))
/l 1t's an Account object...

el se
/1 Some other type of object...

The test for nil in this code example prevents the client program from making
a call via a nil object reference.

_is_a() lets applications manipulate IDL interfaces without static knowledge
of the IDL—that is, without having linked the IDL-generated stubs. Most
applications have static knowledge of IDL definitions, so they never need to
call _is_a(). In this case, you can rely on _narrow() to ascertain whether an
object supports the desired interface.

_non_existent

The _non_exi stent () method tests whether a CORBA object exists.
_non_exi stent () returns true if an object no longer exists. A return of true
denotes that this reference and all copies are no longer viable and should be
released.

151

Chapter 8 | Developing a Client

152

If _non_exi stent () needs to contact a remote server, the operation is liable
to raise system exceptions that have no bearing on the object’s existence—for
example, the client might be unable to connect to the server.

If you invoke a user-defined operation on a reference to a non-existent object,
the ORB raises the CBJECT_NOT_EXI ST system exception. So, invoking an
operation on a reference to a non-existent object is safe, but the client must
be prepared to handle errors.

_is_equivalent

The _i s_equi val ent () method tests whether two references are identical. If
_is_equival ent () returns true, you can be sure that both references point to
the same object.

A false return does not necessarily indicate that the references denote
different objects, only that the internals of the two references differ in some
way. The information in references can vary among different ORB
implementations. For example, one vendor might enhance performance by
adding cached information to references, to speed up connection
establishment. Because _is_equi val ent () tests for absolute identity, it
cannot distinguish between vendor-specific and generic information.

_hash

The _hash() method returns a hash value in the range 0. . nax- 1. The hash
value remains constant for the lifetime of the reference. Because the CORBA
specifications offer no hashing algorithm, the same reference on different
ORBs can have different hash values.

_hash() is guaranteed to be implemented as a local operation—that is, it will
not send a message on the wire.

_hash() is mainly useful for services such as the transaction service, which
must be able to determine efficiently whether a given reference is already a
member of a set of references. _hash() permits partitioning of a set of
references into an arbitrary number of equivalence classes, so set
membership testing can be performed in (amortized) constant time.
Applications rarely need to call this method.

Using Object References

Using ptr References

The IDL compiler defines a _ptr reference type for each IDL interface. In
general, you can think of a _ptr reference as a pointer to a proxy instance,
with the same semantics and requirements as any C++ pointer.

Duplicating and Releasing References

To make a copy of a _ptr reference, invoke the static _dupl i cat e() member
method on an existing object reference. For example:

Account _ptr accl = ...; /1 Get ref fromsomewhere...
Account _ptr acc2; /1 acc2 has undefined contents
acc2 = Account:: _duplicate(accl); /1 Both reference sane Account

_duplicate() makes an exact copy of a reference. The copy and the original
are indistinguishable from each other. As shown earlier (see “Counting
References” on page 148), duplicate() also makes a deep copy of the
target reference, so the reference count on the proxy object is incremented.
Consequently, you must call rel ease() on all duplicated references to
destroy them and prevent memory leaks.

To destroy a reference, use the rel ease method. For example:

Account _ptr accp = ...; // Get reference fromsomewhere...
/1l ...Use accp
CCRBA: : rel ease(accp) ; // Don't want to use Account anynore

_duplicate() is type safe. To copy an Account reference, supply an Account
reference argument to _dupl i cat e(). Conversely, the CORBA namespace
contains only one rel ease() method, which releases object references of any

type.

Widening and Narrowing _ptr References

Proxy classes emulate the inheritance hierarchy of the IDL interfaces from
which they are generated. Thus, you can widen and narrow _pt r references
to the corresponding proxies.

153

Chapter 8 | Developing a Client

154

Widening Assignments

Object references to proxy instances conform to C+ + rules for type
compatibility. Thus, you can assign a derived reference to a base reference,
or pass a derived reference where a base reference is expected.

For example, the following IDL defines the Checki ngAccount interface, which
inherits from the Account interface shown earlier:

i nterface Checki ngAccount : Account {
exception I nsufficientFunds {};
readonly attribute CashArount overdraftLimt;
bool ean or der CheckBook ();
h
Given this inheritance hierarchy, the following widening assignments are
legal:

Checki ngAccount _ptr ck = ...; /1 Get checking account reference
Account _ptr accp = ck; /1 Wdeni ng assi gnment
OCORBA: : (hj ect _ptr obj 1 = ck; /1 Wdeni ng assi gnment
COORBA: : (hj ect _ptr obj 2 = accp; /1 Wdeni ng assi gnnment

Note: Because all proxies inherit from OGCORBA: : (bj ect, you can assign any
type of object reference to Cbj ect _ptr, such as _ptr references obj 1 and
obj 2.

Using Object References

Ordinary assignments between _ptr references have no effect on the
reference count. Thus, the assignments shown in the previous code can be
characterized as shown in Figure 19:

Figure 19: Multiple ptr references to a proxy object can leave the reference count
unchanged.

Because the reference count is only 1, calling rel ease() on any of these
references decrements the proxy reference count to O, causing Orbix to
deallocate the proxy. Thereafter, all references to this proxy are invalid.

Type-Safe Narrowing of _ptr References

For each interface, the IDL compiler generates a static _narrow() method
that lets you down-cast a _ptr reference at runtime. For example, the
following code narrows an Account reference to a Checki ngAccount
reference:

BankDeno: : Account _ptr accp = ..; // get a reference from sonewhere
BankDeno: : Checki ngAccount _ptr ckp =
BankDeno: : Checki ngAccount : : _narrow accp);
if (CORBA :is_nil(ckp))
{

}

el se

{

}
1.

/1 accp is not of type Checki ngAccount

/1l accp is a Checki ngAccount type, so ckp is a valid reference

155

Chapter 8 | Developing a Client

/1 release references to Account proxy
QCRBA: : rel ease(ckp);
QCRBA: : rel ease(accp);

Because narrow() calls _duplicate(), it increments the reference count on
the Account proxy—in this example, to 2. Consequently, the code must
release both references.

Using _var References

156

The IDL compiler defines a _var class type for each IDL interface, which lets
you instantiate _var references in the client code. Each _var references takes
ownership of the reference that it is initialized with, and calls CCRBA: :

rel ease() when it goes out of scope.

If you initialize a _var reference with a _ptr reference, you cannot suffer a
resource leak because, when it goes out of scope, the _var reference
automatically decrements the reference count on the proxy.

_var references are also useful for gaining exception safety. For example, if
you keep a reference you have just obtained as a _var reference, you can
throw an exception at any time and it does not leak the reference because the
C++ run time system calls the _var’s destructor as it unwinds the stack

_var Class Member Methods

Given the Account interface shown earlier, the IDL compiler generates an
Account _var class with the following definition:

cl ass Account _var {
publi c:
Account _var();
Account _var (Account _ptr &);
Account _var (const Account_var &);
~Account _var();
Account _var & operat or=(Account _ptr &);
Account _var & operat or=(const Account_var &);
operator Account_ptr & ();
Account _ptr in() const;
Account _ptr & in inout();
Account _ptr & in out();
Account _ptr _retn();

Using Object References

private:
Account _ptr p; //actual reference stored here

H
Account_var()

The default constructor initializes the private _ptr reference to nil.

Account_var(Account_ptr &)

Constructing a _var from a _ptr reference passes ownership of the ptr
reference to the _var. This method leaves the proxy reference count
unchanged.

Account_var(const Account_var &)

Copy-constructing a _var makes a deep copy by calling _dupl i cate() on the
source reference. This method increments the proxy reference count.
~Account_var()

The destructor decrements the proxy reference count by calling r el ease() .
Account_var & operator=(Account_ptr &)

Account_var & operator=(const Account_var &)

Assignment from a pointer passes ownership and leaves the proxy reference
count unchanged; assignment from another Account _var makes a deep copy
and increments the reference count.

operator Account_ptr &()

This conversion operator lets you pass a _var reference where a _ptr
reference is expected, so use of _var references is transparent for assignment
and parameter passing.

Account_ptr operator->() const

The indirection operator permits access to the member methods on the proxy
via a _var by returning the internal _ptr reference.

157

Chapter 8 | Developing a Client

158

Account_ptr in() const
Account_ptr & inout()
Account_ptr & out()

Explicit conversion operators are provided for compilers that incorrectly apply
C++ argument-matching rules.
Account_ptr _retn()

The _retn() method removes ownership of a reference from a _var without
decrementing the reference count. This is useful if a method must allocate
and return a _var reference, but also throws exceptions.

Widening and Narrowing var References

You can copy-construct and assign from _var references, but only if both
references are of the same type. For example, the following code is valid:

Account _var accvl = ...; /1 get object reference
Account _var accv2(accvl); /1 Fine, deep copy
accvl = accvz; /1 Fine, deep assignnent

Unlike _ptr references, _var references have no inheritance relationship, so
implicit widening among _var references is not allowed. For example, you
cannot use a Checki ngAccount _var to initialize an Account _var:

Checki ngAccount _var ckv = ...; // get object reference
accvl = ckv; /1 Conpile-time error
Account _var accv3(ckv); /1 Conpile-time error

To widen a _var reference, you must first call _dupl i cat e() on the original
_var. Although dupl i cate() expects a ptr reference, a _var can be
supplied in its place, as with any method that expects a _ptr reference.
_duplicate() returns a _ptr reference that can then be implicitly widened.

For example, in the following statement, _dupl i cate() receives a
Checki ngAccount _var :

Account _var accvl(Checki ngAccount:: _dupli cate(ckv));

_duplicate() returns a Checki ngAccount _ptr that is implicitly widened to
an Account _ptr as the argument to the Account _var constructor. The
constructor in turn takes ownership, so the copy made by _duplicate() is
not leaked.

Using Object References

In the next statement, _dupli cate() expects an Account _ptr:
Account _var accv2(Account::_duplicate(ckv));

In fact, a Checki ngAccount _var argument is supplied, which has a
conversion operator to Checki ngAccount _ptr. A Checki ngAccount _ptr can
be passed where an Account _ptr is expected, so the compiler finds an
argument match. _dupl i cat e() makes a copy of the passed reference and
returns it as an Account _ptr, which is adopted by the Account _var, and no
leak occurs.

You can also use _dupl i cat e() for implicit _var widening through
assignment, as in these examples:

accvl
accv2

Checki ngAccount : : _dupl i cat e(ckv);
Account :: _dupl i cat e(ckv);

You can freely mix _ptr and _var references; you only need to remember that
when you give a _ptr reference to a _var reference, the _var takes

ownership:

/1 Be careful of ownership when mxing _var and _ptr:

{
Checki ngAccount _var ckv = ...; // Get reference...
Account _ptr accp = ckv; /1 OK but ckv still has ownership
/1 Can use both ckv and accp here...
Checki ngAccount _ptr ckp = ...; // Get reference...
ckv = ckp; /1 ckv now owner, accp dangl es
| evel = accp->bal ance(); /] ERRCR - accp dangl es

} // ckv automatically releases its reference, ckp dangl es!

| evel = ckp->bal ance() /1 ERRCR -ckp dangl es

String Conversions

Object references can be converted to and from strings, which facilitates
persistent storage. When a client obtains a stringified reference, it can
convert the string back into an active reference and contact the referenced
object. The reference remains valid as long as the object remains viable.
When the object is destroyed, the reference becomes permanently invalid.

159

Chapter 8 | Developing a Client

160

The obj ect _to_string() andstring_to_object() operations are defined in
C++ as follows:

/1 In <corba/orb. hh>:
namespace OCRBA {

...

class CRB {

publi c:
char * obj ect _to_string(Chject_ptr op);
Chj ect _ptr string_to_object(const char *);
...

b

...

}
For example, the following code stringifies an Account object reference:

BankDeno: : Account _ptr accp = ...; // Account reference

I/l Wite reference as a string to stdout
11

try {
CORBA: : String_var str = orb->object_to_string(accp);
cout << str << endl;

} catch (...) {
[/l Deal with error...

}

The example puts the return value from obj ect _to_stringina String_var.
This ensures that the string is not leaked. This code prints an IOR
(interoperable reference) string whose format is similar to this:

IR

010000002000000049444c3a61636d652e636f 6d2f 4943532f 436f 6e74726f 6¢
€65723a312e300001000000000000004a000000010102000e0000003139322e3
36382e312e3231300049051b0000003a3e0231310c01000000c 7010000234800
008000000000000000000010000000600000006000000010000001100

The stringified references returned by obj ect _to_string() always contain
the prefix | CR , followed by an even number of hexadecimal digits. Stringified
references do not contain any unusual characters, such as control characters
or embedded newlines, so they are suitable for text I/O.

To convert a string back into a reference, call string_to_object():

Using Object References

/1 Assune stringified reference is in aaccv|1]

try {
OCRBA: : (hj ect _ptr obj;
obj = orb->string_to_object(accv[l1]);
if (OCRBA :is_nil(obj))
throw O; [l accv[1] is nil

BankDeno: : Account _ptr accp = BankDeno:: Account:: _narrow(obj);
if (CORBA :is_nil(accp))
throw O; /1 Not an Account reference

/1 Use accp reference. ..
CCRBA: :rel ease(accp); // Avoid |eak

} catch (...) {
/] Deal with error...

}

The CORBA specification defines the representation of stringified I0R
references, so it is interoperable across all ORBs that support the Internet
Inter-ORB Protocol (//OP).

Although the IOR shown earlier looks large, its string representation is
misleading. The in-memory representation of references is much more
compact. Typically, the incremental memory overhead for each reference in a
client can be as little as 30 bytes.

You can also stringify or destringify a nil reference. Nil references look like
one of the following strings:

I CR 00000000000000010000000000000000
I CR 01000000010000000000000000000000

Constraints
IOR string references should be used only for these tasks:

® Store and retrieve an IOR string to and from a storage medium such as
disk or tape.

* Conversion to an active reference.

161

Chapter 8 | Developing a Client

162

It is inadvisable to rely on IOR string references as database keys for the
following reasons:

® Actual implementations of IOR strings can vary across different ORBs—
for example, vendors can add proprietary information to the string, such
as a time stamp. Given these differences, you cannot rely on consistent
string representations of any object reference.

® The actual size of IOR strings—between 200 and 600 bytes— makes
them prohibitively expensive to use as database keys.

In general, you should not compare one |OR string to another. To compare
object references, use i s_equi val ent () (see page 152).

Note: Stringified IOR references are one way to make references to initial
objects known to clients. However, distributing strings as e-mail messages or
writing them into shared file systems is neither a distributed nor a scalable
solution. More typically, applications obtain object references through the
naming service (see Chapter 18 on page 377).

Using corbaloc URL Strings

string_to_object () can also take as an argument a corbaloc-formatted
URL, and convert it into an object reference. A corbaloc URL denotes objects
that can be contacted by IIOP or resol ve_initial references().

A corbaloc URL uses one of the following formats:
corbaloc:rir:/rir-argunent
corbal oc:iiop-address[, iiop-address].../key-string

rir-argument: A value that is valid for resol ve_initial references(), such
as NameSer vi ce.

iiop-address: Identifies a single 1IOP address with the following format:
[iiop]:[ngj or-version-num m nor - ver si on- nun@ host - spec| : port - nunj

[IOP version information is optional; if omitted, version 1.0 is assumed.
host - spec can specify either a DNS-style host name or a numeric IP address;
specification of port - numis optional.

Initializing and Shutting Down the ORB

key-string: corresponds to the octet sequence in the object key member of a
stringified object reference, or an object’s named key that is defined in the
implementation repository.

For example, if you register the named key BankSer vi ce for an IOR in the
implementation repository, a client can access an object reference with
string_to_object() as follows:

/1 assune that xyz.comspecifies a | ocation donain’s host
gl obal _orb->string_to_obj ect
("corbal oc:iiop: xyz. conm BankServi ce");

The following code obtains an object reference to the naming service:
gl obal _orb->string_to_object("corbal oc:rir:/NaneService");

You can define a named key in the implementation repository through the
i tadm n nanmed key create command. For more information, see the Orbix
2000 Administrator’s Guide.

Initializing and Shutting Down the ORB

Before a client application can start any CORBA-related activity, it must
initialize the ORB runtime by calling GRB init(). GRB i ni t() returns an
object reference to the ORB object; this, in turn, lets the client obtain
references to other CORBA objects, and make other CORBA-related calls.

Procedures for ORB initialization and shutdown are the same for both servers
and clients. For detailed information, see “ORB Intialization and Shutdown”
on page 129.

Invoking Operations and Attributes

For each IDL operation in an interface, the IDL compiler generates a method
with the name of the operation in the corresponding proxy. It also maps each
unqualified attribute to a pair of overloaded methods with the name of the
attribute, where one method acts as an accessor and the other acts as a
modifier. For readonl y attributes, the compiler generates only an accessor
method.

163

Chapter 8 | Developing a Client

An IDL attribute definition is functionally equivalent to a pair of set/get
operation definitions, with this difference: attribute accessors and modifiers
can only raise system exceptions, while user exceptions apply only to
operations.

For example, the following IDL defines a single attribute and two operations
in interface Test : : Exanpl e:

nodul e Test {

i nterface Exanpl e {
attribute string nane;
oneway void set_address(in string addr);
string get_address();
b
h
The IDL compiler maps this definition’s members to the following methods in
the C++ proxy class Example. A client invokes on these methods as if their
implementations existed within its own address space:

namespace Test {

...
class Exanple : public virtual CORBA : (hject
{
publi c:
1.,
virtual char* nane() = O;
virtual void nane(const char* _itvar_nane) = 0;
virtual void set_address(const char* addr) = 0;
virtual char* get_address() = 0;
...
b
b

Passing Parameters in Client Invocations

The C++ mapping has strict rules on passing parameters to operations.
Several objectives underlie these rules:

* Avoid data copying.

164

Passing Parameters in Client Invocations

* Deal with variable-length types, which are allocated by the sender and
deallocated by the receiver.

®* Map the source code so it is location-transparent; source code does not
need to consider whether or not client and server are collocated.

In general, a variable-length parameter is always dynamically allocated, and
the receiver of the value is responsible for deallocation. For variable-length
out parameters and return values, the server allocates the value and the
client deallocates it.

For string, reference, and variable-length array i nout parameters, the client
dynamically allocates the value and passes it to the server. The server can
either leave the initial value's memory alone or it can deallocate the initial
value and allocate a different value to return to the client; either way,
responsibility for deallocation of a variable-length i nout parameter remains
with the client.

All other parameters are either fixed-length or i n parameters. For these,
dynamic allocation is unnecessary, and parameters are passed either by
value for small types, or by reference for complex types.

Simple Parameters

For simple fixed-length types, parameters are passed by value if they are i n
parameters or return values, and are passed by reference if they are i nout or
out parameters.

For example, the following IDL defines an operation with simple parameters:

i nterface Exanpl e {

I ong op(
inlong in_p, inout |ong inout_p, out long out_p
);

b
The proxy member method signature is the same as the signature of any
other C++ method that passes simple types in these directions:

virtual CORBA: :Long

op(
OCRBA: : Long in_p,
OCORBA: :Long & inout_p,
CCRBA :Long & out_p

165

Chapter 8 | Developing a Client

) =0

For example, a client can invoke op as follows:

Exanpl e_var ev = ...; /1 Get reference
OCRBA: : Long i nout = 99; /!l Note initialization
CCRBA: : Long out ; /1 No initialization needed

OCRBA: : Long ret_val ;
ret_val = ev->0p(500, inout, out); // Invoke QORBA operation

cout << "ret val: " <<ret_val << endl;
cout << "inout: " << inout << endl;

cout << "out: " << out << endl;

The client passes the constant 500 as the i n parameter. For the i nout
parameter, the client passes the initial value 99, which the server can
change. No initialization is necessary for the out parameter and the return
value. No dynamic allocation is required; the client can pass variables on the
stack, on the heap, or in the data segment (global or static variables).

Fixed-Length Complex Parameters

166

For fixed-length complex types such as fixed-length structures, parameters
are passed by reference or constant reference and are returned by value.

For example, the following IDL defines an operation with fixed-length
complex parameters:

struct FLS { /1 Fixed-Length Structure
| ong | ong_val ;
doubl e doubl e_val ;

}

i nterface Exanpl e {
FLS op(in FLS in_p, inout FLS inout_p, out FLS out_p);

b
The corresponding proxy method has the following signature:

typedef FLS & FLS out;

...

virtual FLS

op(const FLS & in_p, FLS & inout_p, FLS out out_p) = 0O;

Passing Parameters in Client Invocations

Using the generated proxy method in the client is easy, and no dynamic
memory allocations are required:

Exanpl e_var ev = ...; /1 Get reference

FLS in; [l Initialize in param
in.long_val = 99;
i n.doubl e val = 33.0;

FLS inout; [/ Initialize inout param
i nout.long val = 33;
i n.doubl e_val = 11.0;

FLS out; /1 Qut param
FLS ret val; /! Return val ue
ret_val = op(in, inout, out); /1 Make call

/1 inout may have been changed, and out and ret_val
/1 contain the val ues returned by the server.

Fixed-Length Array Parameters

Fixed-length array parameters follow the same parameter-passing rules as
other fixed-length types. However, an array that is passed in C++
degenerates to a pointer to the first element, so the method signature is
expressed in terms of pointers to array slices.

For example, the following IDL defines an operation with fixed-length array
parameters:

typedef long Larr[3];

i nterface Exanpl e {
Larr op(in Larr in_p, inout Larr inout_p, out Larr out_p);

b
The IDL compiler maps this IDL to the following C+ + definitions:
typedef OCRBA :Long Larr[3];

typedef CCRBA :Long Larr_slice;

typedef Larr_slice * Larr_out;

...
virtual Larr_slice * op(

167

Chapter 8 | Developing a Client

168

const Larr in_p, Larr_slice * inout_p, Larr_out out_p
) =0
Forin, i nout, and out parameters, memory is caller-allocated and need not
be on the heap; the method receives and, for i nout and out parameters,
modifies the array via the passed pointer. For the return value, a pointer must
be returned to dynamically allocated memory, simply because there is no
other way to return an array in C++. Therefore, the client must deallocate
the return value when it is no longer wanted:

Exanpl e_var ev = ...; /1 CGet reference

Larr in={ 1, 2, 31}; /1l Initialize in param
Larr inout ={ 4, 5 6}; /1 Initialize inout param
Larr out; /1l out param

Larr_slice * ret_val; /'l return val ue

ret_val = ev->op(in, inout, out); /1 Make call

/1 Use results...
Larr_free(ret_val); /1 Mist deal | ocate here!

In the previous example, the call to Larr_free is required to prevent a
memory leak. Alternatively, you can use _var types to avoid the need for
deallocation. So, you can rewrite the previous example as follows:

Exanpl e_var ev = ...; /1 CGet reference

Larr in={ 1, 2, 31}; /1l Initialize in param

Larr inout ={ 4, 5 6}; /1 Initialize inout param
Larr out; [/ out param note _var type!
Larr_var ret_val; /1 return val ue

ret_val = ev->op(in, inout, out); /1 Make call

/l Use results...

/1 No need to deallocate anything here, ret_val takes care of it.

_var types are well-suited to manage the transfer of memory ownership from
sender to receiver because they work transparently for both fixed- and
variable-length types.

Passing Parameters in Client Invocations

String Parameters

The C++ mapping does not encapsulate strings in a class, so string
parameters are passed as char *. Because strings are variable-length types,
the following memory management issues apply:

®* instrings are passed as const char *, so the callee cannot modify the
string’s value. The passed string need not be allocated on the heap.

®* inout strings must be allocated on the heap by the caller. The callee
receives a C+ + reference to the string pointer. This is necessary
because the callee might need to reallocate the string if the new value is
longer than the initial value. Passing a reference to the callee lets the
callee modify the bytes of the string and the string pointer itself.
Responsibility for deallocating the string remains with the caller.

® out strings are dynamically allocated by the callee. Responsibility for
deallocating the string passes to the caller.

® Strings returned as the return value behave like out strings: they are
allocated by the callee and responsibility for deallocation passes to the
caller.

For example, the following IDL defines an operation with string parameters:
i nterface Exanpl e {

string op(
in string i n_p,
inout string i nout _p,
out string out_p
)

b
The IDL compiler maps this interface to the following class, in which string
parameters are passed as char *:

class String_out; /1 1n the OORBA namespace
/...
virtual const char *
op(
const char * in_p,
char * & i nout _p,
OCRBA: : Stri ng_out out_p
) =0

169

Chapter 8 | Developing a Client

170

The following example shows how to invoke an operation that passes a string
in each possible direction:

Exanpl e_var ev = ...; Il Get ref
char * inout = CORBA :string_dup("Hello"); [l Initialize
char * out;

char * ret_val;
ret_val = ev->op("lnput string", inout, out); // Mke call
/1 Use the strings...

OCRBA: : string_free(inout); /1 " retain ownership
OCRBA: :string_free(out); /1 Caller passed responsibility
OORBA: :string_free(ret_val); // Caller passed responsibility

This example illustrates the following points:
®* Thein parameter can be allocated anywhere; the example passes a

string literal that is allocated in the data segment.

® The caller must pass a dynamically allocated string as the i nout
parameter, because the callee assumes that it can, if necessary,
deallocate that parameter.

® The caller must deallocate the i nout and out parameter and the return
value.

The following example shows the same method call as before, but uses
String_var variables to deallocate memory:

Exanpl e_var ev = ...;

OCORBA: : String_var inout = GCORBA :string_dup("Hello");
OCRBA: : String_var out;

OCORBA: : String_var ret_val;

ret_val = ev->op("lnput string", inout, out);

/1l Use the strings...

/1 No need to deallocate there because the String_var
/'l variabl es take ownership.

Passing Parameters in Client Invocations

_out Types

Be careful not to pass a default-constructed String_var as anin orinout
parameter:

Exanpl e_var ev = ...;

CORBA: : String_var in; [/l Bad: no initialization
CORBA: : String_var inout; /! Bad: no initialization
CORBA: : String_var out;

CORBA: : String_var ret_val;

ret_val = ev->op(in, inout, out); /1 Qops :-(

In this example, i n and i nout are initialized to the null pointer by the default
constructor. However, it is illegal to pass a null pointer across an interface;
code that does so is liable to crash or raise an exception.

Note: This restriction applies to all types that are passed by pointer, such as
arrays and variable-length types. Never pass a null pointer or an uninitialized
pointer. Only one exception applies: you can pass a nil reference, even if nil
references are implemented as null pointers.

IDL out parameters result in proxy signatures that use C++ _out types. _out
types ensure correct deallocation of previous results for _var types.

For example, the following IDL defines a single out parameter:

i nterface Person {
voi d get _nane(out string nane);
...

b

The IDL compiler generates the following class:

class Person {

public:
voi d get _nanme(CORBA: : String_out nare);
...

b

The following code fragment uses the Per son interface, but leaks memory:

171

Chapter 8 | Developing a Client

char * nane;
Person_var person_1l = ...;
Person_var person_2 = ...;

person_1->get _nane(nane);
cout << "Name of person 1:

<< nane << endl;

person_2->get _nane(nane); /1 Bad news!
cout << "Name of person 2: " << nane << endl;

OCRBA: : string_free(nane); /1 Deall ocate

Because variable-length out parameters are dynamically allocated by the
proxy stub, the second call to get _name() causes the result of the first
get _nane call to leak.

The following code corrects this problem by deallocating variable-length out
parameters between invocations:

char * nane;
Person_var person_1 .
Per son_var person_2

person_1->get _nane(nane);
cout << "Nane of person 1:

<< nane << endl;

COORBA: : String_free(nane); /1 Mich better!
per son_2->get _nane(nane); /1 No problem
cout << "Name of person 2: " << nane << endl;

OCORBA: : String_free(nane); /1 Deall ocate
However, if we use _var types, no deallocation is required at all:

OCRBA: : String_var nane; /1 Note String_var
Person_var person_1l =
Person_var person_2 = ...;

s ey

person_1->get _nane(nane);
cout << "Nane of person 1:

<< nane << endl;

per son_2->get _nane(nane); /1 No | eak here
cout << "Name of person 2: " << nane << endl;

/1 No need to deal |l ocate nane

172

Passing Parameters in Client Invocations

When the name variable is passed to get _nane a second time, the mapping
implementation transparently deallocates the previous string. However, how
does the mapping manage to avoid deallocation for pointer types but
deallocates the previous value for _var types?

The answer lies in the formal parameter type GCRBA: : Stri ng_out, which is a
class as outlined here:

class String_out { /1 In the CCRBA nanespace
public:
String_out(char * &s): mref(s) { mref =0}
String_out(String_var & s): mref(s.mref) {
string_free(mref);

mref = 0;
}
/1 Qher menber nethods here. ..
privat e:

char * & mref;
b
This implementation of GORBA : Stri ng_out shows how char * out
parameters are left alone, but _var out parameters are deallocated.

If you pass a char * as an out parameter, the compiler looks for a way to
convert the char * into a String_out object. The single-argument
constructor for char * acts as a user-defined conversion operator, so the
compiler finds an argument match by constructing a temporary String_out
object that is passed to the method. Note that the char * constructor is
passed a reference to the string, which it binds to the private member
variable mref . The constructor body then assigns zero to the mref member.
m ref is a reference to the passed string, so construction from a char *
clears (sets to null) the actual argument that is passed to the constructor,
without deallocating the previous string.

On the other hand, if you pass a String_var as an out parameter, the
compiler uses the second constructor to construct the temporary String_out .
That constructor binds the mref member variable to the passed
String_var’s internal pointer and deallocates the current string before setting
the passed string pointer to null.

173

Chapter 8 | Developing a Client

_out types are generated for all complex types, such as strings, sequences,
and structures. If a complex type has fixed length, then the generated _out
type is simply an alias for a reference to the actual type (see “Fixed-Length
Complex Parameters” on page 166 for an example).

Note: You can ignore most of the implementation details for _out types. Itis
only important to know that they serve to prevent memory leaks when you
pass a _var as an out parameter.

Variable-Length Complex Parameters

174

The parameter-passing rules for variable-length complex types differ from
those for fixed-length complex types. In particular, for out parameters and
return values, the caller is responsible for deallocating the value.

For example, the following IDL defines an operation with variable-length
complex parameters:

struct WLS { /1 Variable-Length Structure
| ong | ong_val ;
string string_val;

}

i nterface Exanpl e {

VLS op(in VLS in_p, inout VLS inout_p, out VLS out_p);
b
The IDL compiler maps this IDL to the following C+ + definitions:

class VLS out;

...

virtual WLS *

op(const VLS & in_p, WS & inout_p, VLS out out_p) = 0;

The following code calls the op() operation:
Exanpl e_var ev = ...; /1 Get reference
VLS in; /1l Initialize in param

inlong_val = 99;
in.string_val = OORBA :string_dup("N nety-nine");

Passing Parameters in Client Invocations

VLS i nout ; /1l Initialize inout param
i nout. | ong_val = 86;
in.string_val = OCRBA: :string_dup("E ghty-six");

VLS * out; /1 Note *pointer* to out param
VLS * ret _val; /1 Note *pointer* to return val ue
ret_val = op(in, inout, out); /1 Make cal |

/1 Use val ues. ..

del ete out; /1 NMake sure nothing is | eaked
delete ret _val; /l Dtto...

As with fixed-length complex types, i n and i nout parameters can be ordinary
stack variables. However, both the out parameter and the return value are
dynamically allocated by the call. You are responsible for deallocating these
values when you no longer require them.

You can also use _var types to take care of the memory-management chores
for you, as in this modified version of the previous code:

Exanpl e_var ev = ...; /1 CGet reference

VLS in; /1l Initialize in param
inlong_val = 99;
in.string_val = OORBA :string_dup("N nety-nine");

VLS i nout ; [l Initialize inout param
i nout.long val = 86;
in.string_val = OORBA :string_dup("E ghty-six");

VLS var out; /1 Note _var type
VLS var ret_val; /1 Note _var type
ret_val = op(in, inout, out); /1 NMake cal |

/1 Use val ues. ..

/1 No need to deal |l ocate anything here

175

Chapter 8 | Developing a Client

Note: Type Any is passed using the same rules—that is, out parameters and
return values are dynamically allocated by the stub and must be deallocated
by the caller. Of course, you can use OCORBA : Any_var to achieve automatic
deallocation.

Variable-Length Array Parameters

176

Variable-length arrays are passed as parameters in the same way as
fixed-length arrays, except for out parameters: these are passed as a
reference to a pointer. As for strings, the generated out class takes care of
deallocating values from a previous invocation held in _var types.

For example, the following IDL defines an operation with variable-length
string array parameters:

typedef string Sarr[3];

interface Exanpl e {
Sarr op(in Sarr in_p, inout Sarr inout_p, out Sarr out_p);
b

The IDL compiler maps this IDL to the following C+ + definitions:

typedef QOCORBA :String_ngr Sarr[3];
typedef QOCORBA :String_Myr Sarr_slice;
class Sarr_out;
...
virtual Sarr_slice * op(
const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) =0

The following code calls the op() operation:

Exanpl e_var ev = ...; /1 Cet reference

OCRBA: : string_dup("Bjarne");
QCORBA: : string_dup("Stan");
QCORBA: : string_dup("Andrew');

>
=
=
TR

Sarr inout;
inout[0] = GORBA: :string_dup("Dennis");

Passing Parameters in Client Invocations

inout[1] = CORBA :string_dup("Ken");
inout[2] = CCRBA: :string_dup("Brian");
Sarr_slice * out; /1
Sarr_slice * ret_val; /1
ret_val = ev->op(in, inout, out); /1
/1 Use val ues. ..

Sarr_free(out); 11
Sarr_free(ret_val); /1

Pointer to array slice
Pointer to array slice

Make cal |

Deal | ocate to avoi d | eak
Dtto...

As always, you can rewrite the code to use _var types, and so prevent

memory leaks:

Exanpl e_var ev = ...;

Sarr in;

in[0] = OORBA: :string_dup("Bjarne");
in(1] = OCORBA :string_dup("Stan");
in[2] = OCRBA: :string_dup("Andrew');
Sarr inout;

i nout[0] = OCRBA: :string_dup("Dennis");
inout[1] = CORBA :string_dup("Ken");
inout[2] = CORBA: :string_dup("Brian");
Sarr_var out; /1
Sarr_var ret_val; /1
ret_val = ev->op(in, inout, out); /1

/1 Use val ues. ..

/1 No need to free anything here

Object Reference Parameters

/1 Get reference

Note _var type
Note _var type

Make cal |

You pass object references as parameters as you do strings. For i nout
reference, the caller must pass a C++ reference to a _pt r reference. For an
out parameters and return values, the caller is responsible for deallocation.

177

Chapter 8 | Developing a Client

178

For example, the following IDL defines an operation with object reference
parameters:

i nterface Exanpl e {
string greeting();

Exanpl e op(
in Exanpl e in_p,
inout Exanple inout_p,
out Exanpl e out _p

)s

h
The IDL compiler maps this IDL to the following C+ + definitions:

cl ass Exanpl e_out;
...
virtual Exanple_ptr op(
Exanpl e_ptr in_p, Exanple_ptr & inout_p, Exanple_out out_p
) =0
The following code calls the op() operation:

Exanpl e_var ev = ...;

Exanple_var in = ...; // Initialize in param
Exanpl e_var inout = ...; [/ Initialize inout param
Exanpl e_ptr out; /1 Note _ptr reference
Exanpl e_ptr ret_val; /1 Note _ptr reference

ret_val = ev->op(in, inout, out);
/1 Use references...

OCRBA: :rel ease(out) ; /1 Deal |l ocate
OCRBA: :rel ease(ret _val); /1 Dtto...

Note that the code explicitly releases the references returned as the out
parameter and the return value.

You can also rewrite this code to use _var references in order to avoid
memory leaks:

Exanpl e_var ev = ...;

Exanpl e_var in = ...; /l Initialize in param
Exanpl e_var inout = ...; /1l Initialize inout param
Exanpl e_var out; // Note _var reference
Exanpl e_var ret_val; /1 Note _var reference

Passing Parameters in Client Invocations

ret_val = ev->op(in, inout, out);
Il Use references...

/1 No need to deal |l ocate here

Parameter-Passing Rules: Summary

The following sections summarize the parameter-passing rules for the C++
mapping.
Never Pass Null or Uninitialized Pointers as in or inout Parameters.

As shown earlier (see page 171), it is illegal to pass null pointers or
uninitialized pointers as i nout or i n parameters. The most likely outcome of
ignoring this rule is a core dump.

Nil object references are exempt from this rule, so it is safe to pass a nil
reference as a parameter.

Do Not Ignore Variable-Length Return Values

Ignoring return values can leak memory. For example, the following interface
defines operation do_sonet hi ng() to return a string value:

/1 interface Exanpl e {
I string do_sorret hi ng();

I}

The following client call on do_sonet hi ng() erroneously ignores its return
value:

Exanpl e_var ev = ...; /1 Get reference

ev->do_sonet hi ng(); /1 Menory | eak!

Be careful never to ignore the return, because the memory that the stub
allocates to the return value can never be reclaimed.

179

Chapter 8 | Developing a Client

180

Allocate String and Reference inout Parameters on the Heap and Deallocate
them After the Call

String and reference i nout parameters must be allocated on the heap;
ownership of the memory remains with the caller.

Deallocate Variable-Length Return Values and out Parameters

Variable-length types passed as return values or out parameters are passed
by pointer and are dynamically allocated by the stub. You must deallocate
these values to avoid memory leaks.

Use _var Types for Complex inout and out Parameters and Return Values

Always use a _var type when a value must be heap-allocated. This includes
any complex or variable-length i nout or out parameter or return value. After
you have assigned a parameter to a _var type, you don’t have to worry about
deallocating memory.

For example, the following interface defines three operations:

/1 Some sanple IDL to show how _var types nake |ife easier.
i nterface Exanpl e {
string get_string();
voi d nodi fy_string(inout string s);
void put_string(in string s);
b
Because _var types convert correctly to pass in any direction, the following
code does exactly the right things:

/1l _var automates nenmory mnanagenent.

{
Exanpl e_var ev = ...; /1 Get reference
CORBA: : String_var s; /1 Paranet er
s = ev->get_string(); // Get value
ev->nodi fy_string(s); // Change it
ev->put _string(s); // Put it sonewhere
}

/!l Bverything is deallocated here

Passing Parameters in Client Invocations

Table 10 summarizes parameter-passing rules. It does not show that out
parameters are passed as _out types. Instead, it shows the corresponding
alias for fixed-length types, or the type of constructor argument for the _out
type for variable-length types.

Table 10: Parameter passing for low-level mapping

IDL Type in i nout out Return Value
sinpl e sinpl e sinple & sinple & sinpl e

enum enum enum & enum & enum

fixed const Fi xed & Fi xed & Fi xed & Fi xed

string const char * char * & char * & char *
wstring const Whar * Whar * & Whar * & Whar *

any const Any & Any & Ay * & Any *

obj r ef objref_ptr objref_ptr & objref_ptr & objref_ptr
seqguence const sequence & sequence & sequence * & sequence *
struct, fixed const struct & struct & struct & struct

uni on, fixed const union & union & union & uni on

array, fixed const array array_slice * array_slice * array_slice *
struct, variable const struct & struct & struct * & struct *

uni on, variable const union & union & union * & uni on *
array, variable const array array_slice * array_slice * & array_slice *

181

Chapter 8 | Developing a Client

As Table 10 shows, the parameter type varies for both out parameters and
return values, depending on whether a complex structure, union, or array is
variable length or fixed length. Table 11 shows the considerably simpler
parameter-passing rules for _var types:

Table 11: Parameter passing with _var types

IDL Type in i nout /out Return Value
string const String_var & String_var & String_var
wstring const Watring_var & WBtring_var & W&t ri ng_var
any const Any var & Any var & Any_var

obj r ef const objref_var & objref _var & obj ref _var
sequence const sequence_var & ssequence_var & sequence_var
struct const struct_var & struct_var & struct _var
uni on const union_var & uni on_var & uni on_var
array const array_var & array_var & array_var

_var types are carefully crafted so that parameter passing is uniform,
regardless of the underlying type. This aspect of _var types, together with
their automatic deallocation behavior, makes them most useful for parameter
passing.

Setting Client Policies

182

Orbix supports a number of quality of service policies, which can give a client
programmatic control over request processing:

RebindPolicy specifies whether the ORB transparently reopens closed
connections and rebinds forwarded objects.

SyncScopePolicy determines how quickly a client resumes processing after
sending one-way requests.

Setting Client Policies

Timeout policies offer different degrees of control over the length of time that
an outstanding request remains viable.

You can set quality of service policies at three scopes:

® On the client ORB, so they apply to all invocations.

®* On a given thread, so they apply only to invocations on that thread

* Onindividual objects, so they apply only to invocations on those objects.

You can set policies in any combination at all three scopes; the effective
policy is determined on each invocation. If settings are found for the same
policy type at more than one scope, the policy at the lowest scope prevails.

For detailed information about setting these and other policies on a client,
see “Setting Client Policies” on page 138.

Note: Because all policy types and their settings are defined in the
Messaging module, client code that sets quality of service policies must
include ony/ messagi ng. hh.

RebindPolicy

A client’s Rebi ndPol i cy determines whether the ORB can transparently
reconnect and rebind. A client’s rebind policy is set by a Rebi ndMbde
constant, which describes the level of transparent binding that can occur
when the ORB tries to carry out a remote request:

TRANSPARENT The default policy: the ORB silently reopens closed
connections and rebinds forwarded objects.

NO_REBIND The ORB silently reopens closed connections; it disallows
rebinding of forwarded objects if client-visible policies have changed since
the original binding. Objects can be explicitly rebound by calling GORBA: :
(bj ect: :val i date_connection() on them.

NO_RECONNECT The ORB disallows reopening of closed connections and

rebinding of forwarded objects. Objects can be explicitly rebound by calling
OCRBA: : (hj ect : : val i dat e_connecti on() on them.

183

Chapter 8 | Developing a Client

Note: Currently, Orbix requires rebinding on reconnection. Therefore,
NO_REBI ND and NO_RECONNECT policies have the same effect.

SyncScopePolicy

184

A client’s SyncScopePol i cy determines how quickly it resumes processing
after sending one-way requests. You specify this behavior with one of these
SyncScope constants:

SYNC_NONE The default policy: Orbix clients resume processing
immediately after sending one-way requests, without knowing whether the
request was processed, or whether it was even sent over the wire.

SYNC_WITH_TRANSPORT The client resumes processing after a transport
accepts the request. This policy is especially helpful when used with
store-and-forward transports. In that case, this policy offer clients assurance
of a high degree of probable delivery.

SYNC_WITH_SERVER The client resumes processing after the request finds
a server object to process it—that is, the server ORB sends a NO EXCEPTI ON
reply. If the request must be forwarded, the client continues to block until
location forwarding is complete.

SYNC_WITH_TARGET The client resumes processing after the request
processing is complete. This behavior is equivalent to a synchronous
(two-way) operation. With this policy in effect, a client has absolute
assurance that a its request has found a target and been acted on. The object
transaction service (OTS) requires this policy for any operation that
participates in a transaction.

Note: This policy only applies to GIOP 1.2 (and higher) requests.

Setting Client Policies

Timeout Policies

A responsive client must be able to specify timeouts in order to abort
invocations. Orbix supports several standard OMG timeout policies, as
specified in the Messaging module; it also provides proprietary policies in the
| T_OORBA module that offer more fine-grained control. Table 12 shows which
policies are supported in each category:

Table 12: Timeout Policies

OMG Timeout Rel ati veRoundt ri pTi meout Pol i cy
Policies Repl yEndTi mePol i cy
Rel at i veRequest Ti neout Pol i cy
Request EndTi mePol i cy

Proprietary Bi ndi ngEst abl i shnent Pol i cy

Timeout Policies Rel ati veBi ndi ngExcl usi veRoundt ri pTi neout Pol i cy
Rel at i veBi ndi ngExcl usi veRequest Ti meout Pol i cy
I nvocat i onRet ryPol i cy

If a request’s timeout expires before the request can complete, the client
receives the system exception OCRBA: : TI MEQUT.

Note: When using these policies, be careful that their settings are consistent
with each other. For example, the Rel ati veRoundt ri pTi neout Pol i cy
specifies the maximum amount of time allowed for round-trip execution of a
request. Orbix also provides its own policies, which let you control specific
segments of request execution—for example, Bi ndi ngEst abl i shnent Pol i cy
lets you set the maximum time to establish bindings. It is possible to set the
maximum binding time to be greater than the maximum allowed for roundtrip
request execution. Although these settings are inconsistent, no warning is
issued; and Orbix silently adheres to the more restrictive policy.

Setting Absolute Times

Two policies, Request EndTi mePol i cy and Repl yEndTi mePol i cy, set absolute
deadlines for request and reply delivery, respectively, through the Ti meBase: :
U cT type. The Orbix libraries include helper class | T_W cT, which provides

ease-of-use operators and methods for working with the types defined in the

185

Chapter 8 | Developing a Client

Ti neBase module. For example, you can use | T_WcT: :current () and
| T_W CT: : operat or +() to obtain an absolute time that is relative to the
current time.

For more information, refer to the Orbix 2000 Programmer’s Reference.

RelativeRoundtripTimeoutPolicy

This policy specifies how much time is allowed to deliver a request and its
reply. Set this policy’s value in 100-nanosecond units. No default is set for
this policy; if it is not set, a request has unlimited time to complete.

The timeout countdown begins with the request invocation, and includes the
following activities:

® Marshalling in/inout parameters
® Any delay in transparently establishing a binding

If the request times out before the client receives the last fragment of reply
data, the request is cancelled via a GIOP Cancel Request message and all
received reply data is discarded.

For example, the following code sets a Rel at i veRoundt ri pTi meout Pol i cy
override on the ORB PolicyManager, setting a four-second limit on the time
allowed to deliver a request and receive the reply:

Il CH
TimeBase: : TimeT rel ative_expiry = 4L * 10000000L; // 4 seconds
try{
CCORBA: : Any relative_roundtrip_timeout _val ue;
relative_roundtrip_tineout_value <<= rel ative_expiry;
CCRBA: : Pol i cyLi st policies(l);
policies.length(1);
pol i ci es[0] = orb->create_policy(
Messagi ng: : RELATI VE_RT_TI MEQUT_PQLI CY_TYPE,
rel ative_roundtrip_tineout_val ue

)s
pol i cy_manager - >set _pol i cy_overri des(
pol i ci es,
QCRBA: : ADD_OVERR DE
)s
}
catch (OORBA: : PolicyError & pe){
return 1;

186

Setting Client Policies

}
catch (OORBA :InvalidPolicies&ip){

return 1;

}

catch (CCRBA: : Syst enExcepti on& se) {
return 1;

}

ReplyEndTimePolicy

This policy sets an absolute deadline for receipt of a reply. This policy is
otherwise identical to Rel ati veRoundt ri pTi meout Pol i cy. Set this policy’s
value with a Ti neBase: : U cT type (see “Setting Absolute Times” on

page 185).

No default is set for this policy; if it is not set, a request has unlimited time to
complete.

RelativeRequestTimeoutPolicy

This policy specifies how much time is allowed to deliver a request. Request
delivery is considered complete when the last fragment of the GIOP request is
sent over the wire to the target object. The timeout-specified period includes
any delay in establishing a binding. This policy type is useful to a client that
only needs to limit request delivery time. Set this policy’s value in
100-nanosecond units.

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

For example, the following code sets a Rel at i veRequest Ti meout Pol i cy
override on the ORB PolicyManager, setting a three-second limit on the time
allowed to deliver a request:

Il C++
Ti meBase: : TineT rel ative_expiry = 3L * 10000000L; // 3 seconds
try{

OCRBA: : Any rel ative_request_timeout_val ue;

rel ative_request _timeout_val ue <<= rel ative_expiry;

OCRBA: : Pol i cyLi st policies(l);

policies.length(1);

187

Chapter 8 | Developing a Client

pol i ci es[0] = orb->create_policy(
Messagi ng: : RELATI VE_REQ TI MEQUT_PQLI CY_TYPE,
rel ative_request _timeout _val ue

)
pol i cy_ranager - >set _pol i cy_overri des(
pol i ci es,
CCORBA: : ADD OVERR DE
)
}
catch (QORBA : PolicyErroré& pe){
return 1;
}
catch (CGORBA: :InvalidPolicies&ip){
return 1;
}
cat ch (QORBA: : Syst enExcepti on& se){
return 1;
}
RequestEndTimePolicy

This policy sets an absolute deadline for request delivery. This policy is
otherwise identical to Rel ati veRequest Ti neout Pol i cy. Set this policy’s
value with a Ti neBase: : U cT type (see “Setting Absolute Times” on
page 185).

No default is set for this policy; if it is not set, request delivery has unlimited
time to complete.

BindingEstablishmentPolicy

This policy limits the amount of effort Orbix puts into establishing a binding.
The policy equally affects transparent binding (which results from invoking on
an unbound object reference), and explicit binding (which results from calling
(bj ect:: _val idate_connection().

A client’s Bi ndi ngEst abl i shnent Pol i cy is determined by the members of its
Bi ndi ngEst abl i shment Pol i cyVal ue, which is defined as follows:

188

Setting Client Policies

struct Bi ndi ngEst abl i shnent Pol i cyVal ue

{
Ti meBase: : Ti neT rel ative_expiry;
unsi gned short max_bindi ng_iterations;
unsi gned short max_f orwards;
TinmeBase: : TinmeT initial _iteration_del ay;
fl oat backoff _rati o;

|

relative_expiry limits the amount of time allowed to establish a binding. Set
this member in 100-nanosecond units. The default value is infinity.

max_binding_iterations limits the number of times the client tries to
establish a binding. Set to -1 to specify unlimited retries. The default value is
5.

Note: If location forwarding requires that a new binding be established for a
forwarded IOR, only one iteration is allowed to bind the new IOR. If the first
binding attempt fails, the client reverts to the previous IOR. This allows a
load balancing forwarding agent to redirect the client to another, more
responsive server.

max_forwards limits the number of forward tries that are allowed during
binding establishment. Set to -1 to specify unlimited forward tries. The
default value is 20.

initial_iteration_delay sets the amount of time, in 100-nanosecond units,
between the first and second tries to establish a binding. The default value is
0.1 seconds.

backoff _ratio lets you specify the degree to which delays between binding
retries increase from one retry to the next. The successive delays between
retries form a geometric progression:

0,

initial _iteration_delay x backoff ratio®,
initial iteration delay x backoff ratiol,
initial _iteration_delay x backoff_rati o?,

189

Chapter 8 | Developing a Client

initial iteration_ delay x backoff ratiolm™xbindingiterations - 2)

The default value is 2.

For example, the following code sets an Bi ndi ngEst abl i shnent Pol i cy
override on an object reference:

Il C++

try{
CCORBA: : Any bi nd_est _val ue;

| T_CORBA: : Bi ndi ngEst abl i shnent Pol i cyVal ue val ;
val .rel _expiry = (Ti meBase: : Ti meT) 30 * 10000000; // 30s
val . max_rebinds = (CORBA : UShort)5; /1 5 binding tries
val . max_forwards = (CORBA: : Ushort) 20; /1 20 forwards
val .initial _iteration_del ay

= (Ti meBase: : Ti meT) 1000000; // 0.1s del ay
val . backoff _ratio = (CCRBA: : Fl oat) 2. 0; /'l back-off ratio

bi nd_est _val ue <<= val;

CCRBA: : Pol i cyLi st policies(l);
policies.length(1);
pol i ci es[0] = orb->create_policy(
| T_CCRBA: : BI NDI NG_ESTABLI SHVENT_PQLI CY_I D,
bi nd_est _val ue

)
CORBA: : (hj ect _var obj = slave->_set_policy_overrides(
pol i ci es,
OCRBA: : ADD OVERR DE
)
lots_of _retries_slave = dientPolicy::S ave::_narrowobj);
E:atch (QOCRBA: : Pol i cyError & pe){
return 1;
}
catch (CGORBA: :InvalidPolicies&ip){
return 1;
}
catch (OORBA: : Syst enException& se){
return 1;
}

190

Setting Client Policies

RelativeBindingExclusiveRoundtripTimeoutPolicy

This policy limits the amount of time allowed to deliver a request and receive
its reply, exclusive of binding attempts. The countdown begins immediately
after a binding is obtained for the invocation. This policy’s value is set in
100-nanosecond units.

RelativeBindingExclusiveRequestTimeoutPolicy

This policy limits the amount of time allowed to deliver a request, exclusive of
binding attempts. Request delivery is considered complete when the last
fragment of the GIOP request is sent over the wire to the target object. This
policy’s value is set in 100-nanosecond units.

InvocationRetryPolicy
This policy applies to invocations that receive the following exceptions:

* A TRANSI ENT exception with a completion status of GCOMPLETED NO
triggers a transparent reinvocation.

* A COW FAl LURE exception with a completion status of GCOVPLETED NO
triggers a transparent rebind attempt.

A client’s I nvocat i onRet ryPol i cy is determined by the members of its
I nvocat i onRet ryPol i cyVal ue, which is defined as follows:

struct InvocationRetryPolicyVal ue

{
unsi gned short max_retries;
unsi gned short max_rebi nds;
unsi gned short max_f orwards;
TineBase: : TinmeT initial _retry_del ay;
fl oat backof f _rati o;

¥

max_retries limits the number of transparent reinvocation that are attempted
on receipt of a TRANSI ENT exception. The default value is b.

max_rebinds limits the number of transparent rebinds that are attempted on
receipt of a OOW FAl LURE exception. The default value is 5.

191

Chapter 8 | Developing a Client

192

Note: This setting is valid only if the effective RebindPolicy is TRANSPARENT;
otherwise, no rebinding occurs.

max_forwards limits the number of forward tries that are allowed for a given
invocation. Set to -1 to specify unlimited forward tries. The default value is
20.

initial_retry_delay sets the amount of time, in 100-nanosecond units,
between the first and second retries. The default value is 0.1 seconds.

Note: The delay between the initial invocation and first retry is always O.

This setting only affects the delay between transparent invocation retries; it
has no affect on rebind or forwarding attempts.

backoff_ratio lets you specify the degree to which delays between invocation
retries increase from one retry to the next. The successive delays between
retries form a geometric progression:

0,

initial iteration_delay x backoff_rati o?,
initial iteration_delay x backoff_rati ol,
initial _iteration_delay x backoff ratio?

L]

initial iteration _delay x backoff ratio(mx_retries - 2)

The default value is 2.

For example, the following code sets an | nvocat i onRet ryPol i cy override on
an object reference:

/] C++

try{
CCORBA: : Any lots_of retries_val ue;

| T_OCORBA: : | nvocat i onRet ryPol i cyVal ue val ;

val .max_retries (GCRBA: : Ushor t) 10000; // 10000 retries
val . max_r ebi nds (CORBA: : Ushort) 5; /1 5 rebinds

val . max_f or war ds (CORBA: : Ushort) 20; /1 20 forwards

Implementing Callback Objects

val .initial _retry del ay
= (Ti neBase: : Ti meT) 1000000; // 0.1s del ay

val . backoff_ratio = (OCRBA: : Fl oat) 2. 0; /'l back-off ratio
lots of retries value <<= val;

OCRBA: : Pol i cyLi st policies(l);
policies.length(1);
pol i cies[0] = orb->create_policy(
| T_CORBA: : | NVOCATI ON_RETRY_PCLI CY_I D,
lots _of retries_val ue

)

OCRBA: : (hj ect _var obj = slave-> set_policy_overrides(
pol i ci es,
QCRBA: : ADD OVERR DE

);

lots_of _retries_slave = dientPolicy::S ave:: _narrowobj);

}

catch (QOCRBA : PolicyErroré& pe){
return 1;

}

catch (CCRBA: :InvalidPolicies&ip){
return 1;

}

catch (OCRBA: : SystenExcepti on& se){
return 1;

}

Implementing Callback Objects

Many CORBA applications implement callback objects on a client so that a
server can notify the client of some event. You implement a callback object
on a client exactly as you do on a server, by activating it in a client-side POA
(see “Activating CORBA Objects” on page 202). This POA’s LifeSpanPolicy
should be set to TRANSI ENT. Thus, all object references that the POA exports
are valid only as long as the POA is running. This ensures that a late server
callback is not misdirected to another client after the original client shuts
down.

193

Chapter 8 | Developing a Client

It is often appropriate to use a client’s root POA for callback objects,
inasmuch as it always exports transient object references. If you do so, make
sure that your callback code is thread-safe; otherwise, you must create a POA
with policies of SI NQLE_ THREAD MCDEL and TRANSI ENT.

194

Developing a Server

This chapter explains how to develop a server that
implements servants for CORBA objects.

A CORBA server performs these tasks:

®* Uses a POA to map CORBA objects to servants, and to process client
requests on those objects.

* Implements CORBA objects as POA servants.

® (Creates and exports object references for these servants.

* Manages memory for POA servants and object references.

® Initializes and shuts down the runtime ORB.

® Passes parameters to server-side operations.

For an overview of server code requirements, see “Learning More About the

Server” on page 61. Although throwing exceptions is an important aspect of
server programming, it is covered separately in Chapter 13.

For information on ORB initialization and shutdown, see “ORB Intialization
and Shutdown” on page 129.

POAs, Skeletons, and Servants

CORBA objects exist in server applications. Objects are implemented, or
incarnated, by language-specific servants. Objects and their servants are
connected by the portable object adapter (POA). The POA provides the
server-side runtime support that connects server application code to the
networking layer of the ORB.

A POA has these responsibilities:

® (Create and destroy object references.

* Convert client requests into appropriate calls to application code.
® Synchronize access to objects.

® Cleanly start up and shut down applications.

195

Chapter 9 | Developing a Server

196

For detailed information about the POA, see Chapter 10.

For each IDL interface, the IDL compiler generates a POA _skeleton class that
you compile into the server application. Skeleton classes are abstract base
classes. You implement skeleton classes in the server application code with
servant classes, which define the behavior of the pure virtual methods that
they inherit. Through a servant’s inherited connection to a skeleton class,
ORB runtime connects that servant back to the CORBA object that it
incarnates.

The IDL compiler can also generate a TIE class, which lets you implement
CORBA objects with classes that are unrelated (by inheritance) to skeleton
classes. For more information, see “Delegating Servant Implementations” on
page 214.

Note: The POA prefix only applies to the outermost naming scope of an IDL
construct. So, if an interface is nested in a module, only the outermost
module gets the PQA_ prefix; constructs nested inside the module do not have
the prefix.

Figure 20 shows how a CORBA server handles an incoming client request,
and the stages by which it dispatches that request to the appropriate servant.
The server's ORB runtime directs an incoming request to the POA where the
object was created. Depending on the POA’s state, the request is either
processed or blocked. A POA manager can block requests by rejecting them
outright and raising an exception in the client, or by queueing them for later
processing.

Mapping Interfaces to Skeleton Classes

f Server

Request Servants

N
\ ORB

:
o

_ /

Figure 20: The server-side ORB conveys client requests to the POA via its manager,
and the POA dispatches the request to the appropriate servant.

Mapping Interfaces to Skeleton Classes

When the ORB receives a request on a CORBA object, the POA maps that
request to an instance of the corresponding servant class and invokes the
appropriate method. All operations are represented as virtual member
methods, so dynamic binding ensures that the proper method in your derived
servant class is invoked.

For example, interface Account is defined as follows:

nodul e BankDeno

{
typedef float CashAnount; // type represents cash
typedef string Accountld; // Type represents account |Ds
I

interface Account

{

exception I nsufficientFunds {};

readonly attribute Accountld account_id;
readonly attribute CashAnount bal ance;

197

Chapter 9 | Developing a Server

198

voi d
wi t hdraw(i n CashAmount arount)
rai ses (InsufficientFunds);

voi d
deposit(in CashAnount amount);
b

The IDL compiler maps the Account interface to skeleton class
PQA BankDeno: : Account . For purposes of simplification, only methods that
map directly to IDL operations and attribute are shown:

namespace PQA BankDeno

{

class Account :

}s

virtual public Portabl eServer:: Servant Base

virtual ::BankDeno:: Accountld
account _id() | T_THRONDEC((CORBA: : SystenException)) = 0;

virtual ::BankDeno:: CashAnount
bal ance() | T_THROW DECQL((OCRBA : Syst enException)) = 0;

virtual void
wi t hdr aw(
. : BankDeno: : CashAnount anount
) | T_THRONDECL((CCORBA: : Syst enExcepti on,
BankDeno: : Account : : I nsuf fici ent Funds)) = O;

virtual void
deposi t (
. . BankDeno: : CashAmount anount
) | T_THRONDECL((CORBA: : Syst enException)) = 0;

The following points are worth noting about the skeleton class:

®* PQA BankDeno: : Account inherits from Port abl eSer ver : : Ser vant Base.
All skeleton classes inherit from the Servant Base class for two reasons:

L4

L4

Ser vant Base provides functionality that is common to all servants.

Servants can be passed generically—you can pass a servant for any
type of object as a pointer or reference to Servant Base.

Mapping Interfaces to Skeleton Classes

The names of the skeleton class and the corresponding client-side proxy
class are different. In this case, the fully scoped name of the skeleton
class is POA BankDeno: : Account , while the proxy class name is
BankDeno: : Account .

This differentiation is important if client and server are linked into the
same program, because it avoids name clashes for multiply defined
symbols. It also preserves location transparency because it guarantees
that collocated calls are always dispatched by an intervening proxy
object, and are never dispatched as a direct virtual method call from
client to servant. So, if the server decides to delete an object and a
collocated client attempts to make a call on the deleted object, the proxy
raises an CBJECT_NOT_EX ST exception instead of attempting to access
deallocated memory and causing the program to crash.

The skeleton class defines methods that correspond to the interface
operations and attributes.

Methods are all defined as pure virtual, so you cannot instantiate a
skeleton class. Instead, you must derive from the skeleton a concrete
servant class that implements the pure virtual methods that it inherits.

Each method has an exception specification. Orbix generates exception
specifications only for skeleton classes. In this example, the methods
throw system exceptions and, in the case of wi t hdraw(), the user
exception I nsuf fi ci ent Funds.

The t hr owclause prevents methods from throwing illegal exceptions. For
example, if deposit () throws an exception other than GORBA :

Syst enxcept i on, the C++ run time calls the unexpect ed method
(which, by default, aborts the process).

Apart from the exception specification, the signature of each skeleton
class method is the same as the corresponding proxy class method.

Identical signatures preserve location transparency. If the server and
client are collocated, the proxy can delegate calls directly to the skeleton
without translating or copying data. It also simplifies client and server
application development in that one set of parameter passing rules apply
to both.

199

Chapter 9 | Developing a Server

Creating a Servant Class

Each servant class inherits from a skeleton class. The following code defines
servant class Account | npl , which derives from skeleton class POA BankDeno:
: Account . Unlike the skeleton class methods, the Account | npl methods that
map to IDL operations and attributes are not pure virtual, so a server can
instantiate Account I npl as a servant.

#i ncl ude "BankDenoS. hh" // Cenerated server-side header

class Accountlnpl : public POA BankDeno:: Account {
publi c:
/1l Inherited I DL operations

virtual BankDeno:: Accountld
account _id() |T_THRONDECL((CORBA: : Syst enException));

vi rtual BankDeno: : CashAnmount
bal ance() | T_THROW DECL((CCRBA: : Syst enException));

virtual void
wi t hdr aw(
BankDero: : CashAmount armount
) | T_THROWNDECL((GORBA: : Syst enExcept i on,
BankDeno: : Account : : I nsuf fi ci ent Funds));

virtual void
deposi t (
BankDeno: : CashAnount anount
) | T_THROWN DECL((GORBA: : Syst enException));

/1 other menbers here ...

private:
/1 Prevent copying and assignent of servants
Account I npl (const Accountlnpl &);
voi d operator=(const Accountlnpl &);
b
The following requirements and recommendations apply to servant class
definitions:

200

Implementing Operations

®* The code must include the generated server header file—in this case,
BankDenoS. hh.

® Account!npl inherits from PQA BankDeno: : Account through virtual
inheritance. If, as in this case, the servant class inherits from only one
source, it is unimporant to specify virtual inheritance. However, a
servant class that inherits from multiple skeleton classes should always
use virtual inheritance to prevent errors.

® The choice of name for servant classes is purely a matter of convention.
The examples here and elsewhere apply the I npl suffix to the original
interface name, as in Account | npl . It is always good practice to have a
naming convention and use it consistently in your code.

® The copy constructor and assignment operator for the servant class are
private to prevent copying and assignment of servant instances.

Servants should not be copied or assigned; only one servant should
incarnate any given CORBA object; otherwise, it is unclear which
servant should handle requests for that object. It is always good practice
to hide a servant’s copy constructor and assignment operator.

The preceding Account I npl class is a complete and functional servant class.
It only remains to implement the pure virtual methods that are inherited from
the skeleton. You can also can add other member variables and methods,
public and private, that can help implement a servant. For example, it is
typical to add a constructor and destructor, and private member variables to
hold the state of the object while the servant is in memory.

Implementing Operations

Most work in developing a servant consists of implementing each inherited
pure virtual method. Because the application code controls the body of each
operation, it largely determines the application’s overall behavior. The
following code outlines an implementation of the wi t hdraw() method:
void
Account | npl : : wi t hdr aw(

BankDeno: : CashAnount anount
) | T_THROW DECL((

OCRBA: : Syst enExcept i on,

BankDeno: : Account : : | nsuf fi ci ent Funds

))

201

Chapter 9 | Developing a Server

/1 ... database connection (via PSS) code onitted here

/1 get a PSS reference to correspondi ng dat abase obj ect
| T_PSS Ref Var <BankDenoSt or e_Account BaseRef > ref =
ny_state(accounts_horne_obj.in());

BankDeno: : CashAnmount new bal ance = ref->bal ance() - armount;

i f (new_ bal ance < 0.0F)

{

cout << " throw ng InsufficientFunds" << endl;
t hrow BankDeno: : Account : : I nsuf fi ci ent Funds();

}

r ef - >bal ance(new_bal ance) ;
...

cout << " withdrew $" << anmount << endl;

Activating CORBA Objects

In order to enable clients to invoke on CORBA operations, a server must

202

create and export object references. These object references must point back

to a CORBA object that is active through its incarnation by a C++ or Java
servant. Activation of a CORBA object is a two-step process:

1.

Instantiate the CORBA object’s servant.

Instantiating a servant does not by itself activate the CORBA object. The

ORB runtime remains unaware of the existence of the servant and the
corresponding CORBA object.

Register the servant and the object’s ID in a POA. The easiest way to do

this is to call _t hi s() on the servant. The IDL compiler generates a

_this() method for each servant skeleton class. _thi s() performs two

separate tasks:

Handling Output Parameters

+ Checks the POA to determine whether the servant is registered with
an existing object. If not, _this() creates an object from the
servant’s interface, registers a unique ID for this object in the POA'’s
active object map, and maps this object ID to the servant’s address.

+ Generates and returns an object reference that includes the object’s
ID and POA identifier.

In other words, the object is implicitly activated in order to return an
object reference.

You can also implicitly activate an object by calling servant _to_ref erence()
on the desired POA. This requires you to narrow to the appropriate object;
however, there can be no ambiguity concerning the POA in which the object
is active, as can happen through using _t hi s() (see page 238).

Alternatively, you can explicitly activate a CORBA object: call
activate_object() oractivate object_with_id() onthe POA. You can
then obtain an object reference by calling _t hi s() on the servant. Because
the servant is already registered in the POA with an object ID, the method
simply returns an object reference.

The ability to activate an object implicitly or explicitly depends on a POA's
activation policy. For more information on this topic, see “Explicit and
Implicit Object Activation” on page 236.

Note: The object reference returned by _this() is independent of the
servant itself; you must eventually call rel ease() on the object or hold it in a
_var reference in order to avoid resource leaks. Releasing the object
reference has no effect on the corresponding servant.

Handling Output Parameters

Server-side rules for passing output (i n/i nout) parameters and return values
to the client complement client-side rules. For example, if the client is
expected to deallocate a variable-length return value, the server must allocate
that value.

In general, these rules apply:

203

Chapter 9 | Developing a Server

* |f the type to pass is variable-length, the server dynamically allocates the
value and the client deallocates it.

* String, reference, and variable-length array types are dynamically
allocated and deallocated by the client. Strings and references can be
reallocated by the server.

Other types are passed by value or reference.

The following sections show the server-side rules for passing output
parameters and return values of various IDL types.

Simple Parameters

204

Simple IDL types such as short or | ong are passed by value. For example,
the following IDL defines operation Exanpl e: : op(), which passes three | ong
parameters:

interface Exanpl e {

| ong

op(inlong in_p, inout long inout_p, out |ong out_p);
b
The corresponding servant class contains this signature for op():

virtual QOCRBA :Long
op(

CCRBA: : Long in_p,

CCORBA: :Long & inout_p,

CCRBA: : Long_out out_p
) throw(GCRBA: : Syst enExcepti on);
This example has the same mapping as the client, where GCRBA: : Long_out
type is simply an alias for OORBA: : Long & You might implement this
operation as follows:
GCRBA: : Long
Exanpl el npl : : op(

OCRBA: : Long in_p, CCRBA :Long & inout_p, CCRBA :Long_out out_p

) throw(CCRBA: : Syst enExcept i on)

{
inout_p =2 * inout_p; /1 Change inout_p.
out_p=in_p™* in_p; /1l Set out_p
returnin_p/ 2; /1 Return in_p

}

Handling Output Parameters

The method simply sets output parameters and return values; the changes
are automatically propagated back to the client.

Fixed-Length Complex Parameters

Fixed-length complex parameters are passed by value or by reference. For
example, the following IDL defines a fixed-length structure that operation
Exanpl e: : op() uses in its return value and parameters:

struct FLS { /1 Fixed-Length Structure
I ong I ong_val ;
doubl e doubl e_val ;

}

i nterface Exanple {

FLS op(in FLS in_p, inout FLS inout_p, out FLS out_p);
b
The corresponding servant class contains this signature for op():

typedef FLS & FLS out;

1.,

virtual FLS

op(const FLS & in_p, FLS & inout_p, FLS out out_p)
t hr ow(CCORBA: : Syst enExcept i on);

The following code implements the servant operation. No memory
management issues arise; the method simply assigns the values of output
parameters and the return value:

FLS
Exanpl el npl : : op(const FLS & in_p, FLS & inout_p, FLS out out_p)
t hr ow(CCORBA: : Syst enExcept i on)
{
cout << in_p.long_val << endl; [l Use in_p
cout << in_p.double val << endl; [l Use in_p
cout << inout_p.double_val << endl; // Use inout_p

// Change inout_p
i nout _p. doubl e_val = inout_p.long_val * in_p.doubl e val;

out_p.long_val = 99; [l Initialize out_p
out _p.doubl e_val = 3.14;

205

Chapter 9 | Developing a Server

FLSret_val ={ 42, 42.0}; // Initialize return val ue
return ret_val;

Fixed-Length Array Parameters

Fixed-length arrays are passed as pointers to array slices. The return value is
dynamically allocated. For example, the following IDL defines a fixed-length
array that operation Exanpl e: : op() uses in its return value and parameters:

typedef long Larr[3];

i nterface Exanpl e {
Larr op(in Larr in_p, inout Larr inout_p, out Larr out_p);

h
The corresponding servant class contains this signature for op():

typedef OCRBA :Long Larr[3];

typedef OCRBA: :Long Larr_slice;

typedef Larr_slice * Larr_out;

1.

virtual Larr_slice *

op(const Larr in_p, Larr_slice * inout_p, Larr_out out_p)
t hr ow(CCORBA: : Syst enExcepti on);

In the following implementation, the generated Larr_al | oc() method
dynamically allocates the return value:

Larr_slice *

Exanpl el npl : :

op(const Larr in_p, Larr_slice * inout_p, Larr_out out_p)
t hr ow(CCORBA: : Syst enExcept i on)

{

int len = sizeof(in_p) / sizeof(*in_p);
/1 Use incom ng values of in_p and inout_p...

/1 Modify inout_p
i nout _p[1l] = 12345;

/1l Initialize out_p

for (int i =0; i <len; i++)
out_p[i] =1 * i;

206

Handling Output Parameters

/!l Return val ue nust be dynamically all ocated
Larr_slice * ret_val = new Larr_alloc();
for (int i =0; i <len; i++)

ret_vall[i] =i *i *i;

return ret_val;

String Parameters

String-type output parameters and return values must be dynamically
allocated. For example, the following IDL defines a fixed-length array that
operation Exanpl e: : op() uses in its return value and parameters:

i nterface Exanpl e {

string op(
in string i n_p,
inout string i nout _p,
out string out_p
)

b
The corresponding servant class contains this signature for op():

virtual const char *

op(
const char * in_p,
char * & i nout _p,
OCRBA: : String_out out_p

) throw(CCRBA: : Syst enExcepti on);

The server is constrained by the same memory requirements as the client:

® Strings are initialized as usual.

® inout strings are dynamically allocated and initialized by the client. The
servant can change an i nout string by modifying the bytes of the i nout
string in place, or shorten the i nout string in place by writing a
terminating NUL byte into the string. To return an i nout string that is
longer than the initial value, the servant must deallocate the original
copy and allocate a longer string.

® out strings must be dynamically allocated.

® Return value strings must be dynamically allocated.

207

Chapter 9 | Developing a Server

The following code implements the servant operation:

const char *

Exanpl el npl : :

op(
const char * in_p,
char * & i nout _p,

CCRBA: : Stri ng_out out _p
) throw(OCRBA: : Syst enExcept i on)

{
cout << in_p << endl; /1 Showin_p
cout << inout_p << endl; /1 Show i nout _p
/1 Modify inout_p in place:
Il
char * p = inout_p;
while (*p !I="\0")
t oupper (*p++) ;
/1 CR make a string shorter by witing a termnating NUL:
I
*inout_p ="'\0'; /] Set to enpty string.
/1 CR deallocate the initial string and all ocate a new one:
11
CCRBA: : string_free(inout_p);
i nout_p = QORBA :string_dup("New string val ue");
/1 out strings nust be dynanically allocated.
11
out_p = CORBA :string_dup("l aman out parameter");
/1l Return val ue strings nust be dynamcally all ocated.
I
char * ret_val
= CCRBA :string_dup("In Xanadu did Kubla Khan..."));
return ret_val;
}

208

Handling Output Parameters

Variable-Length Complex Parameters

out parameters and return values of variable-length complex types must be
dynamically allocated; i n and i nout parameters are passed by reference.

For example, the following IDL defines a variable-length structure that
operation Exanpl e: : op() uses in its return value and parameters:

struct WLS { /1 Variable-length structure
I ong I ong_val ;
string string_val;

}s

i nterface Exanpl e {
WLS op(in VLS in_p, inout VLS inout_p, out VLS out_p);

b

The corresponding servant class contains this signature for op():
class VLS out { /* ... */ };

...

virtual WS *
op(const VLS & in_p, VLS & inout_p, VLS out out_p)
t hrow(CCRBA: : Syst enExcept i on) ;

The following code implements the servant operation:

WLS *

Exanpl el npl : :
op(const VLS & in_p, VLS & inout_p, VLS out out_p)
t hrow(CCRBA: : Syst enExcept i on)

{
cout << in_p.string_val << endl; /1 Use in_p
cout << inout_p.long_val << endl; /1 Use inout_p
inout_p.long_val = 99; /1 Modify inout_p
out_p = new VWLS; /1 Alocate out param
out_p->long_val = 1; [l Initialize...
out _p->string_val = OORBA: :string_dup("e");
VLS * ret_val = new WLS; /1l Alocate return val ue
ret_val->l ong_val = 2; [l Initialize...
ret_val ->string_val = OCRBA :string_dup("Two");
return ret_val;

}

209

Chapter 9 | Developing a Server

Variable-Length Array Parameters

210

Like fixed-length arrays, variable-length arrays are passed as pointers to array
slices. out parameters and the return value must be dynamically allocated.

For example, the following IDL defines a variable-length array that operation
Exanpl e: : op() uses in its return value and parameters:

typedef string Sarr[3];

i nterface Exanpl e {
Sarr op(in Sarr in_p, inout Sarr inout_p, out Sarr out_p);

I
The corresponding servant class contains this signature for op():

typedef QOCORBA : String_ngr Sarr[3];
typedef CCORBA :String_Myr Sarr_slice;
class Sarr_out { /* ... */ };
1.
virtual Sarr_slice * op(
const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) throw OCRBA: : Syst enException);
The following code implements the servant operation. As with all nested
strings, string elements behave like a Stri ng_var, so assignments make
deep copies or, if a pointer is assigned, take ownership:
typedef CORBA :String_nmgr Sarr[3];
typedef OCORBA :String_Myr Sarr_slice;
class Sarr_out;

1.
Sarr_slice *
Exanpl el npl : :
op(

const Sarr in_p, Sarr_slice * inout_p, Sarr_out out_p
) throw(OCRBA: : Syst enExcept i on)

{
cout << in_p[1l] << endl; /1l Wse in_p
cout << inout_p[0] << endl; // Use inout_p
inout_p[1l] =in_p[O]; /1 Modify inout_p
out_p = Sarr_alloc(); /1 Alocate out param

out_p[0] = CCRBA: :string_dup("In Xanadu did Kubl a Khan");

Handling Output Parameters

out _p[1]
out _p[2]

OORBA: : string_dup("A stately pl easur e-domne
QORBA: : string_dup("decree: Were Alph...");

/] Allocate return value and initialize...

/1

Sarr_slice * ret_val = Sarr_alloc();

ret_val[0] = out_p[0];

ret_val[1] = inout_p[1];

ret_val[2] =in_p[2];

return ret_val; /1 Poor Coleridge...

Object Reference Parameters

Object references are passed as _ptr references. The following memory
management rules apply to object reference parameters:

® in parameters are initialized by the caller and must not be released; the
caller retains ownership of the i n parameter.

®* inout parameters are initialized by the caller. To change the value of an
i nout parameter, you must call rel ease() on the original value and use
_duplicate() to obtain the new value.

® out parameters and return values must be allocated by _duplicate() or
_this(), which calls _duplicate() implicitly.

For example, the following IDL defines interface Exanpl e; operation Exanpl e:
:op() specifies this interface for its return value and parameters:

i nterface Exanpl e {
string greeting();

Exanpl e op(
in Exanpl e in_p,
i nout Exanple inout_p,
out Exanpl e out_p
);

b
The corresponding servant class contains this signature for op():

211

Chapter 9 | Developing a Server

212

class Exanple out { /* ... */ };
...
virtual Exanple_ptr op(
Exanpl e_ptr in_p, Exanple_ptr & inout_p, Exanple_out out_p
) throw(GCRBA: : Syst enExcepti on);

The following implementation dynamically allocates the new value of

i nout _p after releasing the previous value. The return value is dynamically
allocated because _t hi s() calls _duplicate() implicitly.

As shown in this example, you should always test for nil before making a call
on a passed i n or i nout reference. Otherwise, your servant is liable to make
a call on a nil reference and cause a core dump.

Exanpl e_ptr
Exanpl el npl : :
op(
Exanpl e_ptr in_p, Exanple_ptr & inout_p, Exanple_out out_p
) throw(CCRBA: : Syst enExcept i on)

{
/1 Use in_p.
Il
if ('QORBA :is_nil(in_p)) {
OQCRBA: : String_var s = in_p->greeting();
cout << s << endl;
}
/1 Use inout _p.
11
if ('QORBA :is_nil(inout_p)) {
OCRBA: : String_var s = inout_p->greeting();
cout << s << endl;
}
/1 Modify inout_p to be the sane as in_p.
11
CCRBA: : rel ease(i nout _p); /1 First deallocate,
i nout_p = Exanpl e::_duplicate(in_p); /1 then assign.
/'l Set return val ue.
11
return _this(); /1 Return reference to self.
}

Counting Servant References

Note: This example is unrealistic in returning a reference to self, because in
order to invoke the operation, the caller must hold a reference to this object
already.

Counting Servant References

Multi-threaded servers need to reference-count their servants in order to
avoid destroying a servant on one thread that is still in use on another. In
general, you should enable reference counting for servants that are activated
in a POA with a policy of CRB_CTR._MODEL.

The POA specification provides the standard methods _add_ref () and
_renove_ref () to support reference counting, but by default they do nothing.
You can enable reference counting by inheriting the standard class

Por t abl eSer ver : : Ref Count Ser vant Base in servant implementations. For
example:

cl ass BankDeno_Account | npl
: public virtual PQA BankDeno:: Account,
public virtual Portabl eServer:: Ref Count Servant Base

With reference counting enabled, the POA calls _add_ref () when it holds a
pointer to a servant in any thread, and calls _renove_ref () when itis
finished with that servant. POA methods that return servants to user code
call _add_ref () before they deliver the servant, so the same code should call
_renove_ref () on the result when it is finished.

In your own code, you should call _add ref () for each additional pointer to a
servant, and _renove_ref () when you are done with that pointer (rather
than delete it). Doing so ensures that the servant is deleted when no pointers
are held to that servant either in your own code or in the POA.

Reference counting is ignored by tie-based servants. Tie templates, as
defined in the POA standard, do not support reference counting, Therefore, it
is not recommended that you use the tie approach for multi-threaded servers.

213

Chapter 9 | Developing a Server

Delegating Servant Implementations

Previous examples show how Orbix uses inheritance to associate servant
classes and their implementations with IDL interfaces. By inheriting from
IDL-derived skeleton classes, servants establish their connection to the
corresponding IDL interfaces, and thereby make themselves available to
client requests.

Alternatively, you can explicitly associate, or tie a servant and its operations
to the appropriate IDL interface through tie template classes. The tie
approach lets you implement CORBA objects with classes that are unrelated
(by inheritance) to skeleton classes.

In most cases, inheritance and tie approaches are functionally equivalent;
only programming style preferences determine whether to favor one approach
over the other. For more on the comparative merits of each approach, see
“Tie Versus Inheritance” on page 215.

Creating Tie-Based Servants

214

Tie-based servants rely on two components:

* A tie object implements the CORBA object; however, unlike the inherited
approach, the class that it instantiates does not inherit from any of the
IDL-generated base skeleton classes.

* A tie servant instantiates a tie template class, which the IDL compiler
generates when you run it with the - xTl E switch. The POA regards a tie
servant as the actual servant of an object. Thus, all POA operations on a
servant such as acti vat e_obj ect () take the tie servant as an argument.
The tie servant receives client invocations and forwards them to the tie
object.

To create a tie servant and associate it with a tie object:

1. Instantiate the tie object

2. Pass the tie object’s address to the tie object constructor with this
syntax:

ti e-tenpl at e-cl ass<i npl -cl ass> tie-servant (tied-object);

Delegating Servant Implementations

For example, given an IDL specification that includes interface BankDeno: :
Bank, the IDL compiler can generate tie template class POA BankDeno: :
Bank_ti e. This class supplies a number of operations that enable its tie
servant to control the tie object.

Given implementation class Bankl npl , you can instantiate a tie object and
create tie servant bank_srv_ti e for it as follows:

[l instantiate tie object and create its tie servant
PQA_BankDeno: : Bank_t i e<Bankl npl > bank_srv_ti e(new Bankl npl) ;

Given this tie servant, you can use it to create an object reference:

/l/create an object reference for bank servant
bank_var bankref = bank_srv_tie. _this();

When the POA receives client invocations on the bankref object, it relays
them to tie servant bank_srv_ti e, which delegates them to the bank tie
object for processing.

Removing Tie Objects and Servants

You remove a tie servant from memory like any other servant—for example,
with Port abl eSer ver: : POA : deact i vat e_obj ect (). If the tie servant’s tie
object implements only a single object, the tie object is also removed.

Tie Versus Inheritance

The tie approach can be useful where implementations must inherit from an
existing class framework, as often occurs with OODB systems. In this case,
you can create object implementations only with the tie approach. Otherwise,
the tie approach has several drawbacks:

® Because the tie approach requires two C+ + instances for each CORBA
object, it uses up more resources.

* Tie-based servants ignore reference counting; therefore, you should not
use the tie approach for multi-threaded servers.

® The tie approach adds an unnecessary layer of complexity to application
code.

In general, unless you have a compelling reason to use the tie approach, you
should favor the inheritance approach in your code.

215

Chapter 9 | Developing a Server

Implementation Inheritance

IDL inheritance does not constrain your options for implementing servant
classes. In Figure 21, shaded classes represent the skeleton abstract base
classes generated by the IDL compiler; non-shaded classes represent the
servant classes that you provide

PQA BankDeno: :

il N

Account | npl PQA BankDeno: :

N7

Checki ngAccount | npl

Figure 21: A servant class can inherit base class implementations.

Checki ngAccount | npl inherits from Account | npl , so Checki ngAccount | npl
needs only to implement the two pure virtual methods that it inherits from
Checki ngAccount : overdraftLimt() and order CheckBook() . Functions in
base interface Account such as bal ance() are already implemented in and
inherited from Account | npl .

Interface Inheritance

216

You can choose not to derive Checki ngAccount | npl () from Account I npl ().
If all methods in POA BankDeno: : Checki ngAccount are defined as pure
virtual, then Checki ngAccount | npl must implement the methods that it
inherits from PQA_BankDeno: : Account , as well as those inherited from

PQA BankDeno: : Checki ngAccount , as shown in Figure 22

Interface inheritance facilitates encapsulation. With interface inheritance, the
derived class servant is independent of the base class servant. This might be
desirable if you plan to split a single server into two servers: one that
implements base objects and another that implements derived objects.

Multiple Inheritance

Multiple

PQA BankDeno: :

N

Account | npl PQCA_BankDeno: :

/

Checki ngAccount I m

Figure 22: A servant class can implement operations of all base skeleton classes.

This model also serves any application design that requires all base classes
to be abstract, while it retains interface inheritance.

Inheritance

Implementation and interface inheritance extend to multiple inheritance. In
Figure 23, solid arrows indicate inheritance that is mandated by the C++
mapping. The dotted arrows indicate that the servants allow either
implementation or interface inheritance.

Given this hierarchy, it is also possible to leave POA BankDeno: : Account
without an implementation, inasmuch as it is an IDL abstract base class. In
this case, Checki ngAccount | npl and Savi ngsAccount | npl must provide the
required virtual method implementations.

217

Chapter 9 | Developing a Server

| PQA BankDeno: : |

?

| Account | np |

| PQA BankDeno: :

P X

| Savi ngsAccount | m ‘

\x

N

AN | PQA BankDeno: : | .

N 7
N e
N e
N 7

NOMccount | m

Figure 23: Inheritance options among servant and base skeleton classes.

Explicit Event Handling

When you call GRB:: run(), the ORB gets the thread of control to dispatch
events. This is acceptable for a server that only processes CORBA requests.
However, if your process must also support a GUI or uses another networking
stack, you also must be able to monitor incoming events that are not CORBA
client requests.

The ORB interface methods wor k_pendi ng() and perf or mwor k() let you poll
the ORB's event loop for incoming requests:

* work_pending() returns true if the ORB’s event loop has at least one
request ready to process

218

Termination Handler

®* performwork() processes one or more requests before it completes and
returns the thread of control to the application code. The amount of work
processed by this call depends on the threading policies and the number
of queued requests; however, performwor k() guarantees to return
periodically so you can handle events from other sources.

Termination Handler

Orbix provides its own | T_Ter mi nat i onHandl er class, which enables server
applications to handle delivery of Gt rl - Cand similar events in a portable
manner. On UNIX, the termination handler handles the following signals:

SI G NT
S| GTERM

SSGUT

On Windows, the termination handler is just a wrapper around
Set Consol eCt r| Handl er, which handles delivery of the following control
events:

CTRL_C EVENT
CTRL_BREAK_EVENT
CTR__SHUTDOMN_EVENT
CTR__LOGOFF_EVENT
CTR__CLCSE_EVENT

You can create only one termination handler object in a program.

In the following example, the main routine creates a termination handler
object on the stack. On POSIX platforms, it is critical to create this object in
the main thread before creation of any other thread, especially before calling
CRBinit (). The I T_Term nati onHandl er destructor deregisters the callback,
in order to avoid calling it during static destruction.

static void

terninati on_handl er _cal | back(
| ong signal

)

{

cout << "Processing shutdown signal " << signal << endl;
if ('!CQORBA :is_nil(orb))
{

219

Chapter 9 | Developing a Server

cout >> "CRB shutdown ... " << flush;
or b- >shut down(| T_FALSE) ;
cout << "done." << endl;

}

int
mai n(int argc, char** argv)
{
| T_Ter m nati onHandl er
ternmi nati on_handl er (terninati on_handl er_cal | back) ;

Compiling and Linking

220

Server compile and link requirements are almost the same as the client,
except that it also requires the server-side skeleton code, which has the
format i dl - nameS. cxx—for example, BankDenoS. cxx. You also must link
with the poa library, which contains the server-side run-time support for the
POA.

Details for compiling and linking a server differ among platforms. For more
information about platform-specific compiler flags and libraries, refer to the
demo makefiles in your Orbix distribution.

Managing Server Objects

A portable object adapter, or POA, provides the mechanism
by which a server process maps CORBA objects to
language-specific implementations, or servants. All
interaction with server objects takes place via the POA.

A POA identifies objects through their object IDs, which are encapsulated
within the object requests that it receives. Orbix views an object as active
when its object ID is mapped to a servant; the servant is viewed as incarnat-
ing that object. By abstracting an object’s identity from its implementation, a
POA enables a server to be portable among different implementations.

This chapter shows how to create and manage a POA within a server
process, covering the following topics:

* Mapping objects to servants

® (Creating a POA and setting POA policies

® Using POA policies

® Activating objects implicitly and explicitly

® Using the POA manager to manipulate request flow control

Mapping Objects to Servants

Figure 24 shows how a POA manages the relationship between CORBA
objects and servants, within the context of a client request. A client
references an object or invokes a request on it through an interoperable
object reference (IOR). This IOR encapsulates the information required to
find the object, including its server address, POA, and object ID—in this
case, A. On receiving the request, the POA uses the object’s ID to find its
servant. It then dispatches the requested operation to the servant via the
server skeleton code, which extracts the operation’s parameters and passes
the operation as a language-specific call to the servant.

221

Chapter 10 | Managing Server Objects

ﬁﬁm

FOA
Qjedt IDs encapsuiated 7} T @
within IORS Snat
—;j -A - ‘
Qliert request et 1D Snat
Ry W
Sner

Figure 24: A portable object adapter (POA) maps abstract objects to their concrete
implementations (servants)

Depending on a POA’s policies, a servant can be allowed to incarnate only
one object; or it can incarnate multiple objects. During an object’s lifetime, it
can be activated multiple times by successive servant incarnations.

Mapping Options

A POA can map between objects and servants in several ways:

* An active object map retains object-servant mappings throughout the

lifetime of its POA, or until an object is explicitly deactivated. Before a
POA is activated, it can anticipate incoming requests by mapping known
objects to servants, and thus facilitate request processing.

222

Creating a POA

Creating

* A servant manager maps objects to servants on demand, either on the
initial object request, or on every request. Servant managers can
enhance control over servant instantiation, and help avoid or reduce the
overhead incurred by a static object-servant mapping.

* Asingle default servant can be used to handle all object requests. A POA
that uses a default servant incurs the same overhead no matter how
many objects it processes.

Depending on its policies, a POA can use just one object-mapping method, or
several methods in combination. For more information, see “Enabling the
Active Object Map” on page 228.

a POA

All server processes in a location domain use the same root POA, which you
obtain by calling resol ve_initial _references("PQ"). The root POA has
predefined policies which cannot be changed (see page 227). Within each
server process, the root POA can spawn one or more child POAs. Each child
POA provides a unigue namespace; and each can have its own set of poli-
cies, which determine how the POA implements and manages object-servant
mapping. Further, each POA can have its own POA manager and servant
manager.

A number of objectives can justify the use of multiple POAs within the same
server. These include:

® Partition the server into logical or functional groups of servants. You can
associate each group with a POA whose policies conform with the
group’s requirements. For example, a server that manages Customer and
Account servants can provide a different POA for each set of servants.

You can also group servants according to common processing
requirements. For example, a POA can be configured to generate object
references that are valid only during the lifespan of that POA, or across
all instantiations of that POA and its server. POAs thus offer built-in
support for differentiating between persistent and transient objects.

® Independently control request processing for sets of objects. A POA
manager’s state determines whether a POA is active or inactive; it also
determines whether an active POA accepts incoming requests for

223

Chapter 10 | Managing Server Objects

processing, or defers them to a queue (see “Processing Object Requests”
on page 229). By associating POAs with different managers, you can
gain finer control over object request flow.

® Choose the method of object-servant binding that best serves a given POA.
For example, a POA that processes many objects can map all of them to
the same default servant, incurring the same overhead no matter how
many objects it processes.

Creating a POA consists of these steps:

1. Set the POA policies.

Before you create a POA, establish its desired behavior through a
CORBA PolicyList, which you attach to the new POA on its creation. Any
policies that are explicitly set override a new POA'’s default policies (refer
to Table 13 on page 226).

2. Create the POA by calling create_PQA() on an existing POA.

3. If the POA has a policy of USE_SERVANT NMANAGER, register its servant
manager by calling set _servant _nanager () on the POA.

4. Enable the POA to receive client requests by calling acti vat e() on its
POA manager.

Setting POA Policies

224

A new POA’s policies are set when it is created. You can explicitly set a
POA’s policies through a CORBA PolicyList object, which is a sequence of
Policy objects. The Port abl eSer ver : : PQA interface provides factories to cre-
ate CORBA Policy object types (see Table 13 on page 226). If a Policy object
type is proprietary to Orbix, you must create the Policy object by calling
create_pol i cy() on the ORB (see “Setting Proprietary Policies for a POA” on
page 226). In all cases, you attach the PolicyList object to the new POA. All
policies that are not explicitly set in the PolicyList are set to their defaults.

For example, the following code creates policy objects of PERSI STENT and
USER | D:
QCRBA: : Pol i cyLi st polici es;
policies.length (2);
policies[0] = poa—>create_|ifespan_policy
(Portabl eServer: : PERS| STENT)

Creating a POA

pol i ci es[1] = poa—>create_i d_assi gnrment _pol i cy
(Portabl eServer:: USER | D)

With the PERSI STENT policy, a POA can create object references that remain
valid across successive instantiations of this POA and its server process. The
USER | D policy requires the application to autoassign all object I1Ds for a POA.

After you create a PolicyList object, you attach it to a new POA by supplying
it as an argument to creat e PQA() . The following code creates POA

per si st ent PQA as a child of the root POA, and attaches to it the PolicyList
object just shown:

//get an object reference to the root PQA
CCRBA: : (hj ect _var obj =

orb->resol ve_initial _references("Root PQA');
Port abl eServer:: POA var poa = POA : _narrow obj);

[l create policy object
CCRBA: : Pol i cyLi st poli ci es;
policies.length (2);

/1 set policy object with desired policies

pol i ci es[0] = poa—>create_lifespan_policy
(Portabl eServer: : PERSI STENT)

pol i ci es[1] = poa—>create_i d_assi gnment _pol i cy
(Portabl eServer:: USER | D)

//create a PQA for persistent objects
poa = poa->create_PQOA("persistent POA", NUL, policies);

In general, POA policies let you differentiate among various POAs within the
same server process, where each POA is defined in a way that best accom-
modates the needs of the objects that it processes. So, a server process that
contains the POA per si st ent POA might also contain a POA that supports
only transient object references, and only handles requests for callback
objects.

Note: Orbix automatically removes policy objects when they are no longer
referenced by any POA.

225

Chapter 10 | Managing Server Objects

POA Policy Factories

The Port abl eServer : : PQA interface contains factory methods for creating

CORBA Policy objects:

Table 13: POA policy factories and argument options

POA policy factories

Policy options (d) = defaul t

create_id_assignment_policy() SYSTEM | D (d)
USER I D

creat e_i d_uni queness_policy() UN QUE_ID(d)
MULTI PLE_I D

create_inplicit_activation_policy()

NO | MPLI O T_ACTI VATI ON (d)
| MPLI O T_ACTI VATI ON

create_|lifespan_policy()

TRANSI ENT (d)
PERS| STENT

creat e_request _processi ng_policy()

USE_ACTI VE_CBJECT MAP_ONLY (d)
USE_DEFAULT_SERVANT
USE_SERVANT MANAGER

create_servant _retention_policy()

RETAI N (d)
NON_RETAI N

create_thread_policy()

ORB_CTRL_MODEL (d)
SI NGLE_THREAD MCDEL

For specific information about these methods, refer to their descriptions in
the Orbix 2000 Programmer’s Reference.

Setting Proprietary Policies for a POA

Orbix provides several proprietary policies to control POA behavior. To set
these policies, call create _pol i cy() on the ORB to create Policy objects
with the desired policy value, and add these objects to the POA’s PolicyList.
For example, Orbix provides policies that determine how a POA handles
incoming requests for any object as it undergoes deactivation. You can
specify a Dl SCARD policy for a POA so it discards all incoming requests for

deactivating objects:

226

Creating a POA

CCRBA: : Pol i cyLi st poli ci es;

policies.length (1);

CCRBA: : Any obj _deactivation_policy_val ue;

obj deactivation_policy_value <<= | T_Portabl eServer: : Dl SCARD,

pol i ci es[0] = orb->create_policy(
(1 T_Portabl eServer: : CBIECT_DEACTI VATI ON_PCLI CY_I D,
obj _deactivation_policy_value);

You can attach the following Orbix-proprietary Policy objects to a POA’s
PolicyList:

® (bj ect Deacti vati onPol i cy: Controls how the POA handles requests
that are directed at deactivating objects. This policy is valid only for a
POA that uses a servant activator to control object activation. For more
information, see “Setting Deactivation Policies” on page 255.

® Persi stenceMdePol i cy: Can specify a policy of DI RECT_PERSI STENCE,
so that the POA uses a well-known address in the IORs that it generates
for persistent objects. This policy is valid only for a POA that has a
PERSI STENT lifespan policy. For more information, see “Direct
Persistence” on page 232.

® V¢l | KnownAddr essi ngPol i cy: Sets transport configuration data—for
example, address information for persistent objects that use a
well-known address, or IIOP buffer sizes. For more information, see
“Direct Persistence” on page 232.

* VrkQueuePol i cy: Allows the application to control the work queue in
which incoming requests are placed for processing. For more
information, see “Creating a Work Queue” on page 242.

Root POA Policies

The root POA has the following policy settings, which cannot be changed:

Policy Default setting

Id Assignment SYSTEM | D

Id Unigueness UIN QE_ID

Implicit Activation | MPLI A T_ACTI VATI ON
Lifespan TRANSI ENT

227

Chapter 10 | Managing Server Objects

Policy Default setting

Request Processing USE _ACTI VE_ CBJIECT_MAP_ON\LY
Servant Retention RETAI N

Thread CRB_CTRL_MIDEL

Using POA Policies

A POA'’s policies play an important role in determining how the POA
implements and manages objects and processes client requests. While the
root POA has a set of predefined policies that cannot be changed, any POA
that you create can have its policies explicitly set.

The following sections describe POA policies and setting options.

Enabling the Active Object Map

228

A POA's servant retention policy determines whether it uses an active object
map to maintain servant-object associations. Depending on its request
processing policy (see page 229), a POA can rely exclusively on an active
object map to map object IDs to servants, or it can use an active object map
together with a servant manager and/or default servant. A POA that lacks an
active object map must use either a servant manager or a default servant to
map between objects and servants.

You specify a POA’s servant retention policy by calling
create_servant _retention_policy() with one of these arguments:

RETAIN: The POA retains active servants in its active object map.

NON_RETAIN: The POA has no active object map. For each request, the
POA relies on the servant manager or default servant to map between an
object and its servant; all mapping information is destroyed when request
processing returns. Thus, a NON_RETAI N policy also requires that the POA
have a request processing policy of USE DEFAULT_SERVANT or
USE_SERVANT NMANAGER (see “Processing Object Requests”).

Using POA Policies

If a POA has a policy of USE_SERVANT MANAGER, its servant retention policy
determines whether it uses a servant activator or servant locator as its
servant manager. A RETAI N policy requires the use of a servant activator; a
NON_RETAI N policy requires the use of a servant locator. For more information
about servant managers, see Chapter 11.

Processing Object Requests

A POA's request processing policy determines how it locates a servant for
object requests. Four options are available:

®* Maintain a permanent map, or active object map, between object IDs
and servants and rely exclusively on that map to process all object
requests.

® Activate servants on demand for object requests.

® Locate a servant for each new object request.

®* Map object requests to a single default servant.

For example, if the application processes many lightweight requests for the
same object type, the server should probably have a POA that maps all these
requests to the same default servant. At the same time, another POA in the
same server might be dedicated to a few objects that each use different
servants. In this case, requests can probably be processed more efficiently if
the POA is enabled for permanent object-servant mapping.

You set a POA's request processing policy by calling
create_request _processing_policy() and supplying one of these
arguments:

* USE ACTI VE_CBIECT MAP_ONLY
* USE_SERVANT MANAGER
* USE DEFAULT_SERVANT

USE_ACTIVE_OBJECT MAP_ONLY

All object IDs must be mapped to a servant in the active object map;
otherwise, Orbix returns an exception of CBJECT_NOT_EXI ST to the client.
During POA initialization and anytime thereafter, the active object map is
populated with all object-servant mappings that are required during the

229

Chapter 10 | Managing Server Objects

230

POA'’s lifetime. The active object map maintains object-servant mappings
until the POA shuts down, or an object is explicitly deactivated through
deact i vate_object().

Typically, a POA can rely exclusively on an active object map when it
processes requests for a small number of objects.

This policy requires POA to have a servant retention policy of RETAI N. (see
“Enabling the Active Object Map” on page 228).

USE_SERVANT_MANAGER

The POA's servant manager finds a servant for the requested object.
Depending on its servant retention policy, the POA can implement one of two
servant manager types, either a servant activator or a servant locator:

* A servant activator can be registered with a POA that has a RETAIN
policy. The servant activator incarnates servants for inactive objects on
receiving an initial request for them. The active object map retains
mappings between objects and their servants; it handles all subsequent
requests for this object.

* |f the POA has a policy of NON_RETAI N (the POA has no active object
map), a servant locator must find a servant for an object on each
request; otherwise, an CBJ_ADAPTER exception is returned when clients
invoke requests.

USE_SERVANT_MANAGER requires the application to register a servant manager
with the POA by calling set _servant _nanager ().

For more information about servant managers, see Chapter 11.

USE_DEFAULT_SERVANT

The POA dispatches requests to the default servant when it cannot otherwise
find a servant for the requested object. This can occur because the object’s
ID is not in the active object map, or the POA’s servant retention policy is set
to NON_RETAI N

Set this policy for a POA that needs to process many objects that are
instantiated from the same class, and thus can be implemented by the same
servant.

Using POA Policies

This policy requires the application to register the POA’s default servant by
calling set _servant () on the POA; it also requires the POA’s ID uniqueness
policy to be set to MLTI PLE_I D, so multiple objects can use the default
servant.

Setting Object Lifespan

A POA creates object references through calls to creat e_ref erence() or
create_reference with_id(). The POA's lifespan policy determines
whether these object references are persistent—that is, whether they outlive
the process in which they were created. A persistent object reference is one
that a client can successfully reissue over successive instantiations of the
target server and POA.

You specify a POA’s lifespan policy by calling create_| i f espan_pol i cy()
with one of these arguments

TRANSIENT: (default policy) Object references do not outlive the POA in
which they are created. After a transient object’s POA is destroyed,
attempts to use this reference yield the exception GORBA: :
CBJECT_NOT_EXI ST.

PERSISTENT: Object references can outlive the POA in which they are
created.

Transient Object References

When a POA creates an object reference, it encapsulates it within an IOR. If
the POA has a TRANSI ENT policy, the IOR contains the server process'’s
current location—its host address and port. Consequently, that object
reference is valid only as long as the server process remains alive. If the
server process dies, the object reference becomes invalid.

231

Chapter 10 | Managing Server Objects

232

Persistent Object References

If the POA has a PERSI STENT policy, the IOR contains the address of the
location domain’s implementation repository, which maps all servers and
their POAs to their current locations. Given a request for a persistent object,
the location daemon uses the object’s “virtual” address first, and looks up the
server process’s actual location via the implementation repository.

A POA with a PERSISTENT policy must be registered in the implementation
repository through the i t adni n poa creat e command. For more information,
see the Orbix 2000 Administrator’s Guide.

Direct Persistence

Occasionally, you might want to generate persistent object references that
avoid the overhead of using the location daemon. In this case, Orbix provides
the proprietary policy of Dl RECT_PERSI STENCE. A POA with policies of

PERSI STENT and DI RECT_PERSI STENCE generates |IORs that contain a
well-known address for the server process. A POA that uses direct
persistence must indicate where the configuration policy sets the well-known
address to be embedded in object references. For this purpose, the
configuration must contain a well-known address configuration variable, with
this syntax:

prefix:transport:addr_list={...}

This is done by creating a VI | KnownAddr essi ngPol i cy object and setting its
value to the prefix that contains the well-known address.

For example, you can create a well-known address configuration variable in
name scope MyConfigApp as follows:

M/Confi gApp {
wka: | 1| OP: addr _|ist=

}

Given this configuration, a POA is created in the ORB M/Conf i gApp can have
its PolicyList set so it generates persistent object references that use direct
persistence, as follows:

QCRBA: : Pol i cyLi st polici es;

policies.length (4);

Using POA Policies

CCRBA: : Any per si stence_node_pol i cy_val ue;
CCRBA: : Any wel | _known_addr essi ng_pol i cy_val ue;
per si st ence_node_pol i cy_val ue
<<= | T_Port abl eSer ver: : Dl RECT_PERS| STENCE;
wel | _known_addr essi ng_pol i cy_val ue <<=
OCRBA: : Any: : fromstring(" MAppConfi gScope", | T_TRUE);

pol i ci es[0] = poa—>create_lifespan_policy
(Portabl eServer: : PERSI STENT) ;
pol i ci es[1] = poa—>create_i d_assi gnment _pol i cy
(Portabl eServer:: USER I D);
pol i cies[2] = orb->create_policy(
(I T_Portabl eServer:: PERSI STENCE MCDE PCLI CY_I D,
per si st ence_node_pol i cy_val ue);
pol i ci es[3] = orb->create_policy(
| T_CCORBA: : WELL_KNOWN_ADDRESSI NG POLI CY_I D,
wel | _known_addr essing_pol i cy_val ue);

Object Lifespan and ID Assignment

A POA typically correlates its lifespan and ID assignment policies. TRANSI ENT
and SYSTEM | D are the default settings for a new POA, as system-assigned
IDs are generally sufficient for transient object references. PERSI STENT and
USER | D policies are usually set together, inasmuch as an application
typically requires explicit control over the object IDs of its persistent object
references.

Assigning Object IDs

The ID assignment policy determines whether object IDs are generated by the
POA or the application. Specify the POA’s ID assignment policy by calling
create_id_assi gnnent _pol i cy() with one of these arguments:

SYSTEM_ID: The POA generates and assigns IDs to its objects.
USER_ID: The application assigns object IDs to objects in this POA. The

application must ensure that all user-assigned IDs are unique across all
instantiations of the same POA.

233

Chapter 10 | Managing Server Objects

Typically, a POA with a SYSTEM | D policy manages objects that are active for
only a short period of time, and so do not need to outlive their server process.
In this case, the POA also has an object lifespan policy of TRANSI ENT. Note,

however, that system-generated IDs in a persistent POA are unique across all
instantiations of that POA.

USER | Dis usually assigned to a POA that has an object lifespan policy of
PERSI STENT—that is, it generates object references whose validity can span
multiple instantiations of a POA or server process, so the application requires
explicit control over object IDs.

Activating Objects with Dedicated Servants

A POA’s ID uniqueness policy determines whether it allows a servant to
incarnate more than one object. You specify a POA'’s ID unigueness policy by
calling creat e_i d_uni queness_pol i cy() with one of these arguments:

UNIQUE_ID: Each servant in the POA can be associated with only one object
ID.

MULTIPLE_ID: Any servant in the POA can be associated with multiple
object IDs.

Note: If the same servant is used by different POAs, that servant conforms
to the uniqueness policy of each POA. Thus, it is possible for the same
servant to be associated with multiple objects in one POA, and be restricted
to one object in another.

Activating Objects

234

A POA’s activation policy determines whether objects are explicitly or
implicitly associated with servants. If a POA is enabled for explicit activation,
you activate an object by calling acti vat e_obj ect () or

activate object_with_ id() onthe POA. A POA that supports implicit
activation allows the server application to call the _thi s() function on a
servant to create an active object (see “Implicit Activation” on page 237).

Using POA Policies

The activation policy determines whether the POA supports implicit
activation of servants.

Specify the POA’s activation policy by supplying one of these arguments:

NO_IMPLICIT_ACTIVATION: (default) The POA only supports explicit
activation of servants.

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants.
This policy requires that the POA’s object ID assignment policy be set to
SYSTEM I D, and its servant retention policy be set to RETAI N.

For more information, see “Explicit and Implicit Object Activation” on
page 236.

Setting Threading Support

Specify the POA’s thread policy by supplying one of these arguments:

ORB_CTRL_MODEL: The ORB is responsible for assigning requests for an
ORB-controlled POA to threads. In a multi-threaded environment, concurrent
requests can be delivered using multiple threads.

SINGLE_THREAD_MODEL: Requests for a single-threaded POA are
processed sequentially. In a multi-threaded environment, all calls by a
single-threaded POA to implementation code (servants and servant
managers) are made in a manner that is safe for code that does not account
for multi-threading.

Multiple single-threaded POAs might need to cooperate to ensure that calls
are safe when they share implementation code such as a servant manager.

Orbix maintains for each ORB two default work queues, one manual and the
other automatic. Depending on its thread policy, a POA that lacks its own
work queue uses one of the default work queues to process requests:

* A POA with a threading policy of SI N&LE THREAD MODEL uses the manual
work queue. To remove requests from the manual work queue, you must
call either CRB: : performwor k() or CRB: : run() within the main thread.

235

Chapter 10 | Managing Server Objects

e A POA with a threading policy of CRB_CTR._MODEL uses the automatic
work queue. Requests are automatically removed from this work queue;
however, because CRB: : run() blocks until the ORB shuts down, an
application can call this method to detect when shutdown is complete.

Both threading policies assume that the ORB and the application are using
compatible threading synchronization. All uses of the POA within the server
must conform to its threading policy.For information about creating a POA
workqueue, see page 242.

Explicit and Implicit Object Activation

A POA’s activation policy determines whether a server application can
activate objects implicitly or explicitly.

Explicit Activation

236

If the POA has a policy of NO | MPLI O T_ACTI VATI QN, the server must call
either acti vate_obj ect () or activate object_with_ id() onthe POA to
activate objects. Either of these calls registers an object in the POA with
either a user-supplied or system-generated object ID, and maps that object to
the specified servant.

After you explicitly activate an object, you can obtain its object reference in
two ways:

® Use the object’s ID to call i d_to_reference() on the POA where the
object was activated. i d_t o_reference() uses the object’s ID to obtain
the information needed to compose an object reference, and returns that
reference to the caller.

® Call _this() on the servant. Because the servant is already registered in
the POA with an object ID, the function composes an object reference
from the available information and returns that reference to the caller.

Explicit and Implicit Object Activation

Implicit Activation

A server activates an object implicitly by calling _thi s() on the servant
designated to incarnate that object. _t hi s() is valid only if the POA that
maintains these objects has policies of RETAI N, SYSTEM | D, and

| MPLI O T_ACTI VATI QN; otherwise, it raises a WongPol i cy exception. Thus,
implicit activation is generally a good option for a POA that maintains a
relatively small number of transient objects.

_this() performs two separate tasks:

® Checks the POA to determine whether the servant is registered with an
existing object. If it is not, _thi s() creates an object from the servant’s
interface, registers a new ID for this object in the POA’s active object
map, and maps this object ID to the servant.

® (Generates and returns an object reference.

In other words, the object is implicitly activated in order to return an object
reference.

Calling _this() Inside an Operation

If called inside an operation, _thi s() returns a reference to the object on
which the operation was invoked. Thus, a servant can always obtain a
reference to the object that it incarnates—for example, in order to register the
object as a callback with another object.

The following interface defines the get _sel f () operation, whose
implementation returns a reference to the same interface:

i nterface Watever {
What ever get_sel f();

b
You might implement this operation as follows:

What ever _ptr
What ever I npl : : get _sel f () throw CCRBA: : Syst enExcept i on)

{
}

return _this(); /!l Return reference to self

237

Chapter 10 | Managing Server Objects

238

Calling _this() Outside an Operation

As discussed earlier, you can call _t hi s() on a servant to activate an object.
When you do so, the function also returns an object reference. This object
reference must include information that it obtains from the POA in which the
object is registered: the fully qualified POA name, protocol information, and
the object ID that is registered in the POA’s active object map. _thi s()
determines which POA to use by calling _defaul t _PQA() on the servant.

_defaul t_PQA() is inherited from the Ser vant Base class:

cl ass Servant Base {
publi c:

virtual POA ptr _default_PQA();

...
b
All skeleton classes and the servants that implement them derive from
Servant Base, and therefore inherit its implementation of _def aul t _PQA() .
The inherited _def aul t _PQA() always returns the root POA. Thus, calling
_this() on a servant that does not override _defaul t _PQA() returns a
transient object reference that points back to the root POA. All invocations on
that object are processed by the root POA.

As seen earlier, an application typically creates its own POAs to manage
objects and client requests. For example, to create and export persistent
object references, you must create a POA with a PERSI STENT lifespan policy
and use it to generate the desired object references. If this is the case, you
must be sure that the servants that incarnate those objects also override
_def aul t _PQA() ; otherwise, calling _t hi s() on those servants returns tran-
sient object references whose mappings to servants are handled by the root
POA.

Note: To avoid ambiguity concerning the POA in which an object is
implicitly activated, call servant _to_reference() on the desired POA
instead of _t hi s(). While using servant _to_reference() requires you to
narrow to the appropriate object, the extra code is worth the extra degree of
clarity that you achieve.

Explicit and Implicit Object Activation

To ensure that _t hi s() uses the right POA to generate object references, an
application’s servants must override the default POA. You can do this three
ways:

Override _default_POA() to throw a system exception

For example, _def aul t _PQA() can return system exception CCRBA: :

I NTERNAL. This prevents use of _thi s() to generate any object references for
that servant. By overriding _defaul t _PQA() to throw an exception, you
ensure that attempts to use _thi s() yield an immediate error instead of a
subtly incorrect behavior that must be debugged later. Instead, you must
create object references with calls to either creat e_ref erence() or

create reference with_id() (see page 264), then explicitly map objects to
servants—for example, through a servant manager, or via the active object
map by calling acti vate_object _with_id.().

Disabling _defaul t _PQA() also prevents you from calling _t hi s() to obtain
an existing object reference for a servant. To obtain the reference, you must
call servant _to_reference().

Override _default_POA() in each servant to return the correct POA

Calls to _t hi s() are guaranteed to use the correct POA. This approach also
raises a WongPol i cy exception if the POA that you set for a servant has
invalid policies for implicit activation. such as USER I D.

This approach requires the application to maintain a reference for the
servant’s POA. If all servants use the same POA, you can set the reference in
a global variable or a static private member. However, if a server uses unique
POAs for different groups of servants, each servant must carry the overhead
of an additional (non-static) data member.

Override _default_POA() in a common base class

Servant classes that need to override _defaul t _PQA() can inherit from a
common base class that contains an override definition. This approach to
overriding _def aul t _PQA() has two advantages:

® You only need to write the overriding definition of _def aul t _PQA() once.

* If you define a servant class that inherits from multiple servant classes,
you avoid inheriting conflicting definitions of the _defaul t _PQA()
method.

239

Chapter 10 | Managing Server Objects

240

Orbix’s cpp_poa_geni e. tcl genie uses this approach to override

_defaul t_PQA() in the servant code that it generates. The genie generates
the common base class | T_Servant BaseOver ri des, which overrides the
definition of _defaul t _PQOA():

/] CH
[lFile: it_servant_base_overrides. h

class | T _Servant BaseOverri des :
public virtual Portabl eServer:: Servant Base

{
publi c:
I T_Servant BaseOverri des(
Port abl eServer:: POA ptr
);
virtual
~| T_Ser vant BaseQverrides();
virtual Portabl eServer::PQA ptr
_defaul t _POA();
private:
Port abl eServer:: POA var m poa;
h

The code can be explained as follows:
1. I T _Servant BaseOverri des inherits from Port abl eServer: :
Ser vant Base, which is the base class for all servant classes.

2. The constructor is passed a reference to a POA object, which it stores in
private member variable m poa.

3. I T ServantBaseOverrides:: default PQA() overrides the definition
inherited from Port abl eSer ver : : Servant Base. It returns a copy of the
POA reference stored in m poa.

4. The mpoa private member is used to stores the POA reference.

For more information about using the | T_Servant BaseQverri des class, see
page 49.

Managing Request Flow

Managing Request Flow

Each POA is associated with a PQAMVanager object that determines whether
the POA can accept and process object requests. When you create a POA,
you specify its manager by supplying it as an argument to creat e_POX() .
This manager remains associated with the POA throughout its life span.

You can register either an existing POA manager or supply NULL to create a
PQAManager object. You can obtain the POAManager object of a given POA by
calling t he_PQAManager () on it. By creating POA managers and using
existing ones, you can group POAs under different managers according to
their request processing needs. Any POA in the POA hierarchy can be
associated with a given manager; the same manager can be used to manage
POAs in different branches.

A POA manager can be in four different states. The POAManager interface
provides four operations to change the state of a POA manager, as shown in
Table 14.

Table 14: POA manager states and interface operations

State Operation Description

Active activate() Incoming requests are accepted for processing.
When a POA manager is created, it is initially in
a holding state. Until you call activate() on a
POA’s manager, all requests sent to that POA
are queued.

Holding hol d_r equest s() All incoming requests are queued. If the queue

fills to capacity, incoming requests are returned
with an exception of TRANSI ENT.

241

Chapter 10 | Managing Server Objects

Table 14: POA manager states and interface operations

State Operation Description

Discarding di scard_request s() All incoming requests are refused and a system
exception of TRANSI ENT is raised to clients so
they can reissue their requests. A POA manager
is typically in a discarding state when the
application detects that an object or the POA in
general cannot keep pace with incoming
requests. A POA manager should be in a
discarding state only temporarily. On resolution
of the problem that required this call, the
application should restore the POA manager to
its active state with activate().

Inactive deacti vat e() The POA manager is shutting down and
destroying all POAs that are associated with it.
Incoming requests are rejected with the
exception CORBA: : CBJ_ADAPTER.

The POA manager of the root POA is initially in a holding state, as is a new
POA manager. Until you call acti vate() on a POA’s manager, all requests
sent to that POA are queued. acti vat e() can also reactivate a POA manager
that has reverted to a holding state (due to a hol d_request s() call) orisin a
discarding state (due to a di scard_request s() call).

If a new POA is associated with an existing active POA manager, it is
unnecessary to call acti vat e() . However, it is generally a good idea to put a
POA manager in a holding state before creating a new POA with it.

The queue for a POA manager that is in a holding state has limited capacity,
so this state should be maintained for a short time only. Otherwise, the
queue is liable to fill to capacity with pending requests. When this happens,
all subsequent requests return to the client with a TRANSI ENT exception.

Creating a Work Queue

Orbix provides a proprietary WorkQueue policy, which you can associate with
a POA and thereby control the flow of incoming requests for that POA.

242

Creating a Work Queue

A work queue has the following interface definition:

i nterface WrkQueue

{

readonly attribute | ong max_si ze;
readonly attribute unsigned | ong count;

bool ean
enqueue(in Wrkltemwork, in long tineout);

bool ean
is_full();

bool ean
is_empty();

bool ean
activate();

bool ean
deactivate();

voi d

flush();
b
You can implement your own Wr kQueue interface, or use IONA-supplied
Wor kQueue factories to create one of two Wr kQueue types: a
Manual Wor kQueue, or an Aut onat i cVWr kQueue.

ManualWorkQueue

A Manual Wor kQueue is a work queue that holds incoming requests until they
are explicitly dequeued. Its interface is defined as follows:

i nterface Manual Wr kQueue : Wr kQueue {

bool ean
dequeue(
out Workltemwork,
in |ong ti meout
)
bool ean

243

Chapter 10 | Managing Server Objects

do_wor k(
in long nunber_of jobs,
in long tineout
)
voi d
shut down(i n bool ean process_renai ni ng_j obs);
b
Applications that use a Manual Wr kQueue must periodically call dequeue() or
do_wor k() to ensure that requests are handled in a timely manner. A false
return value from either method indicates that the timeout has expired or that
the queue has shut down.

You create a Manual Wr kQueueFact ory by calling
resol ve_initial _references("|T_Manual WrkQueueFactory"). The
Manual Vor kQueueFact ory has the following interface:

i nterface Manual Wr kQueueFactory {

Manual Wor kQueue

creat e_wor k_queue(

inlong max_size

)s
h
max_si ze is the maximum number of work items that the queue can hold. If
the queue becomes full, the transport considers the server to be overloaded
and tries to gracefully close down connections to reduce the load.

AutomaticWorkQueue

244

An Aut omat i cVr kQueue is a work queue that feeds a thread pool. Its
interface is defined as follows:

i nterface Automati cWrkQueue : WrkQueue {
attribute |l ong hi gh_water_nark;
attribute long | ow wat er _nark;

voi d
shut down(
i n bool ean process_renai ni ng_j obs
)s
b

Creating a Work Queue

Applications that use an Aut onat i cWr kQueue do not need to explicitly
dequeue work items; instead, work items are automatically dequeued and
processed by threads in the thread pool. You create an Aut omat i cVr kQueue
through the Aut omat i cVr kQueueFact or y, obtained by calling
resolve_initial _references("|T_Autonati cWr kQueue"). The

Aut omat i cVWr kQueueFact ory has the following interface:

i nterface Automati cWr kQueueFactory {
Aut ormat i cWr kQueue
creat e_wor k_queue(

in |ong max_si ze,

in unsigned long initial_thread_count,
in |ong hi gh_wat er _mark,
inlong | ow wat er _mar k

)
}

create_work_queue() takes these arguments:

max_size is the maximum number of work items that the queue can hold. To
specify an unlimited queue size, supply a value of - 1.

initial_thread_count is the initial number of threads in the thread pool; the
ORB automatically creates and starts these threads when the workqueue is
created.

high_water_mark specifies the maximum number of threads that can be
created to process work queue items. If all threads are busy and the number
of threads is less than hi gh_wat er _nmark, the ORB can start additional
threads to process items in the work queue, up to the value of

hi gh_wat er _mar k. To specify an unlimited number of threads, supply a value
of - 1.

low_water_mark lets the ORB remove idle threads from the thread pool,
down to the value of | ow wat er _nar k. The number of available threads is
never less than this value.

If the number of threads is equal to hi gh_wat er _mark and all are busy, and
the work queue is filled to capacity, the transport considers the server to be
overloaded and tries to gracefully close down connections to reduce the load.

245

Chapter 10 | Managing Server Objects

Creating a POA with a WorkQueue Policy

246

To create a POA with a WorkQueue policy, follow these steps:

1. Create a work queue factory by calling resol ve_initial _references()
and specify the desired factory type by supplying an argument of
I T_Aut omat i cWor kQueueFact ory or | T_Manual Wor kQueueFact ory.

2. Set work queue parameters.

3. Create the work queue by calling cr eat e_wor k_queue() on the work
queue factory.

4. Insert the work queue into an Any.
5. Add a work queue policy object to a POA's PolicyList.

The following code illustrates these steps:

/1 get an automatic work queue factory
OCRBA: : (hj ect obj _var obj =

resolve_initial _references("|T_Automati cWr kQueueFact ory");
I T_Wor kQueue: : Aut omat i cVWor kQueueFact ory_var wgf =

Aut onmat i cWor kQueueFactory: : _narrow(obj);

/1 set work queue paraneters
OCRBA: : Long max_si ze = 20;

OORBA: : Long init_thread count = 1;
OCRBA: : Long high_water _mark = 10;
OCRBA: : Long | ow water_mark = 2;

/] create work queue
I T_Aut onmat i cVWr kQueue_var aut o_wq = wgf - >creat e_wor k_queue(
nmax_si ze,
init_thread count,
hi gh_wat er _mark,
| ow wat er _nmark

)

/1 insert the work queue into an any
CCRBA: : Any wor k_queue_pol i cy_val ;
wor k_queue_pol i cy_val <<= aut o_wg;

/1 create PolicyList
QCRBA: : Pol i cyLi st polici es;
policies.length(3);

Creating a Work Queue

/1 other PQA policies set
1o,

/1 add work queue policy object to POA's PolicyLi st
pol i ci es[0] = orb->create_policy(
(I T_Wor kQueue: : WIRK_QUEUE_PQLI CY_I D,
wor k_queue_policy_val);

/1 ... add other PQA policies to PolicylList
...

247

Chapter 10 | Managing Server Objects

248

Managing Servants

A POA that needs to manage a large number of objects can
be configured to incarnate servants only as they are needed.
Alternatively, a POA can use a single servant to service all
requests.

A POA’s default request processing policy is USE_ACTI VE_CBIECT_NMAP_QNLY.
During POA initialization, the active object map must be populated with all
object-servant mappings that are required during the POA's lifetime. The
active object map maintains object-servant mappings until the POA shuts
down, or an object is explicitly deactivated.

For example, you might implement the BankDeno: : Account interface so that
at startup, a server instantiates a servant for each account and activates all
the account objects. Thus, a servant is always available for any client invoca-
tion on that account—for example, bal ance() or wi t hdraw() . However,
given the potential for many thousands of accounts, and the likelihood that
account information changes—accounts are closed down, new accounts are
created—the drawbacks of this static approach become obvious:

® Code duplication: For each account, the same code for servant creation
and activation must be repeated, increasing the potential for errors.

* Inflexibility: For each change in account information, you must modify
and recompile the server code, then stop and restart server processes.

® Startup time: The time required to create and activate a large number of
servants prolongs server startup and delays its readiness to process
client requests.

®* Memory usage: An excessive amount of memory might be required to
maintain all servants continuously.

This scenario makes it clear that you should usually configure a POA to rely
exclusively on an active object map only when it maintains a small number of
objects. If a POA is required to maintain a large number of objects, you

should probably configure it to instantiate servants on demand by setting its
request processing policy to USE_SERVANT MANAGER Or you can set this policy

249

Chapter 11 | Managing Servants

to USE_DEFAULT_SERVANT to specify a default servant that handles requests
for any objects that are not registered in the active object map, or for all
requests in general. This chapter shows how to implement both policies.

Using Servant Managers

250

A POA whose request processing policy is set to USE_SERVANT_NANAGER
supplies servants on demand for object requests. The POA depends on a
servant manager to map objects to servants. Depending on its servant
retention policy, the POA can implement one of two servant manager types,
either a servant activator or servant locator:

* A servant activator is registered with a POA that has a RETAI N policy.
The servant activator supplies a servant for an inactive object on
receiving an initial request for it. The active object map retains the
mapping between the object and its servant until the object is
deactivated.

* A servant locator is registered with a POA that has a policy of
NON_RETAI N. The servant locator supplies a servant for an inactive object
each time the object is requested. In the absence of an active object
map, the servant locator must deactivate the object and delete the
servant from memory after the request returns.

Because a servant activator depends on the active object map to maintain
the servants that it supplies, its usefulness is generally limited to minimizing
an application’s startup time. In almost all cases, you should use a servant
locator for applications that must dynamically manage large numbers of
objects.

An application registers its servant manager —whether activator or locator—
with the POA by calling set _servant _nanager () on it; otherwise, an
(BJ_ADAPTER exception is returned to the client on attempts to invoke on one
of its objects.

The following sections show how to implement the BankDeno: : Account
interface with a servant activator and a servant locator. Both servant manager
types activate account objects with instantiations of servant class

Account | npl , which inherits from skeleton class PQA BankDeno: : Account :

Il CH
cl ass S ngl eAccount | npl

Using Servant Managers

publ i ¢ PQA BankDeno: : Account

{
public:
Si ngl eAccount | npl (
const char* account_id,
Account Dat abase& account _db
);
~Si ngl eAccount | mpl () ;
voi d wi t hdraw(BankDeno: : CashAmount anount) t hr ow(
OCRBA: : Syst enExcept i on,
BankDeno: : Account : : | nsuf fi ci ent Funds) ;
voi d deposi t (BankDeno: : CashAnount anount) t hr ow(
QCRBA: : Syst enExcepti on);
char* account _i d() throw GORBA : Syst enExcepti on);
BankDero: : CashAmount bal ance() t hrow GORBA: : Syst enExcepti on);
private:
OCRBA: : String_var m account i d;
BankDenwo: : CashAnount m bal ance;
Account Dat abase& m account _db;
b

Servant Activators

A POA with policies of USE_SERVANT_NANAGER and RETAI N uses a servant
activator as its servant manager. The POA directs the first request for an
inactive object to the servant activator. If the servant activator returns a
servant, the POA associates it with the requested object in the active object
map and thereby activates the object. Subsequent requests for the object are
routed directly to its servant.

251

Chapter 11 | Managing Servants

252

Servant activators are generally useful when a server can hold all its servants
in memory at once, but the servants are slow to initialize, or they are not all
needed each time the server runs. In both cases, you can expedite server
startup by deferring servant activation until it is actually needed.

Servant activator activates

servants on
demand
@ Q\A servant

Initial object requests are activator
directed to servant activator

Subsequent requests on . A/
activated objects Yy /

are routed through

the active / active object

object map map

U}f

’ servants
- ‘
ARG
servant-object ID

mappings

Figure 25: On the first request on an object, the servant activator returns a servant
to the POA, which establishes the mapping in its active object map.

ServantActivator Interface

The Port abl eSer ver: : Servant Act i vat or interface is defined as follows:

interface Servant Activator : Servant Manager

{
Ser vant
i ncar nat e(
in (ojectld oid,
in PQA adapt er

Using Servant Managers

) raises (ForwardRequest);

voi d
et hereal i ze(
in Cbjectld oid,
in PQA adapt er,
in Servant serv,
in bool ean cl eanup_i n_progress,
in bool ean remnaining_activations
)
¥
A POA can call two methods on its servant activator:

® incarnate() is called by the POA when it receives a request for an
inactive object, and should return an appropriate servant for the
requested object.

®* etherealize() is called by the POA when an object is deactivated or the
POA shuts down. In either case, it allows the application to clean up
resources that the servant uses.

Implementing a Servant Activator
You can define a servant activator as follows:

Il C++
#i ncl ude <ony/ Port abl eServer S. hh>
#i ncl ude "account _db. h"

cl ass Account Servant Acti vat or | npl
publ i ¢ Portabl eServer:: Servant Acti vat or,
publ i ¢ CORBA: : Local (bj ect
{
public:
Account Servant Acti vat or | npl (Account Dat abase& account _db) ;

Por t abl eServer: : Servant i ncar nat e(

const Portabl eServer:: Chjectld & oid,

Por t abl eServer:: POA ptr adapter

) throw(GCRBA: : Syst enExcept i on,
Por t abl eSer ver : : For war dRequest) ;

voi d etherealize(

253

Chapter 11 | Managing Servants

254

2

const Portabl eServer:: hjectld & oid,
Port abl eServer:: PQA ptr adapter,

Port abl eServer:: Servant serv,

CCRBA: : Bool ean cl eanup_i n_pr ogr ess,
CCRBA: : Bool ean remai ni ng_acti vati ons
) throw(CCRBA: : Syst enExcepti on);

In this example, the servant activator's constructor takes a single argument,
an AccountDatabase object, to enable interaction between Account objects
and persistent account data..

Activating Objects

i ncar nat () instantiates a servant for a requested object and returns the
servant to the POA. The POA registers the servant with the object’s ID,
thereby activating the object and making it available to process requests on
it.

In the following implementation, i ncar nat e() performs these tasks:

1. Takes the object ID of a request for a BankDeno: : Account object, and
the POA that relayed the request.

2. Instantiates an Si ngl eAccount | npl servant, passing account information
to the servant’s constructor, and returns the servant to the POA.

/1 servant activator constructor
Account Servant Acti vat or | npl : : Account Servant Act i vat or | npl (
Account Dat abase& account _db) : maccount _db(account _db)

(1 ..}

Port abl eSer ver: : Servant
Account Servant Acti vator | npl : :i ncar nat e(

const Portabl eServer:: hjectld & oid,

Portabl eServer:: POA ptr adapter
) throw(GCORBA: : Syst enException, Portabl eServer: : Forwar dRequest)
{

CORBA: : String_var account _id =

Portabl eServer:: (bjectld_to_string(oid);
return new Si ngl eAccount | npl (account _i d, maccount _db);

Using Servant Managers

Deactivating Objects

The POA calls et her eal i ze() when an object deactivates, either because the
object is destroyed or as part of general cleanup when the POA itself
deactivates or is destroyed.

The following implementation of et her eal i ze() checks the
renai ni ng_activati ons parameter to ensure that the servant does not
incarnate another object before it deletes the servant. Implementations can
also check the cl eanup_i n_progr ess parameter to determine whether
etherealization results from POA deactivation or destruction; this lets you
differentiate between this and other reasons to etherealize a servant.
voi d
Account Servant Activator|npl::etherealize(

const Portabl eServer:: Chjectld & oid,

Portabl eServer:: POA ptr poa,

Por t abl eServer: : Servant servant,

OCRBA: : Bool ean cl eanup_i n_progr ess,

QCRBA: : Bool ean renai ni ng_acti vati ons
) throw((QORBA: : Syst enExcepti on))
{

if (remaining_activations == 0)

del ete serv;

Setting Deactivation Policies

By default, a POA that uses a servant activator lets an object deactivate (and
its servant to etherealize) only after all pending requests on that object return.
You can modify the way the POA handles incoming requests for a deactivat-
ing object by creating an Orbix-proprietary Qbj ect Deact i vati onPol i cy
object and attaching it to the POA’s PolicyList (see “Setting Proprietary Poli-
cies for a POA” on page 226).

Three settings are valid for this Policy object:

® DELIVER (default) — The object deactivates only after processing all
pending requests, including any requests that arrive while the object is
deactivating. This behavior complies with CORBA specifications.

® DI SCARD— The POA rejects incoming requests with an exception of
TRANSI ENT. Clients should be able to reissue discarded requests.

255

Chapter 11 | Managing Servants

® HAD— Requests block until the object deactivates. A POA with a HOLD
policy maintains all requests until the object reactivates. However, this
policy can cause deadlock if the object calls back into itself.

Setting a POA’s Servant Activator
You establish a POA’s servant activator in two steps:

1. Instantiate the servant activator.

2. Call set_servant _nanager () on the target POA and supply the servant
activator.

Account Dat abase account _dat abase = new Account Dat abase() ;

/] instantiate servant activator
Account Servant Activatorl npl activator_i npl (account _dat abase) ;
acct _poa- >set _servant _nanager (&activator _inpl);

/1 Associate the activator with the accounts PQA
acct _poa- >set _servant _nanager (activator);

Servant Locators

256

A server that needs to manage a large number of objects might only require
short-term access to them. For example, the operations that are likely to be
invoked on most customer bank accounts—such as withdrawals and depos-
its—are usually infrequent and of short duration. Thus, it is unnecessary to

keep account objects active beyond the lifetime of any given request. A POA
that services requests like this can use a servant locator, which activates an
object for each request, and deactivates it after the request returns.

A POA with policies of USE_SERVANT_MANAGER and NON_RETAI N uses a servant
locator as its servant manager. Because the POA lacks an active object map,
it directs each object request to the servant locator, which returns a servant
to the POA in order to process the request. The POA calls the request

Using Servant Managers

operation on the servant; when the operation returns, the POA deactivates
the object and returns control to the servant locator. From the POA’s
perspective, the servant is active only while the request is being processed.

. m servant
object locator
request — preinvoke() ———p

{ operatlon() —4>‘
— postmvoke(— servant

object - prelnvoke) > servant
request operatlon() —
‘/ — postlnvoke(—

Figure 26: The POA directs each object request to the servant locator, which returns

a servant to the POA to process the request.

An application that uses a servant locator has full control over servant
creation and deletion, independently of object activation and deactivation.
Your application can assert this control in a number of ways. For example:

Servant caching: A servant locator can manage a cache of servants for
applications that have a large number of objects. Because the locator is
called for each operation, it can determine which objects are requested
most recently or frequently and retain and remove servants accordingly.
Application-specific object map: A servant locator can implement its own
object-servant mapping algorithm. For example, a POA’s active object
map requires a unique servant for each interface. With a servant locator,
an application can implement an object map as a simple fixed table that
maps multiple objects with different interfaces to the same servant.
Objects can be directed to the appropriate servant through an identifier
that is embedded in their object IDs. For each incoming request, the
servant locator extracts the identifier from the object ID and directs the
request to the appropriate servant.

257

Chapter 11 | Managing Servants

258

ServantLocator Interface

The Port abl eSer ver : Ser vant Locat or interface is defined as follows:

i nterface ServantLocator : Servant Manager

{
native Cooki e;
Ser vant
pr ei nvoke(
in Cbjectld oid,
in POA adapter,
in GORBA :ldentifier operation,
out Cooki e t he_cooki e
) raises (ForwardRequest);
void
post i nvoke(
in jectld oid,
in PQA adapter,
in GORBA :ldentifier operation,
in Cooki e the_cooki e,
in Servant the_servant
);
b

A servant locator processes each object request with a pair of methods,
pr ei nvoke() and posti nvoke():

® preinvoke() is called on a POA’s servant locator when the POA receives
a request for an object. prei nvoke() returns an appropriate servant for
the requested object.

®* postinvoke() is called on a POA’s servant locator to dispose of the
servant when processing of the object request is complete. The
posti nvoke() implementation can either delete the servant, or cache it
for later reuse.

Implementing a Servant Locator
The following code defines a servant locator that handles account objects:

[l G++

cl ass Account Ser vant Locat or | npl
publ i c Portabl eServer:: Servant Locat or,
publ i c GORBA: : Local (hj ect

Using Servant Managers

{

public:

Account Ser vant Locat or | npl (Account Dat abase& account _db) ;

publi c:

Por t abl eServer: : Servant prei nvoke(
const Portabl eServer:: (hjectld & d,
Port abl eServer: : POA ptr poa,
const char *operation,

Port abl eSer ver: : Cooki e &cooki e)
throw GOCRBA: : SystenException);

voi d postinvoke (
const Portabl eServer:: (hjectld & d,
Port abl eServer: : POA ptr poa,
const char *operation,
Por t abl eSer ver : : Cooki e &cooki e,
Port abl eServer: : Servant the_servant)
t hr ow(CCORBA: : Syst enExcept i on);

Each request is guaranteed a pair of prei nvoke() and posti nvoke() calls.
This can be especially useful for applications with database transactions. For
example, a database server can use a servant locator to direct concurrent
operations to the same servant; each database transaction is opened and
closed within the prei nvoke() and posti nvoke() operations.

The signatures of prei nvoke() and postinvoke() are differentiated from
those of i nvoke() and i ncarnate() by two parameters, t he_cooki e and
operati on:

t he_cooki e lets you explicitly map data between prei nvoke() and its
corresponding post i nvoke() call. This can be useful in a multi-threaded
environment and in transactions where it is important to ensure that a
pair of prei nvoke() and postinvoke() calls operate on the same ser-
vant. For example, each prei nvoke() call can set its t he_cooki e param-
eter to data that identifies its servant; the posti nvoke() code can then
compare that data to its t he_servant parameter.

oper at i on contains the name of the operation that is invoked on the
CORBA object, and thus provides the context of the servant’s
instantiation. The servant can use this to differentiate between different
operations and execute the appropriate code.

259

Chapter 11 | Managing Servants

260

Incarnating Objects With a Servant Locator

The following implementation of prei nvoke() is functionally identical to the
i ncar nat e() implementation shown earlier (see page 254).

Il CH
Por t abl eSer ver: : Servant
M/Acct Locat or : : prei nvoke(
const Portabl eServer:: Chject|D & d,
Portabl eServer:: POA ptr poa
const char *operation
Port abl eSer ver: : Cooki e &cookie)
throw(OCRBA: : SysteniException)

{
OCRBA: : String_var str =
Portabl eServer:: (hjectld_to_string(id);
/1 look up account ID in accounts database,
/1l make sure it it exists
CCRBA: : Long acctld = acct _| ookup(str);
if (acctld == -1)
t hr ow GORBA: : GBJECT_NOT_EXI ST ();
return new Si ngl eAccount | npl (str);
}

Etherealizing Objects With a Servant Locator

The following implementation of post i nvoke() is similar to the

et hereal i ze() implementation shown earlier (see page 255), with one
significant difference: because each servant is bound to a single request,
post i nvoke() has no remaining activations to check.

Port abl eSer ver: : Servant
M/Acct Locat or : : post i nvoke(
const Portabl eServer:: Chject|D & d,
Port abl eServer: : POA ptr poa,
const char *operation,
Por t abl eSer ver : : Cooki e &cooki e,
Port abl eServer: : Servant the_servant)

Using a Default Servant

throw OCRBA: : Systenkxception)
{

}

del ete servant;

Setting a POA’s Servant Locator
You establish a POA’s servant locator in two steps:

1. Instantiate the servant locator.

2. Call set_servant _nanager () on the target POA and supply the servant
locator.

Il G+
Account Servant Locat or | npl | ocator _i npl (account _dat abase) ;

/1 Associate the locator with the accounts PQA
acct _poa- >set _servant _nanager (& ocator_inpl);

Using a Default Servant

If a number of objects share the same interface, a server can most efficiently
handle requests on them through a POA that provides a single default
servant. This servant processes all requests on a set of objects. A POA with a
request processing policy of USE_DEFAULT_SERVANT dispatches requests to the
default servant when it cannot otherwise find a servant for the requested
object. This can occur because the object’s ID is not in the active object map,
or the POA’s servant retention policy is set to NON_RETAI N.

For example, all customer account objects in the bank server share the same
BankDeno: : Account interface. Instead of instantiating a new servant for each
customer account object as in previous examples, it might be more efficient
to create a single servant that processes requests on all accounts.

A default servant must be able to differentiate the objects that it is serving.
The Portabl eServer:: Qurrent interface offers this capability:

nodul e Port abl eSer ver

{
interface Qurrent : QCORBA : Qurrent

{
exception NoContext{};

261

Chapter 11 | Managing Servants

262

PQA get _PQA () raises (NoContext);
(bj ectI D get_obj ect _id() raises (NoContext);
H
}

You can call a Port abl eServer: : Qurrent operation only in the context of
request processing. Thus, each Bank: : Account operation such as deposi t ()
or bal ance() can call Port abl eServer:: Qurrent::get_object _id() to
obtain the current object’s account ID number.

To implement a default servant for account objects, modify the code as
follows:

®* The Singl eAccount | npl constructor identifies the ORB instead of an
object’s account ID.

® Each Account operation calls resol ve_initial _references() on the
ORB to obtain a reference to the Port abl eServer: : Qurrent object, and
uses this reference to identify the current account object.

So, you might use the following servant code to implement an account
object:

Il C++
class Singl eAccountinpl : public virtual PQA BankDero: : Account {

publi c:
/1 constructor
Si ngl eAccount I npl (OCRBA : CRB ptr orb) : orb_ (orb) {}

/1 get account hol der’s nane
char * name() throw CORBA: : Syst enExcepti on){

OCRBA: : String_var acct = get_acct_id();
/1 rest of function not shown

}

/1 get account bal ance
CCORBA: : Fl oat bal ance() throw CORBA:: Syst enException){

OCRBA: : String_var acct = get_acct_id();
/1 rest of function not shown

Using a Default Servant

/1l simlar processing for other operations

private:
char *get _acct _id(void){
OCRBA: : (bj ect _var obj =
orb_->resolve_initial _references("PQAQurrent");
Portabl eServer:: Qurrent_var cur =
Portabl eServer:: Qurrent::_narrow obj);

try {
Portabl eServer:: Chject| D var id = cur->get_object _id();
return Portabl eServer::(bjectl D to_string(id);
} catch (const Portabl eServer::Qurrent::NoContext & {
cerr << "NoContext error" << endl;

}

try {
} catch (org.omy. Portabl eServer. Qurrent. NoCont ext) {

...
}

In this implementation, the servant constructor takes a single argument, a
pointer to the ORB. Each method such as bal ance() calls the private helper
method get _account _i d(), which obtains a reference to the current object
(Port abl eServer: : Qurrent) and gets its object ID. The method converts the
object ID to a string (Port abl eServer: : Cbj ect I D to_string), and returns
with this string.

This implementation assumes that account object IDs are generated from
account ID strings. See “Creating Inactive Objects” on page 264 to see how
you can create object IDs from a string and use them to generate object
references.

263

Chapter 11 | Managing Servants

Setting a Default Servant

Creating

264

You can establish a POA's default servant by instantiating the desired servant
class and supplying it as an argument to set _servant (), which you invoke
on that POA. The following code fragment from the server's nai n()
instantiates servant def _serv from servant class Si ngl eAccount I npl , and
sets this as the default servant for POA acct _poa:

Il CH
/1 Initialize the CRB
OCORBA: : CRB var orb = CORBA:CRB init(argc, argv);

/1 Instantiate default account object servant
Si ngl eAccount I npl def _serv(orb);

/1 Set default servant for PQA
acct _poa- >set _servant (&lef _serv);

Inactive Objects

An application that uses a servant manager or default servant typically
creates objects independently of the servants that incarnate them. The
various implementations shown earlier in this chapter assume that all
account objects are available before they are associated with servants in the
POA. Thus, the account objects are initially inactive—that is, servants are
unavailable to process any requests that are invoked on them.

You can create inactive objects by calling either creat e_ref erence() or
create reference_with_id() on a POA. In the next example, the POA that
is to maintain these objects has an ID assignment policy of USER | D;
therefore, the server code calls create_reference_with_ id() to create
objects in that POA:

Il C++
int main(int argc, char **argv) {
[l initialize CRB
CORBA: : CRB var orb = CORBA': CRB_ init(argc, argv);

/1 get object reference to the root PQA
CCRBA: : (hj ect _var obj =

Creating Inactive Objects

orb->resol ve_initial _references("Root PQA");
Portabl eServer:: POA var poa = PQA : _narrow obj);

/1l set policies for persistent POA that uses servant |ocator

OCRBA: : Pol i cyLi st polici es;

policies.length (2);

pol i ci es[0] = poa—>create_|ifespan_policy
(Port abl eServer: : PERS| STENT)

pol i ci es[1] = poa—>create_i d_assi gnment _pol i cy
(Portabl eServer::USER ID)

pol i ci es[2] = poa—>create_servant_retention_policy
(Portabl eServer:: NON RETAIN)

pol i ci es[3] = poa—>creat e_request _processi ng_pol i cy
(Portabl eServer: : USE_SERVANT_NANAGER)

/'l create the PQA
poa = poa->create POA("acct_poa", NUL, policies);

Account Dat abase account _dat abase = new Account Dat abase() ;
Account Servant Locat or | npl | ocat or _i npl (account _dat abase) ;

/1 Associate the locator with the accounts PQA
acct _poa- >set _servant _nanager (& ocator_inpl);

/1 Set Bank Account interface repository ID
const char *repository_id = "IDL: BankDermo/ Account : 1. 0";

/1 create account object
Portabl eServer:: (hjectld_var acct_id =
Port abl eServer::string_to_(bjectld("112-1110001");
OCRBA: : (hj ect _var acct(hj =
acct _poa->create_reference_w th_i d(
acct_id, repository_id);

/1 Export object reference to Naning Service (not shown)

/1l create another account obj ect
Portabl eServer:: (hjectld_var acct_id =
Port abl eServer::string_to_Chjectld("112-1110002");
OCRBA: : (hj ect _var acct(hj =
acct _poa->create_reference_w th_id(
acct_id, repository_id);

265

Chapter 11 | Managing Servants

266

/1 Export object reference to Naming Service (not shown)
/1 Repeat for each account object...
/[l Start CRB

orb->run();
return O;

As shown, mai n() executes as follows:

1.
2.
3.

Creates all account objects in acct _poa without incarnating them.
Calls run() on the ORB so it starts listening to requests.

As the POA receives requests for objects, it passes them on to the
servant locator. The servant locator instantiates a servant to process
each request.

After the request returns from processing, the servant locator destroys its
servant.

Note: The repetitive mechanism used in this example to create objects is
used only for illustrative purposes. A real application would probably use a
factory object to create account objects from persistent data.

1 2 Asynchronous Method

Invocations

Orbix support for asynchronous method invocations allows
a client to continue other work while it awaits responses
from previous requests.

Examples of client implementations in earlier chapters show client
invocations that follow a synchronous two-way model—that is, after a client
sends a request, it blocks on that thread until it receives a reply. If
single-threaded, the client is generally unable to perform any other work
while it awaits a response. This can be unacceptable in an application that
requires clients to issue requests in rapid succession and needs to process
replies as soon as they become available.

To avoid this problem, Orbix supports asynchronous method invocations
(AMI) through callbacks to reply handlers. In its invocation, the client
supplies an object reference to the appropriate reply handler. When it is
ready to reply, the server invokes on this object reference. The client ORB
dispatches the invocation to the reply handler servant

In most cases, AMI usage affects only client implementations; servers are
unaware that an invocation is synchronous or asynchronous. Client
asynchrony matters only to transactional servers, and in this case can require
changes to the server.

The examples in this chapter use the following IDL, which queries banking
institutions for current lending rates:

nodul e LoanSear ch

{

/1 nonexi stent Bank
exception | nvalidBank{};

// invalid |oan type
exception | nvalidLoanType{};

interface LoanRat es{

267

Chapter 12 | Asynchronous Method Invocations

float get_loan_rate(
in string bank_nane,
instring | oan_type
) raises (lnvalidBank, InvalidLoanType);
b
...
b
Client implementations must be able to invoke the get | oan_rate()
operation asynchronously on multiple lenders, so that information from each
one can be reviewed as soon as it is available, without waiting for previous
queries to return. Each implementation uses the following global variables:

static const char *banks[] =

{
"Heet",
"dtizens",
" BkBost on",
"USTrust",
/...

}

static const int MAX BANKS = si zeof (banks);
static const int replies_|left = MAX BANKS;

static const char *loan_types[] =

{
"AUTO',
" MORTGAGE',
"EQU TY",
" BUSI NESS',
...

Implied IDL

In order to support AMI, the IDL compiler provides the - xAM Cal | backs
option. This generates an implied IDL sendc_ operation for each interface
operation and attribute, which supports AMI callbacks. You must supply the
- XxAM Cal | backs modifer with both - base and - poa switches, as in the
following example:

268

Implied IDL

I DL -poa: - xAM Cal | backs -base: - xAM CAl | backs LoanSear ch.i dl

For example, given the get _| oan_rat e() operation, the IDL compiler
generates an implied IDL sendc_get | oan_rat e() operation that it adds to
the LoanRat es interface. The compiler then generates stub and skeleton code
from the entire set of explicit and implicit IDL.

Mapping Operations to Implied IDL

In general, each i nand i nout parameter in an IDL operation is mapped to an
i n parameter of the same name and type in the corresponding implied IDL
operation. sendc_ operations return void and supply as their first argument
an object reference to the client-implemented reply handler. They have the
following syntax

voi d sendc_op- nane(
reply-hdlr-ref,
[intype argurent[, in type argument]...);

Mapping Attributes to Implied IDL

Each IDL attribute is mapped to a sendc_get _ operation. If the attribute is
not read-only, the IDL compiler also generates a sendc_set _ operation,
which has a single i n parameter of the same name and type as the attribute.

sendc_get _ and sendc_set _ operations return void and supply as their first
argument an object reference to the client-implemented reply handler. They
have the following syntax:
voi d sendc_get _attribute-nane(reply-hdir-ref);
voi d sendc_set _attri but e- nang(

reply-hdlr-ref,

in type attribute-nane);

269

Chapter 12 | Asynchronous Method Invocations

Calling Back to Reply Handlers

For each IDL operation and attribute, the IDL compiler generates:

* A sendc_ operation that supports AMI callbacks.

* Areply handler class for each interface, derived from Messagi ng: :
Repl yHandl er .

The generated reply handler class name uses the following convention:
AM _i nterf ace- naneHandl er

If the generated handler name conflicts with other IDL definitions, the ORB
prepends additional strings of AM _ until the name is unique. For example, all
send_c invocations on interface LoanRat es take a reference to an instance of
AM _LoanRat esHandl er as their first argument.

The client instantiates reply handlers like any servant, and registers them
with a client-side POA. If a reply handler serves time-independent
invocations, its object reference must be persistent.

For each sendc_ invocation on the interface, the following events occur:

1. The client supplies an object reference to the invocation’s reply handler.

2. The invocation returns immediately to the client, which can continue
processing other tasks while it awaits a reply.

3. The server invokes on the reply handler when a reply is ready.

Note: A client-side POA has the same requirements as a POA that is
implemented on a server—for example, the POAManager must be in an
active state before the client can process reply handler callbacks.

Interface-to-Reply Handler Mapping

The client can implement a reply handler for each interface. For each
interface operation and attribute, a reply handler provides two types of
operations: one to handle normal replies, and another for exceptional replies.

270

Calling Back to Reply Handlers

For example, when you run the IDL compiler on interface LoanSear ch: :
LoanRat es (shown earlier), it generates skeleton class POA LoanSear ch: :
AM _LoanRat esHandl er :

nanespace POA LoanSear ch{
cl ass AM _LoanRat esHandl er
public POA Messagi ng: : Repl yHand! er {
public:
1.,
virtual void
get _| oan_rate_conpl et g(
QCORBA: : Fl oat anmi _return_val
) | T_THROW DECL((OCRBA: : Syst enException)) = 0;

/...
virtual void
get _| oan_rat e_excep(
Messagi ng: : Excepti onHol der* am _hol der
) | T_THROW DECL((OCRBA: : Syst enException)) = 0;
b

}
LoanRat es contains only one operation, LoanRat es: : get _| oan_rate(),
which maps to AMI operation sendc_get | oan_rate(). The reply handler
AM _LoanRat esHandl er therefore has two operations:

® get_|loan_rate_conpl ete() handles normal replies to
sendc_get _|oan_rate().

®* get_loan_rate_excep() handles exceptions that might be raised by
sendc_get _|oan_rate().

So, if the client invokes sendc_get | oan_| oan_rat e() and supplies a valid
bank name and loan type, the client ORB invokes an implementation of
AM _LoanRat esHandl er: : get _| oan_rate_conpl et e() to handle the reply.
However, if either argument is invalid, the client ORB invokes

AM _LoanRat esHandl er: : get _| oan_rat e_excep() .

271

Chapter 12 | Asynchronous Method Invocations

272

Normal Replies

A reply handler can contain up to three types of operations to handle normal
replies—that is, replies on invocations that raise no exceptions:

Table 15: Reply Handler Operation Types for Normal Replies

For invocations on... The reply handler uses...

Operation An operation with the same name:

voi d op- nane_conpl et e(
[,in type am _return_val
[,in type argunent]...
)

Read-only attribute A get _ operation:

void get_attr-name(in type am _return_val);

Read/write attribute A set _ operation:

void set_attr-name();

In general, an i n argument is included for each out or i nout parameter in the
IDL definition. All arguments have the same type as the original IDL. If the
invocation returns a value, the first argument contains that value; otherwise,
arguments have the same order as in the original IDL.

Calling Back to Reply Handlers

Exceptional Replies

A reply handler can contain up to three types of operations to handle
exceptional replies:

Table 16: Reply Handler Operation Types for Exceptional Replies

For invocations on... The reply handler uses...

Operation voi d op- name_excep(
i n Messagi ng: : Except i onHol der
am _hol der);

Read-only attribute voi d get_attr-nane_excep(
i n Messagi ng: : Except i onHol der
am _hol der);

Read/write attribute voi d set_at tr-name_excep(
i n Messagi ng: : Except i onHol der
am _hol der);

All three operations contain a single i n argument of type Messagi ng: :
Except i onHol der, which contains the exception raised by the original client
invocation. You access this exception using get _exception(). The call
returns an Any* from which the exception can be extracted.

Implementing a Client with Reply Handlers

As shown earlier, the reply handler AM _LoanRat esHandl er for interface
LoanRat es contains two operations to handle normal and exceptional replies
to sendc_get | oan_rate(). The client implementation of this reply handler
might look like this:

cl ass M/LoanRat esHandl er :
LoanRat es: : AM _LoanRat esHandl er {
public:
/1 handl er constructor
M/LoanRat esHandl er (const char *bank_name, |oan_type) :
bank_name_(OCRBA: : st ri ng_dup(bank_nane),
| oan_t ype_(GORBA: : string_dup(l oan_type))
{}
~M/LoanRat esHandl er (voi d)

273

Chapter 12 | Asynchronous Method Invocations

{1}

/1l process normal replies
virtual void get_loan_rate_conpl ete(OCRBA : Float reply_val)
t hr ow(CORBA: : Syst enExcept i on)
{
cout << | oan_type_
<< "loan: from"
<< bank_name_
<< " Qurrent rate is
<< reply_val;

/1 Decrenent the nunber of replies still pending
replies_left--;
}

/] process exceptional replies
virtual void get_|oan_rate_excep(
Messagi ng: : Except i onHol der* am _hol der)
t hr ow(OORBA: : Syst enExcepti on, LoanRates: : | nval i dBank,
LoanRat es: : | nval i dLoanType)
{
CORBA: : Any* tnp = ami _hol der - >get _exception();
i f (LoanSearch:: 1 T_Gen_I nval i dBankSt r earmabl e: :
extract _fron{tnp)) {
cerr << bank_narme_
cerr << " is not a valid bank nare."
t hrow(LoanRat es: : | nval i dBank) ;
}

el se if(LoanSearch: : 1 T_Gen_l nval i dLoanSt r eamabl e: :

extract_fron{tnp)) {
cerr << | oan_type_

cerr << " is not avalid |loan type."
t hrow(LoanRat es: : | nval i dBank) ;
}
el se {
cerr << "get_loan_rate() raised exception "
< tnp
<" for "
<< bank_narre_
< " and "

<< bank_t ype_
t hr ow(CORBA: Syst enExcepti on tnp);

274

Calling Back to Reply Handlers

}

/1 Decrement the nunber of replies still pending
replies_left--;

privat e:

}

OCRBA: : String_var bank_nane_, bank_type_ ;

In the following client implementation, the client performs these actions:

1.

Calls get | atest _rates() and supplies it with three arguments: a
pointer to the client ORB, an object reference to the LoanSear ch object,
and the desired loan type.

Calls the callback operation sendc_get | oan_rates() repeatedly, once
for each bank. Each call to sendc_get _| oan_rat es() supplies an

AM _LoanRat esHandl er reply handler argument:

voi d get_|atest_rates(

CCORBA : CRB ptr,
LoanSear ch: : LoanRat es_ref,
QCORBA: : String | oan_type)

/1 array of pointers to bank reply handl ers
M/LoanRat esHandl er *handl er s| MAX_BANKS] ;

/1l create object references for each reply handl er
LoanRat es: : AM _LoanRat esHandl er _ptr *handl er _r ef s[MAX_BANKS] ;

int i;

/1l instantiate reply handl er servants
for(i =0; i < MAX_BANKS; i++)
handl ers[i] = new M/LoanRat esHand! er (
banks[i], loan_types[i]);

/1 get object references to reply handl ers
for(i = 0; i < MAX_BANKS; i++)
handl er_refs[i] = handlers[i]->_this();

/'l 1ssue asynchronous calls via call backs

for(i =0; i < MAX_BANKS; i++)
LoanRat es_r ef - >sendc_get _| oan_r at es(

275

Chapter 12 | Asynchronous Method Invocations

handl er _refs[i], banks[i], |oan_type);

After all synchronous calls are invoked, the client can await replies within the
ORB'’s event loop:

[l iterate within CRB event loop until all replies
/| are processed
while(replies_left > 0)
i f (orb->work_pendi ng())
or b->per f ormwor k() ;

276

Exceptions

Implementations of IDL operations and attributes throw
exceptions to indicate when a processing error occurs.

An IDL operation can throw two types of exceptions:

® User-defined exceptions are defined explicitly in your IDL definitions.
® System exceptions are predefined exceptions that all operations can
throw.

While IDL operations can throw user-defined and system exceptions, acces-
sor methods for IDL attributes can only throw system-defined exceptions.

This chapter shows how to throw and catch both types of exceptions. The
Bank interface is modified to include two user-defined exceptions:

AccountNotFound is defined by fi nd_account ().

AccountAlreadyExists is defined by create_account ().

The account _i d member in both exceptions indicates an invalid account ID:

nodul e BankDeno
{

interface Bank {
exception Account Al readyExi sts { Accountld account_id; };
excepti on Account Not Found { Accountld account_id; };

Account find_account(in Accountld account_id)
rai ses(Account Not Found) ;

Account create_account (
in Accountld account id,
in CashAmount initial _bal ance
) raises (Account Al readyExists);
s

277

Chapter 13 | Exceptions

Exception Code Mapping

The C++ mapping arranges CORBA exceptions into the hierarchy shown in
Figure 27. Abstract base class GORBA: : Except i on is the root of the hierarchy
tree. Base abstract classes Syst enExcept i on and User Except i on derive from
QORBA: : Except i on and provide the base for all concrete system and user
exceptions:

CORBA: : Excepti on

Wl N

CORBA: : Syst enExcepti on CORBA: : User Excepti on
CORBA: : TRANSI ENT Bank: : Account Al r eadyEXxi st's
CORBA: : OBJ ADAPTER Bank: : Account Not Found

CORBA: : BAD_PARAM

Figure 27: The C++ mapping arranges exceptions into a hierarchy

Given this hierarchy, you can catch all CORBA exceptions in a single catch
handler. Alternatively, you can catch system and user exceptions separately,
or handle specific exceptions individually.

278

User-Defined Exceptions

User-Defined Exceptions

Operations are defined to raise one or more user exceptions to indicate
application-specific error conditions. An exception definition can contain
multiple data members to convey specific information about the error, if
desired. For example, you might include a graphic image in the exception
data in order to display an error icon.

Exception Design Guidelines

When you define exceptions, be sure to follow these guidelines:

Exceptions are thrown only for exceptional conditions

Do not throw exceptions for expected outcomes. For example, a database
lookup operation should not throw an exception if a lookup does not locate
anything; it is normal for clients to occasionally look for things that are not
there. It is harder for the caller to deal with exceptions than return values,
because exceptions break the normal flow of control. Do not force the caller
to handle an exception when a return value is sufficient.

Exceptions carry complete information

Ensure that exceptions carry all the data the caller requires to handle an
error. If an exception carries insufficient information, the caller must make a
second call to retrieve the missing information. However, if the first call fails,
it is likely that subsequent calls will also fail.

Exceptions only carry useful information

Do not add exception members that are irrelevant to the caller.

Exceptions carry precise information

Do not lump multiple error conditions into a single exception type. Instead,
use a different exception for each semantic error condition; otherwise, the
caller cannot distinguish between different causes for an error.

279

Chapter 13 | Exceptions

C++ Mapping for User Exceptions

280

When you run the IDL compiler on IDL interface Bank, it translates user
exceptions into C++ classes. For example, the compiler translates Bank: :
Account Al readyExi st's into a C++ class of the same name:

class Bank : public virtual COORBA : (hj ect
{
publi c:
cl ass Account Al readyExi sts: public CORBA: : User Exception

{
public:

Account Al r eadyExi sts();
Account Al readyExi sts(const char* _itfld_account_id);

/1 string manager
| TGenAccount | d_ngr account _i d;

static Account Al readyExi sts* _downcast (
OCRBA: : Excepti on* exc

);

static const Account Al readyExi sts* _downcast (
const CCRBA: : Excepti on* exc

);

virtual void _raise() const;

h

The Account Al readyExi st s class is nested within class Bank. Each C++
class that corresponds to a IDL exception has a constructor that takes a
parameter for each exception member. Because the Account Al r eadyExi st's
exception has one Account | d member, class Bank: : Account Al r eadyExi st's
has a constructor that allows it to be initialized.

Handling Exceptions

Handling Exceptions

Client code uses standard try and cat ch blocks to isolate processing logic
from exception handling code. You can associate multiple cat ch blocks with
each try block. You should write the code so that handling for specific
exceptions takes precedence over handling for other unspecified exceptions.

User Exceptions

If an operation might throw a user exception, its caller should be prepared to
handle that exception with an appropriate cat ch clause.

The following code shows how you might program a client to catch
exceptions. In it, the handler for the Account Al r eadyExi st's exception
outputs an error message and exits the program. The code follows standard
C++ practice by passing the parameter to the cat ch clause by reference.
The oper at or <<() that is defined on class Syst enExcept i on outputs a text
description of the individual system exception that was thrown.

/] C+H
voi d
BankMenu: : do_creat e()
t hr ow(CORBA: : Syst enExcept i on)
{
cout << "Enter account name: " << flush;
char narre[1024] ;
cin >> nane;
cout << "Enter starting bal ance: " << flush;
BankDeno: : CashAnount anount ;
cin >> anount;

/1l trylcatch to handl e user exception, systemexceptions are
/1 handl ed in the nain nenu | oop

try

{

BankDeno: : Account _var account =
m bank- >cr eat e_account (narre, anount);

/|l start a sub-nenu with the returned account reference

Account Menu sub_menu(account) ;
sub_rrenu. run();

281

Chapter 13 | Exceptions

/1 _var types autonatically clean up on return

/1 or exception
}
catch (

const BankDeno: : Bank: : Account Al readyExi st s& al ready_exi st s)

{

cout << "Account already exists: "

<< al ready_exi sts.account _id << endl;

System Exceptions

282

A client often provides a handler for a limited set of anticipated system
exceptions. It also must provide a way to handle all other unanticipated
system exceptions that might occur.

The handler for a specific system exception must appear before the handler
for OCRBA: : Syst enExcept i on. C++ cat ch clauses are attempted in the order
specified, and the first matching handler is called. Because of implicit
casting, a handler for OORBA: : Syst enExcept i on matches all system
exceptions (all system exception classes are derived from class CORBA: :

Syst enExcept i on), so it should appear after all handlers for specific system
exceptions.

If you want to know the type of system exception that occurred, use the
message output by the proprietary oper at or <<() function on class QORBA: :
Syst enExcept i on. Handlers for individual system exceptions are necessary
only when they require a specific action.

The following client code specifically tests for a GCOMW FAI LURE exception; it
can also handle any other system exceptions:
voi d
BankMenu: : run() {

/1 make sure bank reference is valid

if (CORBA :is_nil(mbank)) {

cout << "Cannot proceed - bank reference is nil";

}

el se {

/1 loop printing the menu and executing sel ections

Handling Exceptions

for (5 ;) {
cout << endl;
cout << "0 - quit" << endl;
cout << "1 - create_account" << endl;
cout << "2 - find account" << endl;
cout << "Selection [0-2]: " << flush;
int selection;
cin >> sel ection;

try {
swi t ch(sel ection)
{
case 0: return;
case 1. do_create(); break;
case 2: do_find(); break;
}

catch (COORBA:: OOW FAl LURE& e) {
cout << "Communi cation failure exception:
<< e << endl ;

return;

}

catch (const OCRBA: : SystenException& e) {
cout << "Unexpected exception: " << e << endl;
return;

}

Evaluating System Exceptions

System exceptions have two member methods, conpl et ed() and mi nor (),
that let a client evaluate the status of an invocation:

* conpl eted() returns an enumerator that indicates how far the operation
or attribute call progressed.

®* mnor () returns an IDL unsi gned | ong that offers more detail about the
particular system exception that was thrown.

283

Chapter 13 | Exceptions

284

Obtaining Invocation Completion Status

Each standard exception includes a conpl eti on_st at us code that takes one
of the following integer values:

COMPLETED_NO: The system exception was thrown before the operation or
attribute call began to execute.

COMPLETED _YES: The system exception was thrown after the operation or
attribute call completed execution.

COMPLETED_MAYBE: It is uncertain whether or not the operation or
attribute call started to execute, and if so, whether execution completed. For
example, the status is GCOVPLETED MAYBE if a client’s host receives no
indication of success or failure after transmitting a request to a target object
on another host.

Evaluating Minor Codes

m nor () returns an IDL unsi gned | ong that offers more detail about the
particular system exception thrown. For example, if a client catches a

QOWMM _FAI LURE system exception, it can access the system exception’s minor
field to determine why this occurred

All standard exceptions have an associated minor code that provides more
specific information about the exception in question. Given these minor
codes, the ORB is not required to maintain an exhaustive list of all possible
exceptions that might arise at runtime.

Minor exception codes are defined as an unsigned long that contains two
components:

® 20-bit vendor minor code ID (VMCID)

®* Minor code that occupies the 12 low order bits

Each ORB vendor has a unique VMCID assigned by the OMG. The VMCID

assigned to IONA is 0x49540000; this space is reserved for use by IONA
exception minor codes.

Handling Exceptions

The VMCID assigned to OMG standard exceptions is 0x4f 4d000. You can
obtain the minor code value for any exception by OR'ing the VMCID with the
minor code for the exception in question. All minor code definitions are

associated with readable strings.

Orbix 2000 defines minor codes within each subsystem. When an exception
is thrown, the current subsystem associates the exception with a valid minor
code that maps to a unique error condition. Table 17 lists Orbix 2000

subsystems and base values for their minor codes:

Table 17: Base minor code values for Orbix subsystems

Subsystem Base Minor Code ID
Core 0x49540100
GIOP 0x49540200
[IOP 0x49540300
[IOP_PROFILE 0x49540400
POA 0x49540500
PSS 0x49540600
DAL_DB 0x49540700
PSS 0x49540800
OTS 0x49540900
OTS_LITE 0x49540A00
Locator 0x49540B00
POA locator 0x49540000
Activator 0x49540D00
Generic server 0x49540E00
Naming 0x49540F00
IFR 0x49541000

285

Chapter 13 | Exceptions

Table 17: Base minor code values for Orbix subsystems

Subsystem Base Minor Code ID
Configuration repository. 0x49541100
Threads package 0x49541200
PSS/R ODBC 0x49541300
ATLI-IOP none 0x49541400

For example, the locator subsystem defines a number of minor codes for the
BAD PARAMSstandard exception. These distinguish among the various
conditions under which the locator might throw the BAD PARAMexception,
and are defined as follows:

// 1DL: in location_mnor_codes.idl
nodul e | T_LQOCATCR M nor Codes

{
const unsigned long SMJ D = | T_ErrorCodes: : | ONA VM D + 0x0BOO;
nmodul e BAD PARAM
{
const unsi gned | ong NO ACTI VATCR_NAMVE = SMJ D
const unsi gned | ong NO ACTI VATCR | NFO = SMID + 1;
const unsi gned | ong ACTI VATCR REG NO NAME = SMO D + 2;
const unsi gned | ong ACTI VATCR REG NO REF = SMJD + 3;
const unsi gned | ong ACTI VATCR UNREG NO NAME = SMO D + 4;
const unsi gned | ong UNEXPECTED NULL = SMID + 5;
const unsi gned | ong PROCESS NOT_EXI ST = SMJD + 6;
H
b

286

Throwing Exceptions

These equate to the following minor code IDs:

Table 18: BAD PARAMminor codes

Minor code string Minor code ID
NO_ACTI VATCR NAMVE 0x49540B00
NO_ACTI VATCR | NFO 0x49540B01
ACTI VATCR_ REG NO_NAME 0x49540B02
ACTI VATOR_REG NO REF 0x49540B03
ACTI VATCR_UNREG _NO_NAME 0x49540B04
UNEXPECTED NULL 0x49540B05
PROCESS_NOT_EX ST 0x49540B06

For example, an exception with a minor code of 0x49540B06 indicates that
the locator is looking for a process that does not exist.

Definitions for all subsystem minor codes can be found in the i dI / or bi x_sys
directory.

Note: OMG minor code constants are Orbix-specific mappings to minor
codes that are set by the OMG. If you define minor codes for your own
application, make sure that they do not overlap the ranges that are reserved
for IONA-defined minor codes.

Throwing Exceptions

Client code uses standard C+ + syntax to initialize and throw both
user-defined and system exceptions.

This section modifies Bankl npl : : creat e_account () to throw an exception.
You can implement creat e_account () as follows:

/1 create a new account given an id and initial bal ance
/1 throw Account Al readyExi sts if account already in database

287

Chapter 13 | Exceptions

BankDeno: : Account _ptr Bankl npl : : creat e_account (
const char* account_id,
CashAmount i nitial _bal ance) throw(
CCORBA: : Syst enExcept i on, BankDeno: : Bank: : Account Al r eadyExi st s)

{
/1 create new account in database, then return a new
/'l reference to that account
i f (!'maccount_db. create_account (account _id, initial_bal ance))
{
t hr ow BankDeno: : Bank: : Account Al r eadyExi st s(account _i d);
}
return create_account _ref(account _id);
}

Exception Safety

288

You should be careful that your code does not throw user exceptions that are
not part of the operation’s raises expression. Doing so can throw an UNKNOMW
exception, or cause the program to terminate abruptly.

For example, the following IDL defines operations sone_oper ati on() and
sone_hel per():

exception Failed {};
interface Exanpl e {
voi d sone_operation() raises(Failed);

}s

exception D dntWrk {};
interface Hel per {
voi d sone_hel per() raises(Failed, D dntWrk);
b
The following implementation of sone_oper ati on() incorrectly calls
sone_hel per () :

voi d Exanpl el npl : : sore_oper ati on()
t hrow(CCRBA: : Syst enException, Failed) {
/1 do some work. ..
/1 call hel per operation.

Exception Safety

Hel per_var help = ...;
hel p- >sonme_hel per (); // BAD
/1 do renai nder of work...

}

At some point during runtime, sone_hel per () is liable to throw an exception
of Di dnt Vr k back to sonme_operati on(), which is unable to handle it, and
causing the server process to die.

If an operation calls helper operations on other objects, make sure that it can
handle illegal exceptions. For example, the following example modifies
sone_operat i on() so that it can translate D dnt Wr k into a legal exception:

voi d Exanpl el npl : : sone_operati on()
t hr ow(OORBA: : Syst enException, Failed) {
// do sone work. ..
/1 call hel per operation.
Hel per_var help = ...;
try {
hel p- >sone_hel per();
}

catch (const DdntWrk & {
throw Failed; // translate into | egal exception

}

/1 do remai nder of work...
return;

}

You should also be careful to avoid resource leaks in the presence of
exceptions. For example, the IDL for sone_operati on() is modified here to
return a string as an out parameter:

exception Failed {};
i nterface Exanpl e {
voi d sone_operation(out string s) raises(Failed);
b
The following implementation incorrectly leaks the string that is allocated to
the out parameter:
voi d Exanpl el npl : : sone_oper ati on(GORBA: : String_out s)
t hr ow(CORBA: : Syst enException, Failed) {

// do sone work to get the string value to be returned...
char * str = some_function();

289

Chapter 13 | Exceptions

290

}

s = CORBA: :string_dup(str); /1 assign out param

/1 call hel per operation to do something el se
Hel per_var help = ...;

try {

hel p- >sone_hel per (); /'l menory | eak!
}
catch (const DidntWrk & ({

t hr ow Fai | ed; /1 menory | eak!
}

/1 do remai nder of work...

You can correct this problem by explicitly deallocating the parameter again,
as in the following example:

voi d Exanpl el npl : : sorre_operati on(CORBA: : String_out s)

t hrow(CCRBA: : Syst enException, Failed) {

/1 do sone work to get the string value to be returned...
char * str = sonme_function();
s = QORBA :string_dup(str); // assign out param

/1l call hel per operation to do something el se
Hel per_var help = ...;
try {
hel p- >sone_hel per ();
}

catch (const DidntWrk & ({
OCORBA :string_free(s.ptr()); // clean up
throw Failed; // translate

}

catch (const OCORBA: : Exception & e) {
QCORBA: :string_free(s.ptr()); // clean up
t hrow, [/ rethrow

}

/1 do remai nder of work...

Throwing System Exceptions

Throwing System Exceptions

Occasionally, a server program might need to throw a system exception.
Specific system exceptions such as COWMM FAI LURE inherit the
Syst enExcept i on constructor:

Il Ct+
class SystenkException : public Exception {
public:

Syst enException();

Syst enExcept i on(const Syst enExcepti on &) ;

Syst enExcept i on(

ULong mnor_id, ConpletionStatus conpl et ed_status);

class COW FAI LURE : public SystenkException { ... };

The following code uses this constructor to throw a GO FAI LURE exception
with minor code SOOKET_WR TE_FAI LED and completion status COMPLETED NO

Il Cr+
t hr ow OORBA : COMV FAI LURE(HOST_LOOKUP_FAI LED, COMPLETED NO) ;

291

Chapter 13 | Exceptions

292

Using Type Codes

Orbix uses type codes to describe IDL types. The IDL pseudo
interface CORBA::TypeCode lets you describe and
manipulate type code values.

Type codes are essential for the DIl and DSI, to specify argument types. The
interface repository also relies on type codes to describe types in IDL
declarations. In general, type codes figure importantly in any application that
handles GCRBA: : Any data types.

Type Code Components

Type codes are encapsulated in GCRBA: : TypeCode pseudo objects. Each
TypeCode has two components:

kind: A QORBA: : TCKi nd enumerator that associates the type code with an IDL
type. For example, enumerators tk_short, t k_bool ean, and t k_sequence
correspond to IDL types short, bool ean, and sequence, respectively.

description: One or more parameters that supply information related to the
type code’s kind. The number and contents of parameters varies according to
the type code.

® The type code description for IDL type fi xed<5, 3> contains two
parameters, which specify the number of digits and the scale.

® The type code description for a string or wstri ng contains a single
parameter that specifies the string’s bound, if any.

* Type codes for primitive types require no description, and so have no
parameters associated with them—for example, tk_short and tk_| ong.

293

Chapter 14 | Using Type Codes

TCKind Enumerators

294

The QCRBA : TGKi nd enumeration defines all built-in IDL types:

/1 I'n modul e CORBA

enum TOKi nd {
tk_null, tk void, tk_short, tk_long, tk_ ushort, tk_ulong,
tk_float, tk_double, tk_bool ean, tk_char, tk_octet, tk_any,
tk_TypeCode, tk_Principal, tk objref, tk struct, tk_union,
tk_enum tk_string, tk_sequence, tk_array, tk_ alias,
tk_except, tk_longlong, tk_ulonglong, tk_|longdouble, tk wchar,
tk_wstring, tk_fixed, tk_value, tk_value_box, tk_native,
tk_abstract _interface

h

Most of these are self-explanatory—for example, a type code with a TOKi nd of

t k_bool ean describes the IDL type boolean. Some, however, have no direct

association with an IDL type:

tk_alias describes an IDL type definition such as typedef string.

tk_null describes an empty value condition. For example, if you construct an
Any with the default constructor, the Any's type code is initially set to
tk_null.

tk_Principal is deprecated for applications that are compliant with CORBA
2.3 and later; retained for backward compatibility with earlier applications
that use the BOA.

tk_TypeCode describes another type code value.

tk_value describes a value type.

tk_value_box describes a value box type.

tk_void is used by the interface repository to describe an operation that
returns no value.

Type Code Components

Table 19 shows type code parameters. The table omits type codes with an
empty parameter list.

Table 19: Type Codes and Parameters

TCKind Parameters

tk_abstract _interface repository-id, name

tk_alias repository-id, nane, type-code
tk_array type-code, length...

tk_enum repository-id, nane, { menber-nane }...
t k_except repository-id, nane,

{ nenber-nane, nenber-type-code }...

tk_fixed digits, scale

tk_native repository-id, nane

t k_obj ref repository-id, nane

t k_sequence el enent - t ype- code, nax-| engt h?
tk_string max- | engt h?

tk_wstring

tk_struct repository-id, nane,

{ nenber-nane, nenber-type-code }...

t k_uni on repository-id, nane, swtch-type-code, default-index,
{ nenber-1|abel, menber-name, nenber-type-code }...

t k_val ue repository-id, nane, type-nodifier, type-code,
{ nenber-nane, nenber-type-code, visibility }...

t k_val ue_box repository-id, nane,
{ nenber-nane, nenber-type-code} ...

a.For unbounded sequences, strings, and wstrings, this value is O.

295

Chapter 14 | Using Type Codes

Type Code Operations

The OCRBA: : TypeCode interface provides a number of operations that you can
use to evaluate and compare TypeCode objects. Some of these can be
invoked on all TypeCode objects; the rest are associated with TypeCode
objects of a specific TCKi nd, and raise a BadKi nd exception if invoked on the
wrong type code.

General Type Code Operations

296

The following operations are valid for all TypeCode objects:

kind()
TCKi nd ki nd();

ki nd() returns the TCKi nd of the target type code. You can call ki nd() on a
TypeCode to determine what other operations can be called for further
processing—for example, use the TCKi nd return as a switch discriminator:

/] C++
CCRBA: : Any anot her _any =
OCRBA: : TypeCode_var t = anot her _any.type();

switch(t->kind()){
case OCORBA :tk_short:

case OCORBA :tk_l ong:

/1 continue for all tk_ val ues
defaul t:

equal(), equivalent()

bool ean equal (in TypeCode tc);
bool ean equival ent(in TypeCode tc);

equal () and equi val ent () let you evaluate a type code for equality with the
specified type code, returning true if they are the same:

Type Code Operations

equal () requires that the two type codes be identical in their TOKi nd and all
parameters—member names, type names, repository IDs, and aliases.

equivalent() resolves an aliased type code (TCki nd = tk_al i as) to its base,
or unaliased type code before it compares the two type codes’ TCKi nd
parameters. This also applies to aliased type codes of members that are
defined for type codes such as tk_struct.

For both operations, the following parameters are always significant and
must be the same to return true:

®* Number of members for TOKi nds of t k_enum t k_excep, tk_struct, and
t k_uni on.

* Digits and scale for t k_fi xed type codes.

* The value of the bound for type codes that have a bound parameter—
tk_array, tk_sequence, tk_string and tk wstring.

® Default index for t k_uni on type codes.

®* Member labels for t k_uni on type codes. Union members must also be
defined in the same order.

Both equal () and equi val ent () can take a type code constant as an
argument—for example, _tc_short or _tc_float for IDL types short or
fl oat respectively. For more information about type code constants, see
page 301.

You must use equal () and equi val ent () to evaluate a type code. For
example, the following code is illegal:

CCRBA: : Any anot her _any;
anot her _any <<= "Hello world";
CCRBA: : TypeCode_ptr t = anot her_any. type();

if (t == CORBA': _tc_string) { ... } // Bad code!!
You can correct this code as follows:

CCRBA: : Any anot her _any;
anot her _any <<= "Hello world";
CCORBA: : TypeCode_ptr t = anot her _any. type();

/1 use equal or equivalent to evaluate type code

if (t->equivalent(CCRBA : _tc_string)) { ... }
if (t->equal (OCRBA:: _tc_string)) { ... }

297

Chapter 14 | Using Type Codes

get_compact_typecode()
TypeCode get _conpact _t ypecode();

get _conpact _typecode() removes type and member names from a type
code. This operation is generally useful only to applications that must
minimize the size of type codes that are sent over the wire.

Type-Specific Operations

Table 20 shows operations that can be invoked only on certain type codes. In
general, each operation gets information about a specific type-code
parameter. If invoked on the wrong type code, these operations raise an
exception of BadkKi nd.

Table 20: Type-Specific Operations

TCKind Operations
tk_alias id()
nane()

cont ent _t ype()

tk_array I engt h()

cont ent _t ype()
tk_enum id()

nane()

nenber _count ()
nenber _nane()

t k_except id()
name()
nenber _count ()
menber _nane()
menber _type()

tk_fixed fixed_digits()
fixed_scal e()
tk_native id()
nane()

298

Type Code Operations

Table 20: Type-Specific Operations

TCKind

Operations

t k_obj ref

t k_sequence

tk_string
tk_wstring

tk_struct

tk_union

tk_val ue

t k_val ue_box

id()

nare()

I engt h()
content _type()

I engt h()

id()

nare()

menber _count ()
menber _nane()
nenber _t ype()

id()

nane()

nenber _count ()
menber _nane()
menber _| abel ()

di scrimnator_type()
defaul t _i ndex()

id()

nane()

nenber _count ()
menber _nane()
nmenber _t ype()
type_nodi fier ()
concerte_base_t ype()
menber _visibility()

id()
nane()
nmenber _name()

299

Chapter 14 | Using Type Codes

Table 21 briefly describes the information that you can access through type
code-specific operations. For detailed information about these operations, see
the Orbix 2000 Programmer’s Reference.

Table 21: Information Obtained by Type-Specific Operations

Operation Returns:

concr et e_base_t ype() Type code of the concrete base for the target
type code; applies only to value types.

content _type() For aliases, the original type. For sequences
and arrays, the specified member’s type.

def aul t _i ndex() Index to a union’s default member. If no default
is specified, the operation returns - 1.

di scrininator_type() Type code of the union’s discriminator.

fixed digits() Number of digits in a fixed-point type code.

fixed_scal e() Scale of a fixed-point type code.

id() Type code’s repository ID.

I engt h() Value of the bound for a type code with TCKi nd
of tk_string, tk_wstring, tk_sequence, or
tk_array.

menber _count () Number of members in the type code.

menber _| abel () An Any value that contains the value of the

union case label for the specified member.

menber _nane() Name of the specified member. If the supplied
index is out of bounds (greater than the
number of members), the function raises the
TypeCode: : Bounds exception.

menber _type() Type code of the specified member. If the
supplied index is out of bounds (greater than
the number of members), the function raises
the TypeCode: : Bounds exception.

300

Type Code Constants

Table 21: Information Obtained by Type-Specific Operations

Operation Returns:
menber _vi sibility() The Visibility (PR VATE MEMBER or

PUBLI C MEMBER) of the specified member.
name() Type code’s user-assigned unscoped name.

type_nodi fier()

Value modifier that applies to the value type
that the target type code represents.

Type Code Constants

Orbix provides type code constants that you can use to evaluate and compare
type code objects. Built-in type code constants are provided for each TCKi nd
enumerator (see page 293). The IDL compiler also generates type code
constants for IDL types that you declare in your application code.

Built-In Type Codes

Orbix provides predefined OORBA: : TypeCode object reference constants that
let you access type codes for standard types.

CCRBA
CCRBA
CORBA:
CORBA:
CORBA:
CCRBA:
CCRBA:
CCRBA
CCRBA
CORBA:
CCRBA

1 _tc_any
:_tc_bool ean

. _tc_char

: _tc_double

: _tc float
:_tc_long
:_tc_l ongdoubl e
:_tc_l ongl ong
: tc_null
:_tc_octet

: _tc_short

OCRBA
OCRBA
CCRBA:
CCRBA
CCRBA:
OCRBA
OCRBA
OCRBA
CCRBA:
CCRBA:

:_tc_string
:_tc_ulong

1 _tc_ul ongl ong
:_tc_ushort

: tc void
:_tc_wchar
i_tc_wstring
:_tc_(oject

1 _tc_TypeCode
:_tc_Val ueBase

301

Chapter 14 | Using Type Codes

User-Defined Type Codes

302

The IDL compiler generates type code constants for declarations of these
types:

interface
t ypedef
struct

uni on
enum

val uet ype
val uebox

For each user-defined type that is declared in an IDL file, the IDL compiler
generates a OCRBA : TypeCode_pt r that points to a type code constant. These
constants have the format _tc_t ype where t ype is the user-defined type. For
example, given the following IDL:

interface Interesting {
typedef |ong | ongType;
struct Useful

{
}s

I ongType |;

b
the IDL compiler generates the following GORBA: : TypeCode_pt r constants:

_tc_Interesting
Interesting::_tc_|l ongType
Interesting::_tc_Useful

Using the Any Data Type

IDL’s any type lets you specify values that can express any
IDL type. This allows a program to handle values whose
types are not known at compile time. The any type is most
often used in code that uses the Interface Repository or the
Dynamic Invocation Interface (Dll).

The IDL any type maps to the C++ QORBA: : Any class. Conceptually, this
class contains the following two instance variables:

type is a TypeCode object that provides full type information for the value
contained in the any. The Any class provides a type() method to return the
TypeCode object.

value is the internal representation used to store Any values and is accessible
via standard insertion and extraction methods.

For example, the following interface, AnyDeno, contains an operation that
defines an any parameter:

/1 1DL

i nterface AnyDeno {
// Takes in any type that can be specified in | DL
voi d passSoret hingln (in any any_type_parameter);

/1 Passes out any type specified in IDL
any get Sonet hi ngBack();

b

Given this interface, a client that calls passSonet hi ngl n() constructs an any
that specifies the desired IDL type and value, and supplies this as an
argument to the call. On the server side, the AnyDeno implementation that
processes this call can determine the type of value the any stores and extract
its value.

303

Chapter 15 | Using the Any Data Type

This chapter covers the following topics:

* |nserting values into an any data type.
® Querying an any data type for its data.

® Using DynAny objects to construct and interpret any data types
dynamically.

Inserting Typed Values Into Any

304

The insertion operator <<= lets you set an any’s value and data type. The
insertion operator sets a OCRBA: : Any value and its data type property (QORBA:
: TypeCode). Thus set, you can extract an any’s value and data type through
the corresponding extraction operator (see page 306).

The C++ class OORBA: : Any contains predefined overloaded versions of the
insertion operator function oper at or <<=() . Orbix provides insertion operator
functions for all IDL types that map unambiguously to C++ types, such as

I ong, fl oat, or unbounded string. For a full listing of these functions and
their data types, refer to OORBA: : Any: : oper at or <<=() . The IDL compiler also
generates an insertion operator for each user-defined type.

For example, OORBA: : Any contains the following insertion operator function
for short data types:

voi d oper at or <<=(OCRBA: : Short s);

Given this function, you can use the insertion operator to supply a short data
type to passSonet hi ngl n() as follows:

/] CH
voi d AnyDeno: : do_send_short () {
try {
AnyDeno_var x = ...;
CCRBA : Any a;
QCRBA: : Short toPass;
toPass = 26;
a <<= toPass;
x->passSonet hi ngl n(a) ;
}
catch (OCRBA: : SystenException &ysEx) {

Inserting Typed Values Into Any

Insertion operators provide a type-safe mechanism for inserting data into an
any. The type of value to insert determines which insertion operator is used.
Attempts to insert a value that has no corresponding IDL type yield
compile-time errors.

Memory Management of Inserted Data
Depending on the type of the data, insertion using an oper at or <<=() has one
of the following effects:

® duplicate() is called on an object reference.
® add_ref() is called on a valuetype.
* adeep copy is made for all other data types.

When the Any is subsequently destroyed, the Any destructor performs one of
the following actions, depending on the Any. t ype() field:

® (OCRBA :rel ease() is called on an object reference.
* renove_ref() is called on a valuetype.
® deleteis called on all other data types.

Inserting User-Defined Types

The IDL shown earlier can be modified to include this t ypedef declaration:

/1 1DL
t ypedef sequence<l ong> LongSequence;

Given this statement, the IDL compiler generates the following insertion
operator function for LongSequence data types:

voi d operat or <<=(GCRBA: : Any& a, const LongSequence& t);

Clients that call passSonet hi ngl n() can use the insertion operator to insert
LongSequence data into the function’s any parameter:

Il C++
voi d AnyDeno: : do_send_sequence() {
try {
CCRBA: : Any a;

/1 Build a sequence of length 2
LongSequence sequence_to_insert(2);

305

Chapter 15 | Using the Any Data Type

sequence_to_insert.length(2);

I/l Initialize the sequence val ues
sequence_to_insert[0] 1;
sequence_to_insert[1] 2;

/1l Insert sequence into the any
a <<= sequence_to_insert;

/1l Call passSonethingln and supply any data as argunent
m any_deno- >passSonet hi ngln (a);

}

catch (CCRBA: : Syst enkExcepti on &ysEx) {

Extracting Typed Values From Any

306

The extraction operator >>= lets you get the value that a GORBA: : Any contains
and returns a OCRBA: : Bool ean: true (1) if the any’s TypeCode matches the
extraction operation’s target operand, or false (0) if a mismatch occurs.

The C++ class OORBA: : Any contains predefined overloaded versions of the
extraction operator function oper at or >>=() . Orbix provides extraction
operator functions for all IDL types that map unambiguously to C++ types,
such as | ong, fl oat, or unbounded string. For a full listing of these
functions and their data types, refer to CORBA : Any: : oper at or >>=() . The IDL
compiler also generates an extraction operator for each user-defined type.

For example, OCRBA: : Any contains the following extraction operator function
for short data types:

[/ G+
QCRBA: : Bool ean oper at or >>=(CCRBA: : Short & s) const;

Given this function, a server implementation of passSonet hi ngl n() can use
the extraction operator to extract a short from the function’s parameter
anyl n:

Extracting Typed Values From Any

Il G+
voi d AnyDeno_i : : passSonet hi ngl n(const OCRBA: : Any& anyln) {

QOCRBA : Short toExtract = O;

if (anyln >>= toExtract) {
[l Print the val ue
cout << "passSorret hingln() returned a string:"
<< toExtract << endl << endl;

}
el se {

cerr << "Unexpected val ue contained in any" << endl;
}

Memory Management of Extracted Data

When a user-defined type is extracted from an Any, the data is not copied or

duplicated in any way. The extracted data is, therefore, subject to the

following restrictions:

* No modifications to the extracted data are allowed. The extracted data is
read-only.

® Deallocation of the extracted data is not allowed. The Any retains
ownership of the data.

To overcome the restrictions on extracted data, you must explicitly make a
copy of the data and modify the new copy instead.

Extracting User-Defined Types

More complex, user-defined types can be extracted with the extraction
operators generated by the IDL compiler. For example, the IDL shown earlier
can be modified to include this t ypedef declaration:

/1 1D
typedef sequence<l| ong> LongSequence;

Given this statement, the IDL compiler generates the following extraction
operator function for LongSequence data types:

307

Chapter 15 | Using the Any Data Type

308

QOCRBA: : Bool ean oper at or >>=
(OCRBA: : Any& a, LongSequence*& t) const;

The generated extraction operator for user-defined types takes a pointer to
the generated type as the second parameter. If the call to the operator
succeeds, this pointer points to the memory managed by the GCRBA : Any.
Because a OORBA: : Any manages this memory, it is not appropriate to extract
its value into a _var variable—attempting to do so results in a compile-time
error.

You can extract a LongSequence from a QORBA: : Any as follows:

voi d AnyDeno: : do_get _any() {
CCRBA: : Any_var a;
cout << "Call get Sonet hi ngBack" << endl;
a = many_deno- >get Sonet hi ngBack() ;

LongSequence* extract ed_sequence = 0;

if (a >>= extracted _sequence) {
cout << "returned any contains sequence with value :
<< endl ;
print _sequence(extract ed_sequence) ;

}
el se {

cout << "unexpected val ue contained in any" << endl;
}

Note: It is an error to attempt to access the storage associated with a
OORBA: : Any after the OCRBA: : Any variable has been deallocated.

Inserting and Extracting Booleans, Octets, Chars and WChars

Inserting and Extracting Booleans, Octets,
Chars and WChars

Orbix’s IDL to C++ mapping for IDL types char, wchar, bool ean and oct et
prevents the overloaded insertion and extraction operators from
distinguishing between these four data types. Consequently, you cannot use
these operators directly to insert and extract data for these three IDL types.

The QORBA: : Any class contains a set of insertion and extraction operator
functions that use helper types for char, wchar, bool ean, and oct et types:

voi d oper at or <<=(GORBA: : Any: : from char c);
voi d oper at or <<=(GORBA: : Any: : from wchar wc);
voi d oper at or <<=(GORBA: : Any: : from bool ean b);
voi d operat or <<=(GCRBA: : Any: :fromoctet 0);

Bool ean oper at or >>=(OCRBA : Any: :to_char c¢) const;
Bool ean oper at or >>=(CCRBA: : Any: :to_wchar wc) const;
Bool ean oper at or >>=(CCRBA: : Any: :t o_bool ean b) const;
Bool ean oper at or >>=(CCRBA: : Any: :to_octet 0) const;

You can use these helper types as in the following example:

/] C+H
CCRBA: : Any a;

/1l Insert a boolean into CORBA : Any a
CCRBA: : Bool ean b = 1;
a <<= OCRBA : Any: : from bool ean(b);

/] BExtract the bool ean

QCRBA: : Bool ean extract edVal ue;

if (a >>= CORBA : Any::to_bool ean(extractedVal ue)) {
cout << "Success!" << endl;

}

309

Chapter 15 | Using the Any Data Type

Inserting and Extracting Array Data

310

IDL arrays map to regular C++ arrays. Because arrays can have different
lengths and an array variable points only to the array’s first element, the IDL
compiler generates a distinct C++ type for each IDL array. The type name is
concatenated from the array name and the suffix _f or any.

For example, the IDL shown earlier can be modified to include this
two-dimensional array definition:

/1 1DL
typedef long |ongArray[2][2];

Given this t ypedef statement, the IDL compiler generates a
Il ongArray_forany type. The following example shows how to use insertion
and extraction operators to move data between this type and a GCRBA: : Any:

[l G++
longArray marray = { {14, 15}, {24, 25} };

/1 Insertion
CCRBA: : Any a;
a <<= longArray_forany(marray);

/] Extraction
| ongArray_forany extractedVal ue;
if (a >>= extractedval ue) {
cout << "Herent [1][2] is "
<< extractedVal ue[1][2] << endl;

}

Like array _var types, forany types provide an operator[] () function to
access array members. However, when a _f or any type is destroyed the
storage that is associated with the array remains intact. This is consistent
with the behavior of the extraction operator >>=, where the CORBA: : Any
retains ownership of the memory that the operator returns. Thus, the
previous code is safe from memory leaks.

Inserting and Extracting String Data

Inserting and Extracting String Data

Helper types are also provided for insertion and extraction of stri ng and
wst ri ng types.

Inserting Strings

The fromstring and fromwstri ng struct types are used in combination
with the insertion operator >>= to insert strings and wide strings. Two
constructors are provided for the from st ri ng type:
CCRBA: : Any: : from string(
char* s,
QORBA: : ULong b,
CCRBA: : Bool ean nocopy = 0
)
CORBA: : Any: : fromstring(const char* s, CCRBA :U.ong b)
The constructor parameters can be explained as follows:

®* The s parameter is a pointer to the string to be inserted.

®* The b parameter specifies the bound of a bounded string (0 implies
unbounded).

* The nocopy parameter specifies whether the string is copied before
insertion (0 implies copying, 1 implies no copying and adoption).
Analogous constructors are provided for the from wst ri ng type:
CCRBA: : Any: : fromwst ri ng(
OCRBA: : Whhar * s,
QORBA: : ULong b,
COCRBA: : Bool ean nocopy = 0

)
CORBA: : Any: : fromwstri ng(const CORBA: : Whar* s, CORBA : Uong b)

Examples of inserting bounded and unbounded string types are shown in the
following code:

Il C++
/1l Insert a copy of an unbounded string, ’'string .
CCRBA: : Any al,

al <<= CCRBA : Any::fromstring("Unbounded string", 0);

311

Chapter 15 | Using the Any Data Type

/1 Insert a copy of a bounded string, ’string<l00>.
CCRBA: : Any a2;
a2 <<= QORBA : Any::fromstring("Bounded string", 100);

/1 Insert an unbounded string, ’string , passing

/] ownership to the ' CORBA: : Any’ .

CCRBA: : Any a3;

char * unbounded = QORBA: : stri ng_dup("Unbounded string");
a3 <<= QORBA : Any::fromstring(unbounded, 0, 1);

/1 Insert a bounded string, ’string<l100>, passing
/] ownership to the ' CORBA: : Any’ .

CCRBA: : Any a4,

char * bounded = OORBA :string_dup("Bounded string");
a3 <<= QORBA : Any::fromstring(bounded, 100, 1);

Insertion of wide strings is performed in an analogous manner using the
QCRBA: : Any: : fromwst ri ng type.

Extracting Strings

312

Theto_stringandto_ wstring struct types are used in combination with the

extraction operator >>= to extract strings and wide strings. One constructor is

provided for the to_stri ng type:

OCRBA: : Any: :to_string(const char*& s, CCRBA :U.ong b);

The constructor parameters can be explained as follows:

®* The s parameter is a place holder that will point to the extracted string
after a successful extraction is made.

®* The b parameter specifies the bound of a bounded string (0 implies
unbounded).

An analogous constructor is provided for the t o_wst ri ng type:

OORBA: : Any: :to_wstring(const OCORBA :Wohar*& s, CCRBA :Uong b);

Examples of extracting bounded and unbounded string types are shown in

the following code:

[l G+

[/l Extract an unbounded string, 'string’.
CCRBA: : Any al;

const char * readonly_s;

Inserting and Extracting Alias Types

if (al >>= CORBA : Any::to_string(readonly_s, 0)) {
/1l process string, 'readonly_s’

}

/1 BExtract a bounded string, ’string<100> .

CCRBA: : Any a2,

const char * readonly_bs;

if (a2 >>= CCRBA:: Any::to_string(readonly_bs, 100)) {
/1 process bounded string, 'readonly_bs’

}

Extraction of wide strings is performed in an analogous manner using the
CCRBA: : Any: : to_wstring type.

Inserting and Extracting Alias Types

The insertion and extraction operators <<= and >>= are invalid for alias types.
An alias type is a type defined using a t ypedef .

For example, a bounded string alias is a type defined by making a t ypedef of
a bounded string:

/11DL
typedef string<100> BoundedStri ng;

This is mapped by the IDL compiler to a C++ typedef as follows:

Il C++
/1l Stub code generated by the I DL conpiler.
typedef char* BoundedStri ng;

A C++ alias, such as BoundedSt ri ng, cannot be used to distinguish an
overloaded operator because it is not a distinct C++ type. This is the reason
why the <<= and >>= operators cannot be used with alias types.

Inserting Alias Types

The BoundedSt ri ng alias type can be inserted into an Any as follows:

Il C++
CCRBA : Any a;
BoundedString bs = "Less than 100 characters.";

313

Chapter 15 | Using the Any Data Type

1 a <<= CORBA : Any::fromstring(bs, 100);
2 a.type(_tc_BoundedString); // Correct the type code!

The code executes as follows:

1.

The data is inserted using the <<= operator and the from stri ng helper
type. Initially, the Any’s type code is set equal to that of a bounded string
with bound 100 (the type code for st ri ng<100>). There is no type code
constant available for the st ri ng<100> type—the <<= operator creates
one on the fly and uses it.

QOCRBA: : Any: : type() corrects the Any’s type code, setting it equal to the
_tc_BoundedString type code.

It is not permissible to use type() to reset the type code to arbitrary
values—the new type code must be equivalent to the old one.
Attempting to reset the type code to a non-equivalent value raises the
BAD TYPEQCDE system exception.

For example, calling t ype() with the _tc_BoundedStri ng argument
succeeds because the BoundedSt ri ng type is equivalent to the
st ri ng<100> type.

Extracting Alias Types

314

2

The BoundedSt ri ng alias type can be extracted from an Any as follows:

Il C++

CCRBA: : Any &,

[/l The any & is initialized with a ’ BoundedString alias
/1 (as shown previously)

/1 Extract the ’'BoundedString type
1 const char * bs;
if (a >>= CORBA :Any::to_string(bs, 100)) {

}

1.

cout << "Bounded string is: \"" << bs << "\"" << endl;

The pointer to receive the extracted value, bs, is declared as const
char*. You cannot declare bs as const BoundedStri ng because that
means a const pointer to char, or char* const which is not the same as
const char* (pointer to const char).

Querying a CORBA::Any’s Type Code

2. Theto_string constructor manufactures a type code for a st ri ng<100>
bounded string and compares this type with the Any’s type code. If the
type codes are equivalent, the extraction succeeds.

Querying a CORBA::Any’s Type Code

Type code operations are commonly used to query a GCRBA: : Any for its type.
For example, given this interface definition:

/1 1D
struct Exanple {
long |;
b
the IDL compiler gener at es the CORBA: : TypeCode_pt r constant
_tc_Exanpl e.

Assume that a client program invokes the IDL operation op() :

/1 1DL
interface Bar {
void op(in any a);

¥

as follows:

/] C+H

/1 dient code

Bar_var bVar;

CORBA :Any a = ... ; // sonehow initialize

BVér ->op(a);
The server can query the actual type of the parameter to op() as follows:

[l C++
/'l Server code
void Bar_i::op(const CORBA : Any& a) {
OCRBA: : TypeCode_var t(a->type());
if(t->equival ent(_tc_Exanple)) {
cerr << "Don't like struct Exanplel" << endl;

}

el se. .. /1 Continue processing here.

315

Chapter 15 | Using the Any Data Type

This is one of the most common uses of TypeCodes—namely, the runtime
querying of type information from a GCRBA: : Any.

Using DynAny Objects

The DynAny interface allows applications to compose and decompose any
type values dynamically. With DynAny, you can compose a value at runtime
whose type was unknown when the application was compiled, and transmit
that value as an any. Conversely, an application can receive a value of type
any from an operation, and interpret its type and extract its value without
compile-time knowledge of its IDL type.

Interface Hierarchy

316

The DynAny API consists of nine interfaces. One of these, interface
DynAnyFact ory, lets you create DynAny objects. The rest of the DynAny API
consists of the DynAny interface itself and derived interfaces, as shown in
Figure 28.

DynFi xed
DynSt r uct
DynSequence
.. DynArray
DynAny: DynUni on
DynEnum
DynVal ue
DynVal ueBox

Figure 28: Interfaces that derive from the DynAny interface

The derived interfaces correspond to complex, or constructed IDL types such
as array and struct . Each of these interfaces contains operations that are
specific to the applicable type.

The DynAny interface contains a number of operations that apply to all DynAny
objects; it also contains operations that apply to basic IDL types such as | ong
and string.

The DynStruct interface is used for both IDL struct and excepti on types.

Using DynAny Objects

Generic Operations

The DynAny interface contains a number of operations that can be invoked on
any basic or constructed DynAny object:

i nterface DynAny {
exception | nvalidVal ue{};
excepti on TypeM shatch {};
...

voi d assign(in DynAny dyn_any) raises (TypeM smatch);

DynAny copy();
voi d destroy();

bool ean equal (i n DynAny da);

voi d fromany(
in any val ue) raises(TypeM snatch, |nvalidVal ue);
any to_any();

OCRBA: : TypeCode type();
...
b

assign() initializes one DynAny object’s value from another. The value must be
compatible with the target DynAny’s type code; otherwise, the operation
raises an exception of TypeM smat ch.

copy() creates a DynAny whose value is a deep copy of the source DynAny’s
value.

destroy() destroys a DynAny and its components.

equal() returns true if the type codes of the two DynAny objects are equivalent
and if (recursively) all component DynAny objects have identical values.

from_any() initializes a DynAny object from an existing any object. The source
any must contain a value and its type code must be compatible with that of
the target DynAny; otherwise, the operation raises an exception of

TypeM snat ch.

317

Chapter 15 | Using the Any Data Type

to_any() initializes an any with the DynAny’s value and type code.

type() obtains the type code associated with the DynAny object. A DynAny
object’s type code is set at the time of creation and remains constant during
the object’s lifetime.

Creating a DynAny

318

The DynAnyFact ory interface provides two creation operations for DynAny
objects:

nodul e Dynam cAny {
interface DynAny; // Forward declaration

1. ..
i nterface DynAnyFactory

{

exception | nconsi st ent TypeCode {};

DynAny create_dyn_any(in any val ue)
rai ses (Inconsi stent TypeCode);
DynAny create_dyn_any fromtype_code(i n CCRBA: : TypeCode type)
rai ses (I nconsi stent TypeCode);
h
h
The create operations return a DynAny object that can be used to manipulate
any objects:

create_dyn_any() is a generic create operation that creates a DynAny from an
existing any and initializes it from the any’s type code and value.

The type of the returned DynAny object depends on the any’s type code. For
example: if the any contains a struct, create_dyn_any() returns a DynStr uct
object.

create_dyn_any from_type_code() creates a DynAny from a type code. The
value of the DynAny is initialized to an appropriate default value for the given
type code. For example, if the DynAny is initialized from a string type code the
value of the DynAny is initialized to "" (empty string).

Using DynAny Objects

The type of the returned DynAny object depends on the type code used to
initialize it. For example: if a struct type code is passed to
create_dyn_any fromtype code(), a DynStruct object is returned.

If the returned DynAny type is one of the constructed types, such as a
DynStruct, you can narrow the returned DynAny before processing it further.

Using create_dyn_any()

create_dyn_any() is typically used when you need to parse an any to
analyse its contents. For example, given an any that contains an enumtype,
you can extract its contents as follows:

/] CH+
#i ncl ude <ong/ Dynam cAny. hh>
1. ..
voi d get _any_val (const CCRBA:: Any& a){
I/l Get a reference to a ' Dynam cAny: : DynAnyFactory’ obj ect
OCRBA: : (hj ect _var obj
= gl obal _orb->resol ve_initial _references("DynAnyFactory");
Dynanmi cAny: : DynAnyFact ory_var dyn_f act
= Dynani cAny: : DynAnyFactory: : _narrow(obj);
if (QORBA :is_nil(dyn_fact)) {
/1 error: throw exception

}

/1 Get the Any’s type code
QOCRBA: : TypeCode_var tc = a.type();
switch (tc->kind()){

...
case OCORBA :tk_enum ({
Dynani cAny: : DynAny_var da = dyn_fact->create_dyn_any(a);
Dynam cAny: : DynEnum var de =
Dynam cAny: : DynEnum : _narrow(da) ;
...
de->destroy();
}
br eak;
}

}
The code executes as follows:

319

Chapter 15 | Using the Any Data Type

320

Call resol ve_initial _references("DynAnyFactory") to obtain an
initial reference to the DynAnyFact ory object.

It is assumed that gl obal _or b refers to an existing CORBA: : CRB object
that has been initialized prior to this code fragment.

Narrow the OCRBA: : (bj ect _pt r object reference to the Dynam cAny: :
DynAnyFact ory_ptr type before it is used.
Analysis of a type code is begun by branching according to the value of

its kind field. A general purpose subroutine for processing DynAnys would
require case statements for every possible IDL construct. Only the case

statement for an enumis shown here.

3. The DynAny created in this step is initialized with the same type and
value as the given OCRBA : Any data type.

Because the any argument of create_dyn_any() contains an enum the
return type of create_dyn_any() is Dynani cAny: : DynEnum ptr. The
return value can therefore be narrowed to this type.

4. destroy() must be invoked on the DynAny object when you are finished

with it.

Using create_dyn_any from_type code()

create_dyn_any fromtype code() is typically used to create an any when
stub code is not available for the particular type.

For example, consider the IDL st ri ng<128> bounded string type. In C++
you can insert this anonymous bounded string using the GORBA: : Any: :
from st ring helper type. Alternatively, you can use the Dynam cAny
programming interface as follows:

/] C++
#i ncl ude <ong/ Dynam cAny. hh>
...
/1 Get a reference to a 'Dynam cAny:: DynAnyFactory’ obj ect
OCRBA: : (hj ect _var obj
= gl obal _orb->resol ve_initial _references("DynAnyFactory");
Dynani cAny: : DynAnyFact ory_var dyn_f act
= Dynani cAny: : DynAnyFact ory: : _narrow(obj);
if (CORBA :is_nil(dyn_fact)) {
/1 error: throw exception

}

Using DynAny Objects

/1 Create type code for an anonyrmous bounded string type
CCRBA: : ULong bound = 128;
CCRBA: : TypeCode_var tc_v = gl obal _orb->create_string_tc(bound);

/1l Initialize a ' DynAny’ containing a bounded string
Dynami cAny: : DynAny_var dyn_bounded_str

= dyn_fact->create_dyn_any_fromtype_code(tc_v);
dyn_bounded_str->i nsert_string("Less than 128 characters.");

/1 Convert 'DynAny’ to a plain ’any’

CCORBA: : Any_var a = dyn_bounded_str->to_any();
/...

/1 QA eanup ' DynAny’
dyn_bounded_str->destroy();

The code can be explained as follows:

1. The initialization service gets an initial reference to the DynAnyFact ory
object by calling resol ve_ini tial _references("DynAnyFactory").

It is assumed that gl obal _or b refers to an existing OCRBA: : CRB object
that has been initialized prior to this code fragment.

The plain OCRBA: : hj ect _ptr object reference must be narrowed to the
Dynam cAny: : DynAnyFactory ptr type before it is used.

2. The OCORBA : CRB class supports a complete set of functions for the
dynamic creation of type codes. For example, create_string_tc()
creates bounded or unbounded string type codes. The argument of
create_string_tc() can be non-zero, to specify the bound of a
bounded string, or zero, for unbounded strings.

3. A DynAny object, called dyn_bounded_str, is created using
create_dyn_any fromtype code(). The dyn_bounded_str is initialized
with its type equal to the given bounded string type code, and its value
equal to a blank string.

4. The value of dyn_bounded_str is set equal to the given argument of the
insert_string() operation. Insertion operations, of the form
i nsert _BasicType, are defined for all basic types as described in
“Accessing Basic DynAny Values” on page 322.

5. The dyn_bounded str object is converted to a plain any that is initialized
with the same type and value as the DynAny.

321

Chapter 15 | Using the Any Data Type

6.

destroy() must be invoked on the DynAny object when you are finished
with it.

Note: A DynAny object’s type code is established at its creation and cannot
be changed thereafter.

Inserting and Extracting DynAny Values

322

The interfaces that derive from DynAny such as DynArray and DynStruct
handle insertion and extraction of any values for the corresponding IDL types.
The DynAny interface contains insertion and extraction operations for all other
basic IDL types such as string and | ong.

Accessing Basic DynAny Values

The DynAny interface contains two operations for each basic type code, to
insert and extract basic DynAny values:

An insert operation is used to set the value of the DynAny. The data being
inserted must match the DynAny’s type code.

The TypeM smat ch exception is raised if the value to insert does not
match the DynAny’s type code.

The I nval i dval ue exception is raised if the value to insert is
unacceptable—for example, attempting to insert a bounded string that is
longer than the acceptable bound. The I nval i dVval ue exception is also
raised if you attempt to insert a value into a DynAny that has components
when the current position is equal to - 1. See “Iterating Over DynAny
Components” on page 327.

Each extraction operation returns the corresponding IDL type.

The Dynam cAny: : DynAny: : TypeM smat ch exception is raised if the value
to extract does not match the DynAny’s type code.

The Dynani cAny: : DynAny: : | nval i dVal ue exception is raised if you
attempt to extract a value from a DynAny that has components when the

current position is equal to - 1. See “lterating Over DynAny Components”
on page 327.

Using DynAny Objects

It is generally unnecessary to use a DynAny object in order to access any
values, as it is always possible to access these values directly (see page 304
and see page 306). Insertion and extraction operations for basic DynAny
types are typically used in code that iterates over components of a
constructed DynAny, in order to compose and decompose its values in a
uniform way (see page 329).

The IDL for insertion and extraction operations is shown in the following
sections.

Insertion Operations
The IDL insertion operations supported by the DynAny interface are:

voi d insert_bool ean(i n bool ean val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_octet(in octet val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_char(in char val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_short(in short val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_ushort (in unsigned short val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_long(in |long val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_ul ong(in unsigned | ong val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_float(in float val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_doubl e(i n doubl e val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_string(in string val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
void insert_reference(in (bj ect val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_typecode(i n OCRBA : TypeCode val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_|onglong(in long | ong val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_ul ongl ong(i n unsi gned | ong | ong val ue)
rai ses (TypeM smat ch, |nvalidVal ue);
voi d insert_| ongdoubl e(i n | ong doubl e val ue)

323

Chapter 15 | Using the Any Data Type

rai ses (TypeM smatch, InvalidVval ue);
voi d insert_wchar (i n wchar val ue)

rai ses (TypeM smatch, InvalidVval ue);
void insert_wstring(in wstring val ue)

rai ses (TypeM smatch, InvalidVval ue);
void insert_any(in any val ue)

rai ses (TypeM smatch, InvalidVval ue);
voi d insert_dyn_any(in DynAny val ue)

rai ses (TypeM smatch, InvalidVval ue);
voi d insert_val (in Val ueBase val ue)

rai ses (TypeM smatch, InvalidVval ue);

For example, the following code fragment invokes i nsert _string() on a
DynAny to create an any value that contains a string:

/] C++
#i ncl ude <ong/ Dynam cAny. hh>
/...
/1 Get a reference to a ' Dynam cAny:: DynAnyFactory’ obj ect
OCRBA: : (hj ect _var obj
= gl obal _orb->resol ve_initial _references("DynAnyFactory");
Dynam cAny: : DynAnyFact ory_var dyn_f act
= Dynani cAny: : DynAnyFact ory: : _narrow(obj);
if (CORBA :is_nil(dyn_fact)) {
[l error: throw exception

}

/1l create DynAny with a string val ue
Dynam cAny: : DynAny_var dyn_a;
dyn_a = dyn_fact->create_dyn_any_from type_code(
OORBA: : _tc_string
);

dyn_a->insert_string("not to worry!");

/1 convert DynAny to any
CCRBA: : Any_var a;

a = dyn_a->to_any();
/...

/1 destroy the DynAny
dyn_a->destroy();

Extraction Operations
The IDL extraction operations supported by the DynAny interface are:

324

Using DynAny Objects

bool ean get _bool ean()

rai ses (TypeM smat ch, |nvalidVal ue);
oct et get _octet ()

rai ses (TypeM smat ch, |nvalidVal ue);
char get _char ()

rai ses (TypeM smat ch, |nvalidVal ue);
short get _short ()

rai ses (TypeM smat ch, |nvalidVal ue);
unsi gned short get _ushort ()

rai ses (TypeM smat ch, |nvalidVal ue);
| ong get _Il ong()

rai ses (TypeM smat ch, |nvalidVal ue);
unsi gned | ong get _ul ong()

rai ses (TypeM smat ch, |nvalidVal ue);
f1 oat get _float ()

rai ses (TypeM smat ch, |nvalidVal ue);
doubl e get _doubl e()

rai ses (TypeM smat ch, |nvalidVal ue);
string get_string()

rai ses (TypeM smat ch, |nvalidVal ue);
hj ect get _reference()

rai ses (TypeM smat ch, |nvalidVal ue);
CCRBA: : TypeCode get _t ypecode()

rai ses (TypeM smat ch, |nvalidVal ue);
I ong | ong get _I ongl ong()

rai ses (TypeM smat ch, |nvalidVal ue);
unsi gned | ong | ong get _ul ongl ong()

rai ses (InvalidVval ue, TypeM smat ch);
| ong doubl e get _| ongdoubl e()

rai ses (TypeM smat ch, |nvalidVal ue);
wchar get _wchar ()

rai ses (TypeM smat ch, |nvalidVal ue);
wstring get _wstring()

rai ses (TypeM smat ch, |nvalidVal ue);
any get _any()

rai ses (TypeM smat ch, |nvalidVal ue);
DynAny get _dyn_any()

rai ses (TypeM smat ch, |nvalidVal ue);
Val ueBase get _val ()

rai ses (TypeM smat ch, |nvalidVal ue);

325

Chapter 15 | Using the Any Data Type

326

For example, the following code converts a basic any to a DynAny. It then
evaluates the DynAny’s type code in a switch statement and calls the
appropriate get _ operation to obtain its value:

/] C++
#i ncl ude <ong/ Dynam cAny. hh>
/...
/1 Get a reference to a ' Dynam cAny:: DynAnyFact ory’ obj ect
OCRBA: : (hj ect _var obj
= gl obal _orb->resol ve_initial _references("DynAnyFactory");
Dynam cAny: : DynAnyFact ory_var dyn_f act
= Dynani cAny: : DynAnyFact ory: : _narrow(obj);
if (CORBA :is_nil(dyn_fact)) {
[l error: throw exception

}
CORBA :Any a = ...; /] get Any from sonewhere

/'l create DynAny from Any
Dynami cAny: : DynAny_var dyn_a = dyn_fact->create_dyn_any(a);

/1 get DynAny’s type code
OCRBA: : TypeCode_var tcode = dyn_a->type();

/1 eval uate type code
swi t ch(t code->ki nd()) {
case QCRBA :tk_short:

{
OCRBA: : Short s = dyn_a->get_short();
cout << "any contains short value of " << s << endl;
br eak;
}
case OCORBA :tk_l ong:
{

QORBA: : Long | = dyn_a->get_l ong();
cout << "any contains long value of " << | << endl;
br eak;

/1 other cases follow

} // end of switch statenent

dyn_a->destroy(); // cleanup

Using DynAny Objects

Iterating Over DynAny Components

Five types of DynAny objects contain components that must be accessed to
insert or extract values: DynStruct , DynSequence, DynAr ray, DynUni on, and
DynVal ue. On creation, a DynAny object holds a current position equal to the
offset of its first component. The DynAny interface has five operations that let
you manipulate the current position to iterate over the components of a
complex DynAny object:

nmodul e Dynam cAny {

/...
i nterface DynAny{
1.
/1 lteration operations
unsi gned | ong conponent _count ();
DynAny current_conponent () raises (TypeM smatch);
bool ean seek(in long index);
bool ean next ();
voi d rew nd();
b

}s

component_count() returns the number of components of a DynAny. For
simple types such as | ong, and for enumerated and fixed-point types, this
operation returns 0. For other types, it returns as follows:

® sequence: number of elements in the sequence.

® struct, exception and val uet ype: number of members.

® array: number of elements.

® union: 2 if a member is active; otherwise 1.

current_component() returns the DynAny for the current component:
DynAny current _conponent ()

You can access each of the DynAny’s components by invoking this operation
in alternation with the next () operation. An invocation of
current _conponent () alone does not advance the current position.

If an invocation of current _conponent () returns a derived type of DynAny, for
example, DynStruct, you can narrow the DynAny to this type.

327

Chapter 15 | Using the Any Data Type

328

If you call current _conponent () on a type that has no components, such as
a |l ong, it raises the TypeM snat ch exception.

If you call current _conponent () when the current position of the DynAny is
-1, it returns a nil object reference.

next() advances the DynAny’s current position to the next component, if there
is one:

bool ean next ();

The operation returns true if another component is available; otherwise, it
returns false. Thus, invoking next () on a DynAny that represents a basic type
always returns false.

seek() advances the current position to the specified component:
bool ean seek (in |ong index);

Like next (), this operation returns true if the specified component is
available; otherwise, it returns false.

rewind() resets the current position to the DynAny object’s first component:
void rew nd();

It is equivalent to calling seek() with a zero argument.

Undefined Current Position

In some circumstances the current position can be undefined. For example, if
a DynSequence object contains a zero length sequence, both the current
component and the value of the DynAny’s current position are undefined.

The special value -1 is used to represent an undefined current position.

When the current position is - 1, an invocation of current _conponent ()
yields a nil object reference.

The current position becomes undefined (equal to - 1) under the following
circumstances:
®* When the DynAny object has no components.

For example, a DynAny containing a zero-length sequence or array would
have no components.

* Immediately after next () returns false.

Using DynAny Objects

* If seek() is called with a negative integer argument, or with a positive
integer argument greater than the largest valid index.

Accessing Constructed DynAny Values

Each interface that derives from DynAny, such as DynArray and DynStruct ,
contains its own operations which enable access to values of the following

DynAny types:

® DynEnum

® DynStruct

¢ DynUhion

® DynSequence
* DynArray

® DynFi xed

® [DynVal ue

¢ DynVal ueBox

DynEnum

nmodul e Dynam cAny {

/...

interface DynEnum: DynAny {
string get_as_string();
void set_as_string(in string val) raises(lnvalidVal ue);
unsi gned | ong get _as_ul ong();
voi d set_as_ul ong(in unsigned | ong val)

rai ses(Ilnval i dval ue);

}

® Qperations get _as_string() and set_as_string() let you access an
enumerated value by its IDL string identifier or its ordinal value. For
example, given this enumeration:
enum Exchange{ NYSE, NASD, AMEX, CHGO DAX, FTSE };
set_as_string("NASD') sets the enunis value as NASD, while you can
get its current string value by calling get _as_string().

® QOperations get _as_ul ong() and set _as_ul ong() provide access to an
enumerated value by its ordinal value.

The following code uses a DynEnumto decompose an any value that contains
an enumeration:

329

Chapter 15 | Using the Any Data Type

/] C++
voi d extract _any(const OCRBA : Any * a){
/...
Il Get a reference to a 'Dynam cAny:: DynAnyFactory’ object
CCORBA: : (hj ect _var obj
= gl obal _orb->resol ve_initial _references("DynAnyFactory");
Dynani cAny: : DynAnyFact ory_var dyn_f act
= Dynam cAny: : DynAnyFactory:: _narrow(obj);
if (CORBA :is_nil(dyn_fact)) {
/1 error: throw exception

}

Dynam cAny: : DynAny_var dyn_a = dyn_fact->create_dyn_any(*a);
CCRBA: : TypeCode_var tcode = dyn_a->type();

swi t ch(t code- >ki nd()){
case QCRBA :tk_enum

{
Dynani cAny: : DynEnum var dyn_e =
Dynam cAny: : DynEnum : _narrow(dyn_a);
OORBA: : String_var s = dyn_e->get_as_string();
cout << s << endl;
dyn_e->destroy();
}
/1 other cases follow
...
}
}
DynStruct

The DynStruct interface is used for st ruct and excepti on types. The
interface is defined as follows:

nmodul e Dynam cAny {
...
typedef string Fi el d\Nane;

struct NanmeVal uePai r{
Fi el dNane i d;
any val ue;
¥
t ypedef sequence<NaneVal uePai r> NaneVal uePai r Seq;

330

Using DynAny Objects

The

struct NanmeDynAnyPair {
Fi el d\Nane i d;
DynAny val ue;
b
typedef sequence<NaneDynAnyPair> NaneDynAnyPai r Seq;

interface DynStruct : DynAny{
Fi el dNane current _nmenber _nane()
rai ses(TypeM smat ch, |nvalidval ue);
OCRBA: : TCKi nd current _nenber _ki nd()
rai ses(TypeM smat ch, |nvalidVval ue);
NaneVal uePai r Seq get _nenbers();
voi d set_menbers (in NaneVal uePai r Seq val ue)
rai ses(TypeM smat ch, |nvalidval ue);
NanmeDynAnyPai r Seq get _nmenbers_as_dyn_any();
voi d set_rmnenbers_as_dyn_any(
i n NaneDynAnyPai r Seq val ue
) raises(TypeM smatch, |nvalidVal ue);

}

DynStruct interface defines the following operations:

set _menbers() and get _nenbers() are used to get and set member
values in a DynStruct . Members are defined as a NaneVal uePai r Seq
sequence of name-value pairs, where each name-value pair consists of
the member’'s name as a string, and an any that contains its value.
current _menber _nane() returns the name of the member at the current
position, as established by DynAny base interface operations. Because
member names are optional in type codes, current _nenber _nane()
might return an empty string.

current _menber ki nd() returns the TGk nd value of the current
DynStruct member's type code.

get _nenbers_as_dyn_any() and set _nenbers_as_dyn_any() are
functionally equivalent to get _menbers() and set _nenbers(),
respectively. They operate on sequences of name-DynAny pairs. Use
these operations if you work extensively with DynStruct objects; doing
so allows you to avoid converting a constructed DynAny into an any
before using the operations to get or set struct members.

331

Chapter 15 | Using the Any Data Type

332

The following code iterates over members in a DynStruct and passes each
member over to the eval _nenber () helper function for further
decomposition:

/] C++

Dynam cAny: : DynStruct _var dyn_s = ...;
OCRBA: : TypeCode_var tcode = dyn_s->type();
int counter = tcode->nenber_count();

for (int i =0; i <counter; i++) {
Dynam cAny: : DynAny_var menber = dyn_s->current_conponent () ;
eval _nenber (menber) ;
dyn_s->next ();

}

DynUnion
The Dynuni on interface enables access to any values of uni on type:

nodul e Dynam cAny {
/...
typedef string Fi el d\Nane;

i nterface DynUnion : DynAny {
DynAny get_discrimnator();
voi d set_discrimnator(in DynAny d) rai ses(TypeM snatch);
voi d set _to_defaul t_nenber () raises(TypeM snatch);
voi d set_to_no_active_nenber() rai ses(TypeM snatch);
bool ean has_no_act i ve_nenber () raises(InvalidVal ue);
OCRBA: : TCKi nd di scri m nat or_ki nd();
DynAny menber () raises(lnvalidVal ue);
Fi el dName menber _nane() raises(|nvalidVval ue);
OORBA: : TCKi nd nenber _ki nd() raises(InvalidVal ue);

b

b

The Dynuni on interface defines the following operations:
get_discriminator() returns the current discriminator value of the Dynuni on.
set_discriminator() sets the discriminator of the Dynuni on to the specified

value. If the type code of the parameter is not equivalent to the type code of
the union’s discriminator, the operation raises TypeM snat ch.

Using DynAny Objects

set_to_default_member() sets the discriminator to a value that is consistent
with the value of the default case of a union; it sets the current position to
zero and causes conponent _count to return 2. Calling

set _to_defaul t_menber () on a union that does not have an explicit default
case raises TypeM snat ch.

set_to_no_active_member() sets the discriminator to a value that does not
correspond to any of the union’s case labels; it sets the current position to
zero and causes conponent _count to return 1. Calling
set_to_no_active_menber () on a union that has an explicit default case or
on a union that uses the entire range of discriminator values for explicit case
labels raises TypeM smat ch.

has_no_active_member() returns true if the union has no active member
(that is, the union’s value consists solely of its discriminator, because the
discriminator has a value that is not listed as an explicit case label). Calling
this operation on a union that has a default case returns false. Calling this
operation on a union that uses the entire range of discriminator values for
explicit case labels returns false.

discriminator_kind() returns the TCKi nd value of the discriminator’s
TypeCode.

member() returns the currently active member. If the union has no active
member, the operation raises | nval i dval ue. Note that the returned reference
remains valid only as long as the currently active member does not change.
Using the returned reference beyond the life time of the currently active
member raises CBJECT_NOT_EX ST.

member_name() returns the name of the currently active member. If the
union’s type code does not contain a member name for the currently active
member, the operation returns an empty string. Calling menber _nane() on a
union that does not have an active member raises I nval i dval ue.

member_kind() returns the TOKi nd value of the currently active member’s

TypeCode. Calling this operation on a union that does not have a currently
active member raises I nval i dval ue.

333

Chapter 15 | Using the Any Data Type

334

DynSequence and DynArray
The interfaces for DynSequence and DynArray are virtually identical:

nodul e Dynam cAny {
/...
typedef sequence<any> AnySeq;
t ypedef sequence<DynAny> DynAnySeq;

interface DynArray : DynAny {
AnySeq get _el ement s();
voi d set _el enents(in AnySeq val ue)
rai ses (TypeM smatch, InvalidVal ue);
DynAnySeq get _el enents_as_dyn_any();
voi d set_el enents_as_dyn_any(in DynAnySeq val ue)
rai ses (TypeM smatch, InvalidVal ue);

}s

i nterface DynSequence : DynAny {
unsi gned | ong get _| ength();
voi d set _| ength(in unsigned | ong | en)
rai ses(lnvalidval ue);

/1 renaining operations sane as for DynArray
...

b
b
You can get and set element values in a DynSequence or DynArray with
operations get _el enent s() and set _el enent s(), respectively. Members are
defined as an AnySeq sequence of any objects.

Operations get _el enents_as_dyn_any() and set el enents_as_dyn_any()
are functionally equivalent to get el enent s() and set _el enent s() ; unlike
their counterparts, they return and accept sequences of DynAny elements.

DynSequence has two of its own operations:
get_length() returns the number of elements in the sequence.

set_length() sets the number of elements in the sequence.

Using DynAny Objects

If you increase the length of a sequence, new elements are appended to the
sequence and default-initialized. If the sequence’s current position is unde-

fined (equal to -1), increasing the sequence length sets the current position to
the first of the new elements. Otherwise, the current position is not affected.

If you decrease the length of a sequence, set | engt h() removes the
elements from its end.

You can access elements with the iteration operations described in “Iterating
Over DynAny Components” on page 327. For example, the following code
iterates over elements in a DynArr ay:

Dynam cAny: : DynArray_var dyn_array = ...;

CCRBA: : TypeCode_var tcode = dyn_array->type();

int counter = tcode->length();

for (int i =0; i < counter; i++){
Dynani cAny: : DynAny_var el em = dyn_array->current_conponent ();
eval _nenber (menber) ;
dyn_array->next ();

}

DynFixed

The DynFi xed interface lets you manipulate an any that contains fixed-point
values.

i nterface DynAny{

interface DynFixed : DynAny{
string get_val ue();
void set_value(in string val)
rai ses (TypeM smatch, |nvalidVal ue);
b
b
The DynFi xed interface defines the following operations:
get_value() returns the value of a DynFi xed as a string.
set_value() sets the value of a DynFi xed. If val is an uninitialized string or
contains a fixed point literal that exceeds the scale of DynFi xed, the

I nval i dval ue exception is raised. If val is not a valid fixed point literal, the
TypeM snat ch exception is raised.

335

Chapter 15 | Using the Any Data Type

336

DynValue

The DynVal ue interface lets you manipulate an any that contains a value type
(excluding boxed value types):

nodul e Dynam cAny {
/...
typedef string Fi el d\ane;

struct NaneVal uePair
{
Fi el d\Nare i d;
any val ue;
b
typedef sequence<NaneVal uePai r> NaneVal uePai r Seq;

struct NaneDynAnyPai r
{
Fi el d\ane i d;
DynAny val ue;
b
typedef sequence<NanmeDynAnyPai r> NanmeDynAnyPai r Seq;

i nterface DynVal ue : DynAny
{
Fi el dName current _menber _name()
rai ses (TypeM smatch, InvalidVal ue);
OCRBA: : TCKi nd current _menber _ki nd()
rai ses (TypeM smatch, InvalidVal ue);
NarreVal uePai r Seq get _menbers();
voi d set _menbers(i n NaneVal uePai r Seq val ues)
rai ses (TypeM smatch, InvalidVal ue);
NarmeDynAnyPai r Seq get _nenbers_as_dyn_any();
voi d set _menbers_as_dyn_any(i n NameDynAnyPai r Seq val ue)
rai ses (TypeM smatch, InvalidVal ue);
b
b

The Dynval ue interface defines the following operations:

current_member_name() returns the name of the value type member
indexed by the current position.

Using DynAny Objects

current_member_kind() returns the type code kind for the value type
member indexed by the current position.

get_members() returns the complete list of value type members in the form
of a NaneVal uePai r Seq.

set_members() sets the contents of the value type members using a
NaneVal uePai r Seq.

get_members_as_dyn_any() is similar to get _nmenbers(), except that the
result is returned in the form of a NaneDynAnyPai r Seq.

set_members_as_dyn_any() is similar to set _menbers(), except that the
contents are set using a NameDynAnyPai r Seq.

DynValueBox

The DynVal ueBox interface lets you manipulate an any that contains a boxed
value type:

nodul e Dynam cAny {
/...
i nterface DynVal ueBox : DynAny
{
any get_boxed_val ue();
voi d set _boxed_val ue(in any val)
rai ses (TypeM snat ch);
DynAny get _boxed_val ue_as_dyn_any();
voi d set_boxed_val ue_as_dyn_any(in DynAny val)
rai ses (TypeM smat ch);
b
b

The DynVval ue interface defines the following operations:
get_boxed_value() returns the boxed value as an any.
set_boxed_value() sets the boxed value as an any.
get_boxed_value_as_dyn_any() returns the boxed value as a DynAny.

set_boxed_value_as_dyn_any() sets the boxed value as a DynAny.

337

Chapter 15 | Using the Any Data Type

338

1 6 Generating Interfaces at

Runtime

The dynamic invocation interface lets a client invoke on
objects whose interfaces are known only at runtime;
similarly, the dynamic skeleton interface lets a server
process requests on objects whose interfaces are known
only at runtime.

An application’s IDL usually describes interfaces to all the CORBA objects
that it requires at runtime. Accordingly, the IDL compiler generates the stub
and skeleton code that clients and servers need in order to issue and process
requests. The client can issue requests only on those objects whose
interfaces are known when the client program is compiled; similarly, the
server can process requests only on those objects that are known when the
server program is compiled.

Some applications cannot know ahead of time which objects might be
required at runtime. In this case, Orbix provides two interfaces that let you
construct stub and skeleton code at runtime, so clients and servers can issue
and process requests on those objects:

® The dynamic invocation interface (DII) builds stub code for a client so it
can call operations on IDL interfaces that were unknown at compile
time.

* The dynamic skeleton interface (DSI) builds skeleton code for a server, so
it can receive operation or attribute invocations on an object whose IDL
interface is unknown at compile time.

339

Chapter 16 | Generating Interfaces at Runtime

Using the DIl

340

Some application programs and tools must be able to invoke on objects
whose interfaces cannot be determined ahead of time—for example,
browsers, gateways, management support tools, and distributed debuggers.

With DII, invocations can be constructed at runtime by specifying the target
object reference, the operation or attribute name, and the parameters to
pass. A server that receives a dynamically constructed invocation request
does not differentiate between it and static requests.

Two types of client programs commonly use the DIl:

* Aclient interacts with the interface repository to determine a target
object’s interface, including the name and parameters of one or all of its
operations, then uses this information to construct DIl requests.

* Aclient such as a gateway receives the details of a request. In the case
of a gateway, this might arrive as part of a network package. The
gateway can then translate this into a DIl call without checking the
details with the interface repository. If a mismatch occurs, Orbix raises
an exception to the gateway, which in turn can report an error to the
caller.

To invoke on an object with DI, follow these steps:

1. Construct a Request object with the operation’s signature.
2. Invoke the request.
3. Retrieve results of the operation.

The bank example is modified here to show how to use the DII. The Bank: :
newAccount () operation now takes an i nout parameter that sets a new
account’s initial balance:

/1 1DL
i nterface Account {
readonly attribute float bal ance;

voi d makeDeposit(in float f);
voi d makeWt hdrawal (in float f);

}s

interface Bank {
exception Reject {

Using the DII

string reason;

}

/1 Oreate an account

Account newAccount (
in string owner, inout float initialBalance)
rai ses (Reject);

/1 Del ete an account
voi d del eteAccount (in Account a);

b
The following section shows how to construct a Request object that can
deliver client requests for newAccount () operations such as this one:

bankVar - >newAccount (owner Nare, initial Bal ance);

Constructing a Request Object

To construct a Request object and set its data, you must first obtain a
reference to the target object. You then create a request object by invoking
one of these methods on the object reference:

®* request () returns an empty request object whose signature—return
type and parameters—must be set.

® create_request () returns with a request object that can contain all
the data required to invoke the desired request.

Using _request()
You can use _request () to create a Request object in these steps:

1. Create a Request object and set the name of its operation.
2. Set the operation’s return type.
3. Set operation parameters and supply the corresponding arguments.

Create a Request Object

Call _request () on the target object and specify the name of the operation to
invoke:

/1 Get object reference
CORBA: : (hj ect _var target = ... ;

341

Chapter 16 | Generating Interfaces at Runtime

342

/] Oreate Request object for operation newAccount ()
COCRBA: : Request _var newAcct Request =
target->_request ("newAccount");

Set the Operation’s Return Type

After you create a Request object, set the TypeCode of the operation’s return
value by calling set _return_type() on the Request object.
set_return_type() takes a single argument, the TypeCode constant of the
return type. For example, given the Request object newAcct Request , set the
return type of its newAccount () operation to Account as follows:

newAcct Request - >set _return_t ype(_tc_Account);

For information about supported TypeCode constants, refer to “Type Code
Constants” on page 301.

For information about supported TypeCodes, see Chapter 14 on page 293.

Set Operation Parameters

A request object uses an NVLi st to store the data for an operation’s
parameters. You set the NVLi st by either specifying each parameter, or
reading an operation definition from the interface repository. For information
on both methods, see “Setting Request Object Parameters” on page 343.

Using _create_request()

You can create a Request object by calling _create_request () on an object
reference and passing the request details as arguments. At a minimum, you
must provide two arguments:

® The name of the operation
® A pointer to a NanedVal ue that holds the operation’s return value

You can also supply an NvLi st that is already populated with the operation’s
parameter data. If you supply null for the NVLi st argument,
_create_request () creates an empty NvLi st for the returned Request
object.

In either case, you set the NVLi st 's parameters one at a time, or by reading
an operation definition from the interface repository. For information on both
methods, see “Setting Request Object Parameters”.

Using the DII

For example, the following code constructs a Request object for invoking
operation newAccount () :

/1 get an object reference
CCORBA: : (hj ect _var target = ... ;

CCRBA: : Request _ptr newAcct Request ;
CCRBA: : NanedVal ue_ptr result;

/1 Construct the Request obj ect

target->_create_request(
QORBA: : Context::_nil (), "newAccount", CCORBA :NWList:: nil(),
result, newAcct Request, 0);

Setting Request Object Parameters

A request object uses an NVLi st to store the data for an operation’s
parameters, where each NVLi st element—a NanmedVal ue object—holds the
data for a single parameter—its direction (in, out, or inout) and the argument
that it passes.

You can set an operation’s parameters in one of two ways:

® Add each parameter individually.
® Build the NWLi st from the interface repository.

Adding Parameters
You add each parameter to a Request object’s NVLi st in one of two ways:

® |nvoke ar gunent s() on the Request object to obtain its NVLi st ; then
populate the NVLi st with one of its methods:
add()
add_item()
add_i t em consurre()
add_val ue()
add_val ue_consurre()

® Use one of several shortcut methods provided by the Request object that
let you populate the Request object’s NVLi st with the desired parameter
information. Request objects contain methods for each direction type:
add_in_arg();
add_i nout _arg();
add_out _arg();

343

Chapter 16 | Generating Interfaces at Runtime

For example, you can populate the empty NVLi st of request object
newAcct Request as follows:

Il CH
reg->add_in_arg() <<= "Chris";
CCORBA: : NanedVal ue_ptr 1000. 00;

Note: You can use these shortcut methods only if you create a Request
object whose NVLi st is initially empty.

Setting Parameters From the Interface Repository

A client can use an operation definition in the interface repository to build a
Request object’s NVLi st. The interface repository describes operations
through OORBA: : Qper at i onDef objects.You can read an operation’s
parameters into a Request object’s empty NvLi st as follows:

1. Call argunments() on the request object to get a pointer to its NvLi st .

2. Callcreate_operation_list() onthe ORB and supply it a reference to
the desired Qperati onDef object and the empty NLi st.

When create_operation_|ist() returns, the NVLi st contains one
NanedVal ue object for each operation parameter. Each Nanedval ue
object contains the parameter’s passing mode, name, and initial value of
type Any.

3. Supply arguments to the operation parameters by iterating over the
NVLi st elements with NvLi st :iten(). Use the insertion operator <<=to
set each NanedVal ue’s val ue member.

Invoking a Request

After you set a Request object’s data, you can use one of several methods to
invoke the request on the target object. The following methods are invoked
on a Request object:

invoke() blocks the client until the operation returns with a reply. Exceptions
are handled the same as static function invocations.

344

Using the DII

send_deferred() sends the request to the target object and allows the client
to continue processing while it awaits a reply. The client must poll for the
request’s reply (see “Invoking Deferred Synchronous Requests” on

page 346).

send_oneway() invokes one-way operations. Because no reply is expected,
the client resumes processing immediately after the invocation.

The following methods are invoked on the ORB, and take a sequence of
requests:

send_multiple_requests_deferred() calls multiple deferred synchronous
operations.

send_multiple_requests_oneway() calls multiple oneway operations
simultaneously.

For example:

/] C+H

try {
if (request->i nvoke())
/1 Call to invoke() succeeded
el se
/1 Call to invoke() failed.

}
catch (CCRBA: : Syst enkExcepti on& se) {

cout << "Unexpected exception" << &se << endl;

}

Retrieving Request Results

When a request returns, Orbix updates out and i nout parameters in the
Request object’s NVLi st . To get an operation’s output values:
1. Call argunent s() on the Request object to get a pointer to its NVLi st .

2. lterate over the NamedVal ue items in the Request object’s NVLi st by
successively calling i t en{) on the NWLi st. Each call to this methods
returns a NanedVval ue pointer.

3. Call val ue() on the NanedVal ue to get a pointer to the Any value for
each parameter.

345

Chapter 16 | Generating Interfaces at Runtime

4. Extract the parameter values from the Any.

To get an operation’s return value, call return_val ue() on the request
object. This operation returns the request’s return value as an any.

For example, the following code gets an object reference to the new account
returned by the newAccount () operation:

OCRBA: : (hj ect _var newAccount ;
request ->return_val ue() >>= newAccount;
/1 narrow account object ...

Getting Information about a Request Object

Given a Request object, you can get its operation name and target object
reference by calling operation() and target () on it, respectively.

Invoking Deferred Synchronous Requests

346

You can use the DIl to make deferred synchronous operation calls. A client
can call an operation, continue processing in parallel with the operation, then
retrieve the operation results when required.

You can invoke a request as a deferred synchronous operation as follows:

1. Construct a Request object and call send_deferred() on it.
2. Continue processing in parallel with the operation.

3. Check whether the operation has returned by calling pol | _r esponse()
on the Request object. This methods returns a non-zero value if a
response has been received.

4. To get the result of the operation, call get _response() on the Request
object.

You can also invoke methods asynchronously. For more information, see
Chapter 12.

Using the DSI

Using the DSI

A server uses the dynamic skeleton interface (DSI) to receive operations or
attribute invocations on an object whose IDL interface is unknown to it at
compile time. With DSI, a server can build the skeleton code that it needs to
accept these invocations.

The server defines a function that determines the identity of the requested
object; the name of the operation and the types and values of each argument
are provided by the user. The function carries out the task that is being
requested by the client, and constructs and returns the result. Clients are
unaware that a server is implemented with the DSI.

DSI Applications

The DSl is designed to help write gateways that accept operation or attribute
invocations on any specified set of interfaces and pass them to another
system. A gateway can be written to interface between CORBA and some
non-CORBA system. This gateway is the only part of the CORBA system that
must know the non-CORBA system’s protocol; the rest of the CORBA system
simply issues IDL calls as usual.

The 1IOP protocol lets an object invoke on objects in another ORB. If a
non-CORBA system does not support IIOP, you can use DSI to provide a
gateway between the CORBA and non-CORBA systems. To the CORBA
system, this gateway appears as a CORBA-compliant server that contains
CORBA objects. In reality, the server uses DSI to trap incoming invocations
and translate them into calls that the non-CORBA system can understand.

You can use DSI and DIl together to construct a bidirectional gateway. This
gateway receives messages from the non-CORBA system and uses the DIl to
make CORBA client calls. It uses DSI to receive requests from clients on a
CORBA system and translate these into messages in the non-CORBA system.

DSI has other uses. For example, a server might contain many non-CORBA
objects that it wants to make available to its clients. In an application that
uses DSI, clients invoke on only one CORBA object for each non-CORBA
object. The server indicates that it uses DSI to accept invocations on the IDL

347

Chapter 16 | Generating Interfaces at Runtime

interface. When it receives an invocation, it identifies the target object, the
operation or attribute to call, and its parameters. It then makes the call on
the non-CORBA object. When it receives the result, it returns it to the client.

Programming a Server to Use DSI

348

The DSl is implemented by servants that instantiate dynamic skeleton
classes. All dynamic skeleton classes are derived from Port abl eServer: :
Dynani cl npl enent at i on:

namespace Portabl e Server{
cl ass Dynam cl npl ementation : public virtual ServantBase{
public:
oj ect _ptr _this();
virtual void invoke(ServerRequest_ptr request) = O;
virtual Repositoryld _primary interface(
const (bjectld& oid, PQA ptr poa) = 0;
b
}

A server program uses DSI as follows:

1. Instantiates one or more DSI servants and obtains object references to
them, which it makes available to clients.

2. Associates each DSI servant with a POA—for example, through a
servant manager, or by registering it as the default servant.

When a client invokes on a DSI-generated object reference, the POA delivers
the client request as an argument to the DSI servant’s i nvoke() method—
also known as the dynamic implementation routine (DIR). i nvoke() takes a
single argument, a GCRBA : Ser ver Request pseudo-object, which
encapsulates all data that pertains to the client request—the operation’s
signature and arguments. QORBA: : Ser ver Request maps to the following
C++ class:

cl ass Server Request {
publi c:
const char* operation() cont;
voi d argurent s(NVLi st_ptr& paraneters);
Context_ptr ctx();
voi d set_result(const Any& val ue);
voi d set _exception(const Any& val ue);

Using the DSI

i nvoke() processing varies across different implementations, but it always
includes the following steps:

1. Obtains the operation’s name by calling oper ati on() on the
Ser ver Request object.

2. Builds an NvLi st that contains definitions for the operation’s
parameters—often, from an interface definition obtained from the
interface repository. Then, i nvoke() populates the NvLi st with the
operation’s input arguments by calling ar gunent s() on the
Ser ver Request object.

3. Reconstructs the client invocation and processes it.
4. If required, sets the operation’s output in one of two ways:

+ If the operation’s signature defines output parameters, i nvoke()
sets the NVLi st as needed. If the operation’s signature defines a
return value, i nvoke() calls set _resul t () on the Server Request
object.

+ If the operation’s signature defines an exception, i nvoke() calls
set _exception() on the Server Request object.

Note: invoke() can either set the operation’s output by initializing its
output parameters and setting its return value, or by setting an exception;
however, it cannot do both.

349

Chapter 16 | Generating Interfaces at Runtime

350

1 7 Using the Interface

Repository

An Orbix application uses the interface repository for
persistent storage of IDL interfaces and types. The runtime
ORB and Orbix applications query this repository at runtime
to obtain IDL definitions.

The interface repository maintains full information about the IDL definitions
that have been passed to it. The interface repository provides a set of IDL
interfaces to browse and list its contents, and to determine the type
information for a given object. For example, given an object reference, you
can use the interface repository to obtain all aspects of the object’s interface:
its enclosing module, interface name, attribute and operation definitions, and
So on.

These facilities are important for a number of tools:

* Browsers that allow designers and code writers to determine what types
have been defined in the system, and to list the details of chosen types.

® CASE tools that aid software design, writing, and debugging.

* Application level code that uses the dynamic invocation interface (DII) to
invoke on objects whose types were not known to it at compile time.
This code might need to determine the details of the object being
invoked in order to construct the request using the DII.

* A gateway that requires runtime information about the type of an object
being invoked.

In order to populate the interface repository with IDL definitions, run the IDL
compiler with the - Roption. For example, the following command populates
the interface repository with the IDL definitions in bank. i dI :

id -R bank.idl

351

Chapter 17 | Using the Interface Repository

Interface Repository Data

352

Interface repository data can be viewed as a set of CORBA objects, where the
repository stores one object for each IDL type definition. All interface
repository objects are derived from the abstract base interface | Rbj ect .,
which is defined as follows:

// I'n nodul e CCRBA
enum Defi ni ti onki nd

{
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Mbdul e, dk_Qperation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Prinmtive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Vétring, dk_Fi xed,
dk_Val ue, dk_Val ueBox, dk_ Val ueMenber, dk Native
b

i nterface | RObj ect

/] read interface
readonly attribute DefinitionkKi nd def_kind;

/[l wite interface

voi d

destroy();
b
Attribute def ki nd identifies a repository object’s type. For example, the
def ki nd attribute of an i nt erfaceDef object is dk_i nt erface. The
enumerate constants dk_none and dk_al | are used to search for objects in a
repository. All other enumerate constants identify one of the repository object
types in Table 22, and correspond to an IDL type or group of types.

destroy() deletes an interface repository object and any objects contained
within it. You cannot call dest roy() on the interface repository object itself or
any PrinitiveDef object.

Interface Repository Data

Abstract Base Interfaces

Besides | Rnj ect , the interface repository defines four other abstract base
interfaces, all of which inherit directly or indirectly from | Rbj ect :

Container: The interface for container objects. This interface is inherited by
all interface objects that can contain other objects, such as Repository,
Modul eDef and I nt er f aceDef . These interfaces inherit from Cont ai ner. See
“Container Interface” on page 363.

Contained: The interface for contained objects. This interface is inherited by
all objects that can be contained by other objects—for example, attribute
definition (At tri but eDef) objects within operation definition (Qper at i onDef)
objects. See “Contained Interface” on page 361.

IDLType: All interface repository interfaces that hold the definition of a type
inherit directly or indirectly from this interface. See “IDL-Type Objects” on
page 356.

TypedefDef: The base interface for the following interface repository types

that have names: Struct Def, Uni onDef , EnunDef , and Al i asDef , which
represents IDL t ypedef definitions.

353

Chapter 17 | Using the Interface Repository

Repository Object Types

354

Objects in the interface repository support one of the IDL types in Table 22:

Table 22: Interface Repository Olbject Types

Object type Description

Reposi tory The repository itself, in which all other objects are
nested. A repository definition can contain definitions
of other types such as module and interface. Table 23
lists all possible container components.

Modul eDef A module definition is logical grouping of interfaces

I nt er f aceDef

Val ueDef

Val ueBoxDef

Val ueMenber Def

Attri but eDef

Qper at i onDef

Const ant Def

and value types. The definition has a name and can
contain definitions of all types except Reposi tory.
Table 23 on page 360 lists all possible container
components.

An interface definition has a name, a possible
inheritance declaration, and can contain definitions of
other types such as attribute, operation, and exception.
Table 23 lists all possible container components.

A value type definition has a name, a possible
inheritance declaration, and can contain definitions of
other types such as attribute, operation, and exception.
Table 23 lists all possible container components.

A value box definition defines a value box type.

A value member definition defines a member of a
value.

An attribute definition has a name, a type, and a mode
to indicate whether it is readonly.

An operation definition has a name, return value, set of
parameters and, optionally, r ai ses and cont ext
clauses.

A constant definition has a name, type, and value.

Interface Repository Data

Table 22: Interface Repository Olbject Types

Object type

Description

Except i onDef

St ruct Def

Uni onDef

Ermundef

Al i asDef

PrimtiveDef

Stri ngDef

SequenceDef

Ar r ayDef

An exception definition has a name and a set of
member definitions.

A struct definition has a name, and holds the definition
of each of its members.

A union definition has a name, and holds a
discriminator type and the definition of each of its
members.

An enum definition has a name and a list of member
identifiers.

An aliased definition defines a typedef definition,
which has a name and a type that it maps to.

A primitive definition defines primitive IDL types such
as short and | ong, which are predefined in the
interface repository.

A string definition records its bound. Objects of this
type are unnamed. If they are defined with a t ypedef
statement, they are associated with an Al i asDef
object. Objects of this type correspond to bounded
strings.

Each sequence type definition records its element type
and its bound, where a value of zero indicates an
unbounded sequence type. Objects of this type are
unnamed. If they are defined with a t ypedef
statement, they have an associated Al i asDef object.

Each array definition records its length and its element
type. Objects of this type are unnamed. If they are
defined with a t ypedef statement, they are associated
with an Al i asDef object. Each ArrayDef object
represents one dimension; multiple ArrayDef objects
can represent a multi-dimensional array type.

355

Chapter 17 | Using the Interface Repository

Given an object of any interface repository type, you can obtain its full
interface definition. For example, I nt er f aceDef defines operations or
attributes to determine an interface’s name, its inheritance hierarchy, and the
description of each operation and each attribute.

Figure 29 shows the hierarchy for all interface repository objects.

I Rbj ect
Cont ai ned | DLType Cont ai ner
Typedef Def
Reposi tory
Except i onDef
Modul eDef
Named types Unnamed types
Attri but eDef . AiasDef =~ 7" " InterfaceDef . ArrayDef T
Const ant Def ' EnunbDef Val ueDef ' ' Fi xedDef '
Qper at i onDef + Nati veDef ! + PrmtiveDef
' Struct Def X ' SequenceDef
+ Uni onDef ! « StringDef
' Val ueBoxDef X ' W ri ngDef

Figure 29: Hierarchy of interface repository objects

IDL-Type Objects

Most repository objects represent IDL types—for example, I nt er f aceDef
objects represent IDL interfaces, Struct Def interfaces represent struct
definitions, and so on. These objects all inherit, directly or indirectly, from the
abstract base interface | DLType:

356

Interface Repository Data

/1 1In nodul e CCRBA
interface |DLType : I RMject {
readonly attribute TypeCode type;

b
This base interface defines a single attribute that contains the TypeCode of
the defined type.

IDL-type objects are themselves subdivided into two groups: named and
unnamed types.

Named Types
The interface repository can contain these named IDL types:

Al i asDef St ruct Def
EnunDef Uni onDef

| nt er f aceDef Val ueBox Def
Nat i veDef Val ueDef

For example, the following IDL defines enumtype UD and t ypedef type
Account Name, which the interface repository represents as named object
types EnunbDef and Al i asDef objects, respectively:

/1 1DL
enum UD {UP, DOM};
typedef string Account Narre;

The following named object types inherit from the abstract base interface
Typedef Def :

Al i asDef St ruct Def
EnunDef Val ueBoxDef
Nat i veDef Uni onDef

Typedef Def is defined as follows:

/1 1D

/1 I'n modul e CORBA

i nterface Typedef Def : Contained, |DLType {

b

Typedef Def serves the sole purpose of enabling its derived object types to
inherit Cont ai ned and | DLType attributes and operations:

357

Chapter 17 | Using the Interface Repository

® Attribute Cont ai ned: : name enables access to the object’s name. For
example, the IDL enumdefinition UD shown earlier is represented by the
repository object EnunDef , whose inherited nane attribute is set to LD.

® Operation Cont ai ned: : descri be() gets a detailed description of the
object. For more information about this operation, see “Repository
Object Descriptions” on page 365.

Interfaces I nt erf aceDef and Val ueDef are also named object types that
inherit from three base interfaces: Cont ai ned, Cont ai ner, and | DLType.

Because IDL object and value references can be used like other types,

I nt ef aceDef and Val ueDef inherit from the base interface | DLType. For
example, given the IDL definition of i nt erf ace Account, the interface
repository creates an I nt erf aceDef object whose nane attribute is set to
Account . This name can be reused as a type.

Unnamed Types
The interface repository can contain the following unnamed object types:

Arr ayDef SequenceDef
Fi xedDef St ri ngDef
PrimtiveDef W&t r i ngDef

Getting an Object’s IDL Type

Repository objects that inherit the | DLType interface have their own opera-
tions for identifying their type; you can also get an object’s type through the
TypeCode interface. Repository objects such as At tri but eDef that do not
inherit from | DLType have their own TypeCode or | DLType attributes that
enable access to their types.

For example the following IDL interface definition defines the return type of
operation get LongAddr ess as a string sequence:

/1 1DL
interface Miler {
string getLongAddress();

|

get LongAddr ess() maps to an object of type Qper at i onDef in the repository.
You can query this object for its return type’s definition—st ri ng—in two
ways:

358

Containment in the Interface Repository

Method 1:

1. Get the object’s QperationDef: :result _def attribute, which is an
object reference of type | DLType.

2. Getthe I DLType's def ki nd attribute, which is inherited from | RObj ect .
In this example, def ki nd resolves to dk_prinitive.

3. Narrow the I DLType to Pri mi veDef .

4, Getthe PrimiveDef’s ki nd attribute, which is a Pri m i veki nd of
pk_string.

Method 2:

1. Get the object’s Qperati onDef: : resul t attribute, which is a TypeCode.

2. Obtain the TypeCode’s TCKi nd through its ki nd() operation. In this
example, the TOKi nd is tk_string.

Containment in the Interface Repository

Most IDL definitions contain or are contained by other definitions, and the
interface repository defines its objects to reflect these relationships. For
example, a module typically contains interface definitions, while interfaces
themselves usually contain attributes, operations, and other definition types.

The interface repository abstracts the properties of containment into two
abstract base interfaces, Cont ai ner and Cont ai ned. These interfaces provide
operations and attributes that let you traverse the hierarchy of relationships in
an interface repository in order to list its contents, or ascertain a given
object’s container. Most repository objects are derived from one or both of
Cont ai ner or Cont ai ned; the exceptions are instances of Pri mitiveDef,
StringDef , SequenceDef , and ArrayDef .

In the following IDL, module Fi nance is defined with two interface
definitions, Bank and Account . In turn, interface Account contains attribute
and operation definitions:

/1 1DL
nodul e Fi nance {
interface Account {
readonly attribute float bal ance;
voi d makeDeposit(in float anount);
voi d makeWthdrawal (in fl oat anmount);

359

Chapter 17 | Using the Interface Repository

360

b
i nterface Bank {
Account newAccount () ;

|
b
The corresponding interface repository objects for these definitions are each
described as Cont ai ner or Cont ai ned objects. Thus, the interface repository
represents module Fi nance as a Modul eDef container for | nt er f aceDef
objects Account and Bank; these, in turn, serve as containers for their
respective attributes and operations. Mbdul eDef object Fi nance is also
viewed as a contained object within the container object Reposi t or yDef .

Table 23 shows the relationship between Cont ai ner and Cont ai ned objects
in the interface repository.

Table 23: Container and Contained Objects in the Interface Repository

Container Contained Objects
object type

Reposi tory Const ant Def
Typedef Def
Except i onDef
I nt erfaceDef *
Modul eDef *
Val ueDef *

Containment in the Interface Repository

Table 23: Container and Contained Objects in the Interface Repository

Container Contained Objects
object type

Modul eDef Const ant Def
Typedef Def
Except i onDef
Modul eDef *
I nt er f aceDef *
Val ueDef *

| nt er f aceDef Const ant Def
Typedef Def
Except i onDef
Attribut eDef
Qper at i onDef

Val ueDef Const ant Def
Typedef Def
Except i onDef
At tri but eDef
Qper at i onDef
Val ueMenber Def

* Also a Container object

Only a Reposi tory is a pure Cont ai ner. An interface repository server has
only one Reposi t ory object, and it contains all other definitions.

Objects of type Modul eDef, | nt er f aceDef, and Val ueDef are always
contained within a Reposi t ory, while I nt er f aceDef , and Val ueDef can also
be within a Modul eDef ; these objects usually contain other objects, so they
inherit from both Cont ai ner and Cont ai ned.

All other repository object types inherit only from Cont ai ned.

Contained Interface

The Cont ai ned interface is defined as follows:

/11D
typedef string VersionSpec;

361

Chapter 17 | Using the Interface Repository

interface Contained : | RMject
{

I/l read/wite interface

attribute Repositoryld id,;
attribute ldentifier nane;
attribute VersionSpec version;

/] read interface

readonly attribute Contai ner defined_in;
readonly attribute ScopedName absol ut e_nane;
readonly attribute Repository containi ng_repository;

struct Description

{
Definiti onki nd ki nd;

any val ue;

}

Descri ption
descri be();

/Il wite interface

voi d
nmove(
in Container new contai ner,
in ldentifier new nane,
in VersionSpec new version
);
h
Attribute Cont ai ned: : nane is of type I denti fi er, a t ypedef for a string, and
contains the IDL object’s name. For example, module Fi nance is represented
in the repository by a Modul eDef object. Its inherited Modul eDef : : name
attribute resolves to the string Fi nance. Similarly the makeW t hdr aval
operation is represented by an Qper ati onDef object whose Cper ati onDef: :
nane attribute resolves to makeWt hdr awal .

Cont ai ned also defines the attribute def i ned_i n, which stores a reference to
an object’s Cont ai ner. Because IDL definitions within a repository must be
unique, defi ned_i n stores a unique Cont ai ner reference. However, given

362

Containment in the Interface Repository

inheritance among interfaces, an object can be contained in multiple
interfaces. For example, the following IDL defines interface Qurr ent Account
to inherit from interface Account :

/11D

// in nodul e Fi nance

i nterface Qurrent Account : Account {
readonly attribute overDraftLimt;

b

Given this definition, attribute bal ance is contained in interfaces Account and
Qurrent Account ; however, attribute bal ance is defined only in the base
interface Account . Thus, if you invoke Attri but eDef: : defined_in() on
either Account : : bal ance or Qurrent Account : : bal ance, it always returns
Account as the Container object.

A Cont ai ned object can include more than containment information. For
example, an Qper at i onDef object has a list of parameters associated with it
and details of the return type. The operation Cont ai ned: : descri be()
provides access to these details by returning a generic Descri pti on structure
(see “Repository Object Descriptions” on page 365).

Container Interface

Interface Cont ai ner is defined as follows:

/11DL
enum Def i ni tionkKi nd
{

dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Modul e, dk_Qperation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository, dk_Vétring, dk_Fixed,
dk_Val ue, dk_Val ueBox, dk_Val ueMenber, dk Native

|

t ypedef sequence<Cont ai ned> Cont ai nedSeq;

363

Chapter 17 | Using the Interface Repository

interface Container : |RMject
{
/1 read interface
Cont ai ned
| ookup(
in ScopedName sear ch_name
)s
Cont ai nedSeq
cont ent s(
in DefinitionkKind |imt_type,
i n bool ean excl ude_i nherited
)s
Cont ai nedSeq
| ookup_nane (
in ldentifier search_nane,
inlong level s_to_search,
inDefinitionkKind limt_type,
i n bool ean excl ude_i nherited
);
struct Description
{
Cont ai ned cont ai ned_obj ect ;
Def i ni ti onKi nd ki nd,;
any val ue;
b
typedef sequence<Descri ption> DescriptionSeq;
Descri pti onSeq
descri be_cont ent s(
in DefinitionKind |imt_type,
in bool ean excl ude_i nherited,
in long max_returned_objs
)s
/1 wite interface
/1 operations to create container objects
b

364

Repository Object Descriptions

The container interface provides four lookup functions that let you browse a
given container for its contents: | ookup(), | ookup_nane(), contents(), and
descri be_contents(). For more information about these operations, see
“Browsing and Listing Repository Contents” on page 368.

Repository Object Descriptions

Each repository object, in addition to identifying itself as a Cont ai ned or
Cont ai ner object, also maintains the details of its IDL definition. For each
contained object type, the repository defines a structure that stores these
details. Thus, a Modul eDef object stores the details of its description in a
Modul eDescri pti on structure, an I nterf aceDef object stores its description
in an I nterfaceDescription structure, and so on.

You can generally get an object’s description in two ways:

* The interface for each contained object type often defines attributes that
get specific aspects of an object’s description. For example, attribute
Qper ati onDef: : resul t gets an operation’s return type.

® You can obtain all the information stored for a given object through the
inherited operation Cont ai ned: : descri be(), which returns the general
purpose structure Cont ai ned: : Descri pti on. This structure’s val ue
member is of type any, whose value stores the object type's structure.

For example, interface Qper ati onDef has the following definition:

interface (perationDef : Contained

{
readonly attribute TypeCode result;

attribute I DLType resul t _def;

attribute ParDescriptionSeq parans;

attribute Qperati onMbde node;

attribute ContextldSeq contexts;

attribute ExceptionDef Seq excepti ons;
b
Interface Qper ati onDef defines a number of attributes that allow direct
access to specific aspects of an operation, such as its parameters (par ans)
and return type (resul t _def). In a distributed environment, it is often
desirable to obtain all information about an operation in a single step by

365

Chapter 17 | Using the Interface Repository

366

invoking descri be() on the Qperati onDef object. This operation returns a
Cont ai ned: : Descri pti on whose two members, ki nd and val ue, are set as
follows:

kind is set to dk_Cper at i on.
value is an any whose TypeCode is set to _tc_Cperati onDescri ption. The

any’s value is an Qper ati onDescri pti on structure, which contains all the
required information about an operation:

/1 1DL
struct QperationDescription
{

| dentifier naneg;

Repositoryld id;

Reposi toryl d defined_in;

Ver si onSpec versi on;

TypeCode resul t;

Qper at i onMbde node;

Cont ext | dSeq cont ext s;

Par Descri pti onSeq par anet ers;
ExcDescri pti onSeq excepti ons;

h

Qper at i onDescri pti on members store the following information:

nane The operation’s name. For example, for operation Account : :
makeWt hdr aval (), nane contains makeW't hdr aval .

id Reposi t oryl d for the Qper at i onDef object.

defined_in The Repositoryld for the parent Cont ai ner of the
Qper at i onDef object.

ver si on Currently not supported. When implemented, this member
allows the interface repository to distinguish between multiple
versions of a definition with the same name.

resul t The TypeCode of the result returned by the defined operation.

node Specifies whether the operation returns (OP_NCRVAL) or is
oneway (CP_CNEVAY).

cont ext s Lists the context identifiers specified in the operation’s context
clause.

Retrieving Repository Information

paraneters A sequence of Paranet er Descri pti on structures that contain
details of each operation parameter.

exceptions A sequence of Excepti onDescri pti on structures that contain
details of the exceptions specified in the operation’s rai ses
clause.

Several repository object types use the TypeDescri pti on structure to store
their information: EnunDef , Uni onDef , Al i asDef, and St ruct Def .

Interfaces I nt er f aceDef and Val ueDef contain extra description structures,

Ful I I nt erfaceDescri pti onand Ful | Val ueDescri pti on, respectively. These
structures let you obtain a full description of the interface or value and all its
contents in one step. These structures are returned by operations

I nterfaceDef::describe interface() and Val ueDef:: descri be_val ue().

Retrieving Repository Information

You can retrieve information from the interface repository in three ways:

® Given an object reference, find its corresponding I nt er f aceDef object
and query its details.

® Given an object reference to a Reposi t ory, browse its contents.

* Given a Reposi t oryl d, obtain a reference to the corresponding object in
the interface repository and query its details.

Getting a CORBA Object’s Interface

Given a reference to a CORBA object, you can obtain its interface from the
interface repository by invoking get i nterface() on it. For example, given
CORBA object obj Var, you can get a reference to its corresponding

I nt er f aceDef object as follows:

[l C++
CCRBA: : I nterfaceDef var ifVar =
obj Var->_get _interface();

The member function _get i nterface() returns a reference to an object
within the interface repository. You can then use this reference to browse the
repository, and to obtain the details of an interface definition.

367

Chapter 17 | Using the Interface Repository

Browsing and Listing Repository Contents

368

After you obtain a reference to a Reposi t ory object, you can browse or list its
contents. To obtain a Reposi t ory’s object reference, invoke

resol ve_initial _references("InterfaceRepository") onthe ORB. This
returns an object reference of type OORBA: : (bj ect , which you narrow to a
QORBA: : Reposi t or y reference.

The abstract interface Cont ai ner has four operations that enable repository
browsing:

®* | ookup()

® | ookup_nare()

® contents()

® describe_contents()

Finding Repository Objects

I ookup() and | ookup_nane() are useful for searching the contents of a
repository for one or more objects.

I ookup() conducts a search for a single object based on the supplied
ScopedNane argument, which contains the entity’s name relative to other
repository objects. A ScopedNane that begins with :: is an absolute scoped
name—that is, it uniquely identifies an entity within a repository—for
example, :: Fi nance: : Account : : nakeWt hdr awal . A ScopedNane that does
not begin with : : identifies an entity relative to the current one.

For example, if module Fi nance contains attribute Account : : bal ance, you
can get a reference to the operation’s corresponding At t ri but eDef object by
invoking the module’s | ookup() operation:

COCRBA: : Cont ai ned_var cVar;
cVar = modul eVar - > ookup(" Account : : bal ance");

The ScopedNane argument that you supply can specify to search outside the
cope of the actual container on which you invoke I ookup() . For example, the
following statement invokes | ookup() on an I nt er f aceDef in order to start
searching for the newAccount operation from the Reposi t ory container:

QCRBA: : Cont ai ned_var cVar;
cVar = ifVar->l ookup(":: Fi nance: : Bank: : newAccount");

Retrieving Repository Information

| ookup_nane() searches the target container for objects that match a simple
unscoped name. Because the name might yield multiple matches, | ookup()

returns a sequence of Cont ai ned objects. | ookup_nane() takes the following
arguments:

sear ch_nane A string that specifies the name of the objects to find.
You can use asterisks (*) to construct wildcard
searches.

I evel s_to_search Specifies the number of levels of nested containers to
include in the search. 1 restricts searching to the
current object. - 1 specifies an unrestricted search.

limt_type Supply a Defi ni ti onki nd enumerator to include a
specific type of repository object in the returned
sequence. For example, setlinit_type to
dk_operati on to find only operations. To return all
objects, supply dk_al I . You can also supply dk_none to
match no repository objects, and dk_Typedef , which
encompasses dk_Al i as, dk_Struct, dk_Uni on, and
dk_Enum

exclude_inherited Valid only for I nterfaceDef and Val ueDef objects.
Supply TRUE to exclude inherited definitions, FALSE to
include.

Unlike I ookup(), | ookup_nane() searches are confined to the target
container.

Getting Object Descriptions

Cont ai ner: : cont ent s() returns a sequence of Cont ai ned objects that
belong to the Cont ai ner. You can use this operation to search a given
container for a specific object. When it is found, you can call Cont ai ned: :
descri be(), which returns a Cont ai ned: : Descri pti on for the contained
object (see “Repository Object Descriptions” on page 365).

Cont ai ner: : descri be_contents() combines operations Cont ai ner: :
content s() and Cont ai ned: : descri be(), and returns a sequence of

Cont ai ned: : Descri pti on structures, one for each of the Cont ai ned objects
found.

369

Chapter 17 | Using the Interface Repository

You can limit the scope of the search by content s() and
descri be_content s() by setting one or more of the following arguments:

limt_type Supply a Defi ni ti onki nd enumerator to limit the
contents list to a specific type of repository object. To
return all objects, supply dk_al I . You can also supply
dk_none to match no repository objects, and
dk_Typedef , which encompasses dk_Al i as, dk_Struct,
dk_Uni on, and dk_Enum

excl ude_i nherited Valid only for I nt erfaceDef and Val ueDef objects.
Supply TRUE to exclude inherited definitions from the
contents listing, FALSE to include.

max_r et urned_obj s Available only for descri be_cont ent s(), this argument
specifies the maximum length of the sequence
returned.

Finding an Object Using its Repository ID

You can use a repository ID to find any object in a repository by invoking
Cont ai ner: : | ookup_i d() on that repository. | ookup_i d() returns a
reference to a Cont ai ned object, which can be narrowed to the appropriate
object reference type.

Sample Usage

370

This section contains code that uses the interface repository; it prints the list
of operation names and attribute names that are defined in a given object’s
interface.

Il CH+

int i;

Repository_var rVar;

Cont ai ned_var cVar;

I nterfaceDef var interfaceVar;

InterfaceDef:: FulllnterfaceDescription_var full;
OCRBA: : (hj ect _var obj;

try {

Sample Usage

/1 get an object reference to the | FR
obj = orb->resolve_initial _references("lnterfaceRepository");
rVar = Repository::_narrow obj);

/1 Get the interface definition:
cVar = rVar->l ookup("grid");
interfaceVar = InterfaceDef:: _narrow(cVar);

/1l Gt a full interface description:

full = interfaceVar->describe_interface();

/1 Now print out the operation nares:

cout << "The operation nanes are:" << endl;

for (i=0; i < full->operations.length(); i++)
cout << full->operations[i].nane << endl;

/1 Now print out the attribute nares:

cout << "The attribute names are:" << endl;

for (i=0; i < full->attributes.length(); i++
cout << full->attributes[i].nane << endl;

catch (...) {

The example can be extended by finding the Qoer ati onDef object for an
operation called doi t (). Operation Cont ai ner: : | ookup_name() can be used
as follows:

Il C++
Cont ai nedSeq_var opSeq;
Qper ati onDef _var doi t pVar;

try {

cout << "Looking up operation doit()"
<< endl ;
opSeq = interfaceVar->l ookup_narme(
"doit", 1, dk_Qperation, 0);
if (opSeg->length() !'=1) {
cout << "Incorrect result for | ookup_name()";
exit(1);

371

Chapter 17 | Using the Interface Repository

} else {
/1 Narrowthe result to be an Qperati onDef.
doi t pVar =
Qper at i onDef : : _narrow(opSeq[0]))
}
}
catch (...) {
}

Repository IDs and Formats

Each interface repository object that describes an IDL definition has a
repository ID. A repository ID globally identifies an IDL module, interface,
constant, typedef, exception, attribute, or operation definition. A repository ID

is simply a string that identifies the IDL definition.

Three formats for repository IDs are defined by CORBA. However, repository
IDs are not, in general, required to be in one of these formats.

OMG IDL Format

This is the default format that Orbix uses. It is derived from the IDL
definition’s scoped name and contains three colon-delimited components as

follows:

IDL:identifier[/identifier]...:version-nunber

® The first component identifies the repository ID format as the OMG IDL

format.

* Alist of identifiers specifies the scoped name, substituting backslash (/)

for double colon (; ;).

® version-nunber contains a version number with the following format:

naj or. m nor
For example, given the following IDL definitions:

/1 1DL
i nterface Account {
readonly attribute float bal ance;

372

Controlling Repository IDs with Pragma Directives

voi d makeDeposit(in float anount);
b
The IDL format repository ID for attribute Account : : bal ance looks like this:
I DL: Account/ bal ance: 1. 0

DCE UUID Format

The DCE UUID has the following format:

DCE: UWJ D m nor - ver si on- nunber

LOCAL Format

Local format IDs are for local use within an interface repository and are not
intended to be known outside that repository. They have the following format:

LOCAL: I D

Local format repository IDs can be useful in a development environment as a
way to avoid conflicts with repository IDs that use other formats.

Controlling Repository IDs with Pragma Directives

You can control repository ID formats with pragma directives in an IDL source
file. Specifically, you can use pragmas to set the repository ID for a specific
IDL definition, and to set prefixes and version numbers on repository IDs.

You can insert prefix and version pragma statements at any IDL scope; the
IDL compiler assigns the prefix or version only to objects that are defined
within that scope. Prefixes and version numbers are not applied to definitions
in files that are included at that scope. Typically, prefixes and version
numbers are set at global scope, and are applied to all repository IDs.

ID Pragma

You can explicitly associate an interface repository ID with an IDL definition,
such as an interface name or typedef. The definition can be fully or partially
scoped and must conform with one of the IDL formats approved by the OMG
(see “Repository IDs and Formats” on page 372).

373

Chapter 17 | Using the Interface Repository

374

For example, the following IDL assigns repository ID idl :test: 1.1 to
interface t est :

nodul e Y {
interface test {
...
b
#pragma IDtest "idl:test:1. 1"
b

Prefix Pragma

The IDL prefi x pragma lets you prepend a unique identifier to repository IDs.
This is especially useful in ensuring against the chance of name conflicts
among different applications. For example, you can modify the IDL for the
Fi nance module to include a prefi x pragma as follows:

/1 1DL
pragma prefix "USB"
nmodul e Fi nance {
i nterface Account {
readonly attribute float bal ance;

b
i nterface Bank {
Account newAccount () ;
b
b

These definitions yield the following repository IDs:

| DL: USB/ Fi nance: 1. 0

| DL: USB/ Fi nance/ Account: 1.0

| DL: USB/ Fi nance/ Account/ bal ance: 1. 0
| DL: USB/ Fi nance/ Bank: 1. 0

| DL: USB/ Fi nance/ Bank/ newAccount: 1. 0

Version Pragma

A version number for an IDL definition’s repository ID can be specified with a
ver si on pragma. The ver si on pragma directive uses the following format:

#pragma ver si on nane maj or. n nor

Controlling Repository IDs with Pragma Directives

nane can be a fully scoped name or an identifier whose scope is interpreted
relative to the scope in which the pragma directive is included. If no version
pragma is specified for an IDL definition, the default version number is 1.0.
For example:

/1 1DL
nodul e Fi nance {
#pragna version Account 2.5
interface Account {
...

b
b
These definitions yield the following repository IDs:

I DL: Finance: 1.0
| DL: Fi nance/ Account: 2.5

Version numbers are embedded in the string format of an object reference. A
client can invoke on the corresponding server object only if its interface has a
matching version number, or has no version associated with it.

Note: You cannot populate the interface repository with two IDL interfaces
that share the same name but have different version numbers.

375

Chapter 17 | Using the Interface Repository

376

Naming Service

The Orbix naming service lets you associate names with

objects. Servers can register object references by name with
the naming service repository, and advertise those names
to clients. Clients, in turn, can resolve the desired objects
in the naming service by supplying the appropriate name.

The Orbix naming service implements the OMG COS Interoperable Naming
Service, which describes how applications can map object references to
names. Using the naming service can offer the following benefits:

* Clients can locate objects through standard names that are independent
of the corresponding object references. This affords greater flexibility to
developers and administrators, who can direct client requests to the
most appropriate implementation. For example, you can make changes
to an object’s implementation or its location that are transparent to the
client.

* The naming service provides a single repository for object references.
Thus, application components can rely on it to obtain an application’s
initial references.

This chapter describes how to build and maintain naming graphs
programmatically. It also shows how to use object groups to achieve load
balancing. Many operations that are discussed here can also be executed
administratively with Orbix tools. For more information about these and
related configuration options, refer to the Orbix 2000 Administrator’s Guide.

Overview

The naming service is organized into a naming graph, which is equivalent to a
directory system. A naming graph consists of one or more naming contexts,
which correspond to directories. Each naming context contains zero or more
name-reference associations, or name bindings, each of which refers to

377

Chapter 18 | Naming Service

another node within the naming graph. A name binding can refer either to
another naming context or to an object reference. Thus, any path within a
naming graph finally resolves to either a naming context or an object
reference. All bindings in a naming graph can usually be resolved via an initial
naming context.

Figure 30 shows how the Account interface described in earlier chapters
might be extended (through inheritance) into multiple objects, and organized
into a hierarchy of naming contexts. In this graph, hollow nodes are naming
contexts and solid nodes are application objects. Naming contexts are
typically intermediate nodes, although they can also be leaf nodes;
application objects can only be leaf nodes.

Initial naming context

Checking Loans

Savings

NOW Premium
Mortgage

Personal

@ Basic o

Regular Pension

UTMA

Figure 30: A naming graph is a hierarchy of naming contexts

Each leaf node in this naming graph associates a name with a reference to an
account object such as a basic checking account or a personal loan account.
Given the full path from the initial naming context—for example, Savi ngs/
Regul ar—a client can obtain the associated reference and invoke requests on
it.

378

Defining Names

Defining

The operations and types that the naming service requires are defined in the
IDL file CosNami ng. i dI . This file contains a single module, CosNam ng, which
in turn contains three interfaces: Nam ngCont ext , Nam ngCont ext Ext , and

Bi ndi ngl terator.

Names

A naming graph is composed of Narme sequences of NaneConponent
structures, defined in the CosNam ng module:

nodul e CosNam ng{
typedef string Istring;
struct NameConponent {
Istring id;
Istring Kind,;
}

typedef sequence<NameConponent > Nane;

b
A Nane sequence specifies the path from a naming context to another naming

context or application object. Each name component specifies a single node
along that path.

Each name component has two string members:

®* Theid field acts as a name component’s principle identifier. This field
must be set.

® The ki nd member is optional; use it to further differentiate name
components, if necessary.

Both i d and ki nd members of a name component are used in name
resolution. So, the naming service differentiates between two name
components that have the same ids but different kinds.

379

Chapter 18 | Naming Service

For example, in the naming graph shown in Figure 30 on page 378, the path
to a Personal loan account object is specified by a Nane sequence in which
only the i d fields are set:

Index id kind
0 Loans
1 Personal

In order to bind another Personal account object to the same Loan naming
context, you must differentiate it from the existing one. You might do so by
setting their ki nd fields as follows:

Index id kind

0 Loans

1 Personal unsecured
1 Personal secured

Note: If the ki nd field is unused, it must be set to an empty string.

Representing Names as Strings

380

The CosNami ng: : Nam ngCont ext Ext interface defines a Stri ngNane type,
which can represent a Nane as a string with the following syntax:

id[.kind][/id[.kind]] ...

Name components are delimited by a forward slash (/); i d and ki nd
members are delimited by a period (.). If the name component contains only
the i d string, the ki nd member is assumed to be an empty string.

Stri ngNane syntax reserves the use of three characters: forward slash (/),
period (.), and backslash (\). If a name component includes these
characters, you can use them in a Stri ngFor mat by prefixing them with a
backslash (\) character.

The CosNami ng: : Nam ngCont ext Ext interface provides several operations
that allow conversion between Stri ngNane and Nane data:

Defining Names

® to_nane() converts a StringNane to a Nane (see page 381).
®* to_string() converts a Nare to a Stri ngNarre (see page 382).

® resolve_str() usesa StringName to find a Nane in a naming graph and
returns an object reference (see page 389).

Note: You can invoke these and other CosNani ng: : Nani ngCont ext Ext
operations only on an initial naming context that is narrowed to CosNani ng: :
Nam ngCont ext Ext .

Initializing a Name

You can initialize a CosNam ng: : Nare sequence in one of two ways:

® Set the members of each hame component.

* Callto_nane() on the initial naming context and supply a St ri ngNane
argument. This operation converts the supplied string to a Nane
sequence.

Setting Name Component Members

Given the loan account objects shown earlier, you can set the name for an
unsecured personal loan as follows:

CosNami ng: : Name name(2) ;

nane. | engt h(2);

nane[0] .id = OCRBA: : string_dup("Loans");

nanme[0] . kind = OORBA: :string_dup("");

nane[1] .id = GCRBA: :string_dup("Personal ");

nane[1] . ki nd = OORBA: : string_dup("unsecured");

Converting a StringName to a Name

The name shown in the previous example can also be set in a more
straightforward way by calling t o_nane() on the initial naming context (see
“Obtaining the Initial Naming Context” on page 382):

381

Chapter 18 | Naming Service

/1 get initial nam ng context
CosNanm ng: : Nam ngCont ext Ext _var root_cxt = ...;

CosNanm ng: : Nane_var nane;
name = root _cxt->t o_name("Loans/ Personal . unsecured");

The t o_name() operation takes a string argument and returns a CosNam ng: :
Nane, which the previous example sets as follows:

Index id kind
0 Loans
1 Personal unsecured

Converting a Name to a StringName

You can convert a CosNani ng: : Nane to a CosNam ngExt : : Stri ngNane by
calling to_string() on the initial naming context. This lets server programs
to advertise human-readable object names to clients.

For example, the following code converts Name sequence name to a
Stri nghNane:

/] get initial nam ng context
CosNami ng: : Nam ngCont ext Ext _var root_cxt = ...;
CosNami ng: : Nam ngCont ext Ext : : Stri ngNanme str_n;

/] initialize name
CosNanmi ng: : Nane_var nane = ...;

str_n = root_cxt->to_string(nane);

Obtaining the Initial Naming Context

382

Clients and servers access a naming service through its initial naming
context, which provides the standard entry point for building, modifying, and
traversing a naming graph. To obtain the naming service’s initial naming
context, call resol ve_initial _references() on the ORB. For example:

Building a Naming Graph

[l Initialize the CRB
OCRBA : CRB var orb = CORBA : GRB_init(argc, argv);

/] Get reference to initial nam ng context
CORBA: : (hj ect obj =

orb_var->resol ve_initial _references("NameService");
To obtain a reference to the naming context, narrow the result with
CosNam ng: : Nam ngCont ext Ext : : _narrow() :
CosNanm ng: : Nam ngCont ext Ext _var root_cxt;
if (root_cxt =

CosNam ng: : Nani ngCont ext Ext: : _narrow(obj)) {

} else {...} /] Deal with failure to _narrow()
A naming graph’s initial naming context is equivalent to the root directory.

Later sections show how you use the initial naming context to build and
modify a naming graph, and to resolve names to object references.

Note: The Nam ngCont ext Ext interface provides extra functionality over the
Nam ngCont ext interface; therefore, the code in this chapter assumes that an
initial naming context is narrowed to the Nami ngCont ext Ext interface

Building a Naming Graph

A name binding can reference either an object reference or another naming
context. By binding one naming context to another, you can organize
application objects into logical categories. However complex the hierarchy,
almost all paths within a naming graph hierarchy typically resolve to object
references.

In an application that uses a naming service, a server program often builds a
multi-tiered naming graph on startup. This process consists of two repetitive
operations:

® Bind naming contexts into the desired hierarchy.
* Bind objects into the appropriate naming contexts.

383

Chapter 18 | Naming Service

Binding Naming Contexts

384

A server that builds a hierarchy of naming contexts contains the following
steps:
1. Gets the initial naming context (see page 382).
2. Creates the first tier of naming contexts from the initial naming context.
3. Binds the new naming contexts to the initial naming context.
4. Adds naming contexts that are subordinate to the first tier:

+ Creates a naming context from any existing one.

+ Binds the new naming context to its designated parent.
The naming graph shown in Figure 30 on page 378 contains three naming
contexts that are directly subordinate to the initial naming context: Checking,

Loans, and Savings. The following code binds the Checking naming context
to the initial naming context, as shown in Figure 31:

//get initial namng context
CosNanm ng: : Nam ngCont ext Ext _var root_cxt = ...;

CosNam ng: : Nanm ngQont ext _var checki ng_cxt;

/1 create nam ng context
checki ng_cxt = root_cxt->new context();

/] initialize name

CosNanm ng: : Nane_var nane;

narre. | engt h(1);

name[0] .id = CCRBA: :string_dup("Checking");
nare[0] . ki nd = OORBA: :string_dup("");

/1 bind new cont ext
root _cxt->bi nd_cont ext (nane, checking_cxt);

Building a Naming Graph

Initial naming context

Checking

(@)

Figure 31: Checking context bound to initial naming context

Similarly, you can bind the Savings and Loans naming contexts to the initial
naming context. The following code uses the shortcut operation

bi nd_new cont ext (), which combines new cont ext () and bi nd(). It also
uses the to_nane() operation to set the Nane variable.

CosNam ng: : Nam ngCont ext _var savi ngs_cxt, | oan_cxt;
/1l create naning contexts

nane = root_cxt->to_nane(" Savi ngs");
savi ngs_cxt = root _cxt->bi nd_new _cont ext (nane) ;

nane = root_cxt->to_nane("Loan");
| oan_cxt = root_cxt->bi nd_new cont ext (nane) ;

Initial naming context

Checking Loans

Savings

(@)

Figure 32: Savings and Loans naming contexts bound to initial naming context

385

Chapter 18 | Naming Service

386

Orphaned Naming Contexts

The naming service can contain naming contexts that are unbound to any
other context. Because these naming contexts have no parent context, they
are regarded as orphaned. Any naming context that you create with

new cont ext () is orphaned until you bind it to another context. Although it
has no parent context, the initial naming context is not orphaned inasmuch
as it is always accessible through resol ve_initial _references(), while
orphan naming contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for example, you
are in the process of constructing a new branch of naming contexts but wish
to test it before binding it into the naming graph. Other naming contexts
might appear to be orphaned within the context of the current naming
service; however, they might actually be bound to a federated naming graph
in another naming service (see “Federating Naming Graphs” on page 396).

Orphaned contexts can also occur inadvertently, often as a result of carelessly
written code. For example, you can create orphaned contexts as a result of
calling rebi nd() or rebi nd_cont ext () to replace one name binding with
another (see “Rebinding” on page 388). The following code shows how you
might orphan the Savings naming context:

//get initial namng context
CosNanm ng: : Nam ngCont ext Ext _var root_cxt = ...;

CosNam ng: : Nam ngCont ext _var savi ngs_cxt;

/] initialize name

CosNanm ng: : Nane_var nane;

nane. | engt h(1);

narme[0] .id = CCRBA: :string_dup("Savi ngs");
narre[0] . ki nd = OORBA: :string_dup("");

/1 create and bind checki ng_cxt
savi ngs_cxt = root _cxt->bi nd_new _cont ext (nane) ;

/1 make anot her cont ext
CosNam ng: : Nani ngCont ext _var savi ngs_cxt 2;
savi ngs_cxt 2 = root _cxt->new _context();

/1 bind savings_cxt2 to root context, savings_cxt now or phaned!
r oot _cxt - >r ebi nd_cont ext (nanme, savi ngs_cxt 2);

Building a Naming Graph

An application can also create an orphan context by calling unbi nd() on a
context without calling dest roy() on the same context object (see
“Maintaining the Naming Service” on page 395).

In both cases, if the application exits without destroying the context objects,
they remain in the naming service but are inaccessible and cannot be
deleted.

Binding Object References

After you construct the desired hierarchy of naming contexts, you can bind
object references to them with the bi nd() operation. The following example
builds on earlier code to bind a Basic checking account object to the
Checking naming context:

/1 object reference "basi c_check" obtained earlier

nane- >l engt h(1);

nane[0] .id = GCRBA: : string_dup("Basic");
nare[0] . ki nd = GORBA: : string_dup("");
checki ng_cxt - >bi nd(name, basi c_check);

Initial naming context

Checking Loans

Savings

Basic

Figure 33: Binding an object reference to a naming context

387

Chapter 18 | Naming Service

Rebinding

The previous code assumes the existence of a Nam ngCont ext variable for the
Checki ng naming context on which you can invoke bi nd() . Alternatively, you
can invoke bi nd() on the initial naming context in order to bind Basi c into
the naming graph:

name = root _cxt->t o_name(" Checki ng/ Basi c");
r oot _cxt - >bi nd(narre, basi c_check);

Note: Because the initial naming context is always available, it is the most
reliable way to access all other contexts within a naming graph.

If you call bi nd() or bi nd_cont ext () on a naming context that already
contains the specified binding, the naming service throws an exception of
Al readyBound. To ensure the success of a binding operation whether or not
the desired binding already exists, call one of the following naming context
operations:

®* rebind() rebinds an application object.
®* rebind context() rebinds a naming context.

Either operation replaces an existing binding of the same name with the new
binding. Calls to rebi nd() in particular can be useful on server startup, to
ensure that the naming service has the latest object references.

Note: Calls torebi nd_cont ext () orrebi nd() can have the undesired effect
of creating orphaned naming contexts (see page 386). In general, exercise
caution when calling either function.

Using Names to Access Objects

388

A client application can use the naming service to obtain object references in
three steps:

1. Obtain a reference to the initial naming context (see page 382).

Using Names to Access Objects

2.

3.

Set a CosNami ng: : Nane structure with the full path of the name
associated with the desired object.

Resolve the name to the desired object reference.

Setting Object Names

You specify the path to the desired object reference in a CosNani ng: : Nane.
You can set this name in one of two ways:

Explicitly set the i d and ki nd members of each Nane element. For
example, the following code sets the name of a Basic checking account
object:

CosNani ng: : Nane_var narre;

nane. | engt h(2);

nane[0].id = GORBA: : string_dup("Checking");

nane[0] . ki nd = GORBA: : string_dup("");

nane[1].id = GORBA: :string_dup("Basic");

nane[1] . kind = OCORBA: :string_dup("");

If the client code narrows the initial naming context to the

Nani ngCont ext Ext interface, it can call t o_nane() on the initial naming
context. This operation takes a CosNami ng: : CosNani ngExt : : St ri ngNane
argument and returns a CosNani ng: : Nane as follows:

CosNani ng: : Nane_var narre;

nanme = root_cxt->t o_nanme(" Checki ng/ Basi c");

For more about using a Stri ngName with t o_name(), see “Converting a
StringName to a Name” on page 381.

Resolving Names

Clients call resol ve() on the initial naming context to obtain the object
associated with the supplied name:

CCRBA: : (hj ect _var obj;

obj

= root _cxt->resol ve(nane) ;

Alternatively, the client can call resol ve_str () on the initial naming context
to resolve the same name using its Stri ngNane equivalent:

389

Chapter 18 | Naming Service

OCRBA: : (hj ect _var obj ;

obj = root_cxt->resol ve_str (" Checki ng/ Basic");

In both cases, the object returned in obj is an application object that
implements the IDL interface Basi cChecki ng, so the client narrows the
returned object accordingly:

Basi cChecki ng_var checki ng_var;
try {
checki ng_var = Basi cChecking:: _narrow(obj)) {
/1 performsome operation on basi ¢ checki ng object

} // end of try clause, catch clauses not shown

Resolving Names with corbaname

390

You can resolve names with a cor baname URL, which is similar to a
cor bal oc URL (see “Using corbaloc URL Strings” on page 162). However, a
cor baname URL also contains a stringified name that identifies a binding in a
naming context. For example, the following code uses a corbaname URL to
obtain a reference to a BasicChecking object:
CORBA: : (hj ect _var obj;
obj = orb->string_to_object(
"cor banare: rir:/ NaneSer vi ce#Checki ng/ Basi c"
)
A corbaname URL has the following syntax:
corbanare: rir: [/ NaneServi ce] #st ri ng- nane

string-nane is a string that conforms to the format allowed by a CosNami ng:
: CosNami ngExt : : St ri ngNane (see “Representing Names as Strings” on
page 380). A corbaname can omit the NaneSer vi ce specifier. For example,
the following call to string_to_obj ect () is equivalent to the call shown
earlier:

obj = orb->string_to_object("corbanamne:rir:#Checki ng/ Basi c");

Listing Naming Context Bindings

Exceptions Returned to Clients

Invocations on the naming service can result in the following exceptions:

NotFound The specified name does not resolve to an existing binding. This
exception contains two data members:

why Explains why a lookup failed with one of the following
values:

® i ssing_node: one of the name components
specifies a non-existent binding.

® not_cont ext : one of the intermediate name
components specifies a binding to an application
object instead of a naming context.

® not_obj ect: one of the name components points
to a non-existent object.

rest_of _nane Contains the trailing part of the name that could not
be resolved.

InvalidName The specified name is empty or contains invalid characters.

CannotProceed The operation fails for reasons not described by other
exceptions. For example, the naming service's internal repository might be in
an inconsistent state.

AlreadyBound Attempts to create a binding in a context throw this exception
if the context already contains a binding of the same name.

Not Empty Attempts to delete a context that contains bindings throw this
exception. Contexts must be empty before you delete them.

Listing Naming Context Bindings

In order to find an object reference, a client might need to iterate over the
bindings in one or more naming contexts. You can invoke the i st ()
operation on a naming context to obtain a list of its name bindings. This
operation has the following signature:

391

Chapter 18 | Naming Service

void list(
i n unsi gned | ong how nany,
out BindingList bl,
out Bindinglterator it);

l'ist() returns with a Bi ndi ngLi st, which is a sequence of Bi ndi ng
structures:

enum Bi ndi ngType{ nobj ect, ncontext };

struct Bi ndi ng{
Narre bi ndi ng_nane
Bi ndi ngType bi ndi ng_t ype;
}
typedef sequence<Bi ndi ng> Bi ndi ngLi st

Given a binding list, the client can iterate over its elements to obtain their
binding name and type. Given a Bi ndi ng element’s name, the client
application can call resol ve() to obtain an object reference; it can use the
binding type information to determine whether the object is a naming context
or an application object.

For example, given the naming graph in Figure 30, a client application can
invoke i st () on the initial naming context and return a binding list with
three Bi ndi ng elements:

Index Name BindingType
0 Checking ncontext
1 Savings ncontext
2 Loan ncontext

Using a Binding lterator

392

In the previous example, I'i st () returns a small binding list. However, an
enterprise application is likely to require naming contexts with a large
number of bindings. i st () therefore provides two parameters that let a
client obtain all bindings from a naming context without overrunning
available memory:

Listing Naming Context Bindings

how_many sets the maximum number of elements to return in the binding
list. If the number of bindings in a naming context is greater than how nany,
list() returns with its Bi ndi ngl t er at or parameter set.

it is a Bi ndi ngl t er at or object that can be used to retrieve the remaining
bindings in a naming context. If i st () returns with all bindings in its
Bi ndi ngLi st, this parameter is set to nil.

A Bi ndi ngl terat or object has the following IDL interface definition:

i nterface Bindinglterator{
bool ean next _one(out Bi nding b);
bool ean next _n(in unsigned | ong how many, out BindingList bl);
voi d destroy();

}

If 1'ist() returns with a Bi ndi ngl t er at or object, the client can invoke on it
either next _n() to retrieve the next specified number of remaining bindings,
or next _one() to retrieve one remaining binding at a time. Both functions
return true if the naming context contains more bindings to fetch. Together,
these Bi ndi ngl t er at or operations and i st() let a client safely obtain all
bindings in a context.

Note: The client is responsible for destroying an iterator. It also must be
able to handle exceptions that might return when it calls an iterator
operation, inasmuch as the naming service can destroy an iterator at any
time before the client retrieves all naming context bindings.

The following client code gets a binding list from a naming context and prints
each element’s binding name and type:

/1 printing function
voi d
print_binding_|list(const CosNam ng: : Bi ndi ngLi st &bl)
{
for(OORBA:Uong i =0; i <bl.length(); i++){
cout << bl[i].binding_name[0].id;
if(bl[i].binding _name[0].kind !="\0")
cout << "(" << bl[i].binding_name[0].kind << ")";
if(bl[i].binding_type == CosNam ng: : ncont ext)
cout << ": naning context" << endl;

393

Chapter 18 | Naming Service

el se
cout << ": object reference" << endl;

}

voi d
get _cont ext _bi ndi ngs(CosNani ng: : Nam ngCont ext _ptr cxt)
{

CosNam ng: : Bi ndi ngLi st _var b_list;

CosNami ng: : Bindinglterator_var b_iter;

const CCRBA: : ULong MAX BI NDI NGS = 50;

if ('!OQORBA :is_nil(cxt)) {

/1 get first set of bindings from cxt
root_cxt->list(MMX BINDINGS, b list, b_iter);

[lprint first set of bindings
print_binding_list(b_list);

/1 1ook for remaining bindings
if('OORBA :is_nil(b_iter)) {
QCRBA: : Bool ean nore;
do {
is nil(b_iter)) {
nore = b_iter->next_n(MA_BINDINGS, b_list);
/1 print next set of bindings
print_binding_list(b_list);
} while (nore);
}
/l get rid of iterator
b_iter->destroy();

When you run this code on the initial naming context shown earlier, it yields
the following output:

Checki ng: nami ng cont ext
Savi ngs: nam ng cont ext
Loan: nami ng cont ext

394

Maintaining the Naming Service

Maintaining the Naming Service

Destruction of a context and its bindings is a two-step procedure:

* Remove bindings to the target context from its parent contexts by calling
unbi nd() on them.

* Destroy the context by calling the destroy() operation on it. If the
context contains bindings, these must be destroyed first; otherwise,
destroy() returns with a Not Enpt y exception.

These operations can be called in any order; but it is important to call both. If
you remove the bindings to a context without destroying it, you leave an
orphaned context within the naming graph that might be impossible to
access and destroy later (see “Orphaned Naming Contexts” on page 386). If
you destroy a context but do not remove its bindings to other contexts, you
leave behind bindings that point nowhere, or dangling bindings.

For example, given the partial naming graph in Figure 34, you can destroy
the Loans context and its bindings to the loan account objects as follows:

CosNanm ng: : Nane_var nane;

/1 get initial namng context
CosNam ng: : Nam ngCont ext Ext _var root_cxt = ...;

/1 assune availability of Loans nam ng context variable
CosNam ng: : Nam ngCont ext _var |oans_cxt = ... ;

/1 renmove bindings to Loans cont ext

nanme = root_cxt->t o_nanme("Loans/ Mort gage");
r oot _cxt - >unbi nd(nare) ;

nanme = root _cxt->to_name("Loans/ Auto");

r oot _cxt - >unbi nd(nane) ;

nanme = root _cxt->t o_nane("Loans/ Personal ") ;
r oot _cxt - >unbi nd(nare) ;

/1 rermove binding fromLoans context to initial nam ng context
nane = root_cxt->to_name("Loans");
r oot _cxt - >unbi nd(nane) ;

/1 destroy orphaned Loans context
| oans_cxt - >destroy();

395

Chapter 18 | Naming Service

Before After

Initial naming Initial naming

|
I
I
context | O context
I
Loans |
I
Mortgage |
Personal |
o | o
Auto
° | °
° | °
|

Figure 34: Destroying a naming context and removing related bindings

Note: Orbix provides administrative tools to destroy contexts and remove
bindings. These are described in the Orbix 2000 Administrator’s Guide.

Federating Naming Graphs

A naming graph can span multiple naming services, which can themselves
reside on different hosts. Given the initial naming context of an external
naming service, a naming context can transparently bind itself to that naming
service’s naming graph. A naming graph that spans multiple naming services
is said to be federated.

A federated naming graph offers the following benefits:

® Reliability: By spanning a naming graph across multiple servers, you can
minimize the impact of a single server’s failure.

396

Federating Naming Graphs

Load balancing: You can distribute processing according to logical
groups. Multiple servers can share the work load of resolving bindings
for different clients.

Scalability: Persistent storage for a naming graph is spread across
multiple servers.

Decentralized administration: Logical groups within a naming graph can
be maintained separately through different administrative domains,
while they are collectively visible to all clients across the network.

Federation Structures

Each naming graph in a federation must obtain the initial naming context of
other members in order to bind itself to them. The binding possibilities are
virtually infinite; however, two federation models are widely used:

Fully-connected federation — Each naming graph directly binds itself to
all other naming graphs. Typically, each naming graph binds the initial
naming contexts of all other naming graphs into its own initial naming
context. Clients can access all objects via the initial naming context of
their local naming service.

Hierarchical federation — All naming graphs are bound to a root server's
naming graph. Clients access objects via the initial naming context of
the root server.

Figure 35 shows a hierarchal naming service federation that comprises three
servers. The Deposits server maintains naming contexts for checking and
savings accounts, while the Loans server maintains naming contexts for loan
accounts. A single root server serves as the logical starting point for all
naming contexts.

397

Chapter 18 | Naming Service

In this hierarchical structure, the naming graphs in the Deposits and Loans

Root server

Initial naming context

N

Loans server

Deposits server Deposits Loans
Initial naming context / \ Initial naming context
Mortgage
Checking Personal
Savings °
NOW Premium Auto °

Pension

Regular

Figure 35: A naming graph that spans multiple servers

servers are federated through an intermediary root server. The initial naming
contexts of the Deposits and Loans servers are bound to the root server's
initial naming context. Thus, clients gain access to either naming graph

through the root server’s initial naming context.

The following code binds the initial naming contexts of the Deposits and
Loans servers to the root server’s initial naming context:

/] Root server

#i ncl ude <ong/ CosNani ng. hh>

int main (int argc, char** argv) {
CosNam ng: : Nam ngCont ext Ext _var

root _inc, deposits_inc,

398

| oans, _i nc;

Federating Naming Graphs

CosNani ng: : Nane_var narre;

OCRBA: : (hj ect _var obj;

OCRBA: : CRB var orb_var;

char *loans_inc_ior, deposits_inc_ior

try {
orb var = CCRBA': CRB init(argc, argv, "Qbix");

/] code to obtain stringified ICRs of initial naning
/] contexts for Loans and Deposits servers (not shown)

obj = orb_var->string_to_object (loans_inc_ior);
| oans_i nc ==
CosNani ng: : Nani ngCont ext Ext: : _narrow(obj);
obj = orb_var->string_to_object (deposits_inc_ior);
deposits_inc ==
CosNani ng: : Nani ngCont ext Ext: : _narrow(obj);

/1l get initial namng context for Root server
root_inc = ... ;

/1 bind Deposits initial nanming context to root server
/1 initial namng context

name = root _i hc->t o_name(" Deposits");

root _i nc->bi nd_cont ext (nane, deposits_inc);

/1 bind Loans initial namng context to root server's
[/ initial nam ng context

name = root_i nc->to_nanme("Loans");

root _i nc->bi nd_cont ext (nane, deposits_inc);

399

Chapter 18 | Naming Service

400

This yields the following bindings between the three naming graphs:

Root server

Initial naming context

AN

Deposits Loans

Deposits server Loans server

Initial naming context ’ \ Initial naming context

\

Figure 36: Multiple naming graphs are linked by binding initial naming contexts of
several servers to a root server.

In a purely hierarchical model like the naming graph just shown, clients
obtain their initial naming context from the root server, and the root server
acts as the sole gateway into all federated naming services. To avoid
bottlenecks, it is possible to modify this model so that clients can gain access
to a federated naming graph via the initial naming context of any member
naming service.

The next code example shows how the Deposits and Loans servers can bind
the root server’s initial naming context into their respective initial naming
contexts. Clients can use this binding to locate the root server's initial naming
context, and then use root-relative names to locate objects.

Federating Naming Graphs

Figure 37 shows how this federates the three naming graphs:

Root server

Initial naming context

parent A‘\ parent

Deposits server Deposits Loans Loans server

Initial naming context ! ’ \ \ Initial naming context

\

Figure 37: The root server’s initial naming context is bound to the initial naming
contexts of other servers, allowing clients to locate the root naming
context.

The code for both Deposits and Loans server processes is virtually identical:

#i ncl ude <ony/ CosNam ng. hh>

int min (int argc, char** argv) {

CosNani ng: : Nani ngCont ext Ext _var
root _inc, this_inc;

CosNani ng: : Nane_var narre;

OCRBA: : (hj ect _var obj;

OCRBA: : CRB_var orb_var;

char *root_inc_ior;

try {
orb var = CCRBA':CRB init (argc, argv, "Obix");
/1l code to obtain stringified |Os of root server’s
/] initial namng context (not shown)

obj = orb_var->string_to_object (root_inc_ior);
root_inc ==
GCosNani ng: : Nani ngCont ext Ext: : _narrow(obj);

401

Chapter 18 | Naming Service

/1 get initial namng context for this server
this_inc =... ;

name = this_inc->to_name("parent");
/1 bind root server’s initial namng context to

/1 this server’s initial nam ng context
t hi s_i nc->bi nd_cont ext (nanme, root _inc);

Sample Code

Server Code

402

The following sections show the server and client code that is discussed in
previous sections of this chapter.

Il G+
#i ncl ude <ong/ CosNam ng. hh>

int main (int argc, char** argv) {

CosNam ng: : Nam ngCont ext Ext _var root_cxt;
CosNam ng: : Nam ngCont ext _var
checki ng_cxt, savings_cxt, |oan_cxt;
CosNanm ng: : Nane_var nane;
CCRBA: : CRB_var orb;
CCRBA: : (hj ect _var obj;
Checki ng_var basi c_check, now check, prem um check;
/1 Checking_var objects initialized from
/1 persistent data (not shown)

try {
// Initialize the CRB

orb = CCRBA : (RB init(argc, argv, "QObix");

/1 Get reference to initial namng context
obj =

orb_var->resol ve_initial _references("NameService");
root _cxt = CosNanm ng: : Nam ngCont ext Ext:: _narrow obj))

Sample Code

if('QORBA :is_nil(root_cxt)){
/1 build nam ng graph

/1 initialize name

nanme = root_cxt->to_name(" Checking");

/1 bi nd new nam ng context to root

checki ng_cxt = root _cxt->bi nd_new cont ext (nane) ;

/1 bind checking objects to Checking cont ext
name = root _cxt->to_name(" Checki ng/ Basi c");
checki ng_cxt - >bi nd(nane, basi c_check);

nanme = root_cxt->t o_name(" Checki ng/ Prem um');
checki ng_cxt - >bi nd(nane, prem um check);

name = root _cxt->to_name(" Checki ng/ NOW) ;
checki ng_cxt - >bi nd(name, now _check);

nane = root_cxt->to_nane(" Savi ngs");
savi ngs_cxt = root_cxt->bi nd_new cont ext (nane) ;

/1 bind savings objects to savings context
nane = root_cxt->to_nanme("Loan");
| oan_cxt = root_cxt - >bi nd_new cont ext (nane) ;

/1 bind | oan objects to | oan cont ext

}

else {...} // deal with failure to _narrow()

} // end of try clause, catch clauses not shown

Client Code

Il C++
#i ncl ude <ong/ CosNani ng. hh>

int main (int argc, char** argv) {

CosNani ng: : Nam ngCont ext Ext _var root _cxt;
CosNani ng: : Nane_var narne;

403

Chapter 18 | Naming Service

Basi cChecki ng_var checki ng_var;
CCRBA: : (hj ect _var obj;
CCORBA: : CRB var orb_var;

try {
orb var = CCRBA :CRB init (argc, argv, "Qbix");

/1 Find the initial nam ng context
obj =
orb_var->resol ve_initial _references("NameService");
if (root_cxt ==
CosNam ng: : Nam ngCont ext Ext: : _narrow(obj)) {
obj = root_cxt->resol ve_str (" Checki ng/Basic");
i f (checking_var == Basi cChecking::_narrowobj)) {
/1 performsome operation on basic checki ng obj ect

}
else{ ... } // Deal with failure to _narrow()
} else{ ... } // Deal with failure to _narrow()

} /1 end of try clause, catch clauses not shown

Object Groups and Load Balancing

The naming service defines a repository of names that map to objects. A
name maps to one object only. Orbix extends the naming service model to
allow a name to map to a group of objects. An object group is a collection of
objects that can increase or decrease in size dynamically.

Each object group has a selection algorithm, which is set on the object
group’s creation (see page 408). This algorithm is applied when a client
resolves the name associated with the object group. Three algorithms are
supported:

® Round-robin selection

* Random selection

® Active load balancing selection

404

Object Groups and Load Balancing

Object groups provide a way to replicate frequently requested objects, and
thereby distribute the request processing load. The naming service directs
client requests to the various replicated objects according to the object
group’s selection algorithm. The existence of an object group is transparent to
the client, which resolves the object group name in the same way that it
resolves any other name.

If you choose the active load balancing algorithm, each object in an object
group is assigned a load count that is periodically updated by servers. The
naming service directs client requests to the object with the lowest load
count.

Figure 38 shows how a name can bind to multiple objects through an object
group.

bi nd() Pure CORBA
Name B Object naming service
bi nd_obj ect _gr oup() o T T~ -
- ~
Name ' ‘Object 1 N
| : \
E— — — L — Object 2 \
| \ Object 3
L5 — — — — — >
Optional N .
Orbix . Object Group P v
I ~
extension - -

— i

Figure 38: Associating a name with an object group

Orbix supports object groups through its own IDL interfaces. These interfaces
let you create object groups and manipulate them: add objects to and remove
objects from groups, and find out which objects are members of a particular
group. Object groups are transparent to clients.

405

Chapter 18 | Naming Service

Load Balancing Interfaces

IDL modules | T_LoadBal anci ng and | T_Nani ng, defined in or bi x/
| oad_bal anci ng. i dl and or bi x/ nam ng. i dl , respectively, provide
operations that allow access to Orbix load balancing:

nodul e | T_LoadBal anci ng

{
excepti on NoSuchMenber {};
excepti on DuplicateMenber{};
exception DuplicateGoup{};
excepti on NoSuchG oup{};

typedef string Menberl d;
t ypedef sequence<Menber | d> Menber | dLi st;

enum Sel ecti onMet hod
{ ROUND ROBIN_METHCD, RANDCM METHOD, ACTI VE_METHD };

struct Menber
{
Chj ect obj ;
Menber 1 d id;
¥

typedef string @ oupld;
t ypedef sequence<Q@ oupl d> G oupli st;

i nterface hject @ oup
{
readonly attribute string id;
attribute Sel ecti onMet hod sel ecti on_net hod;
Chj ect pick();
voi d add_renber (in Menber nenj
rai ses (DuplicateMenber);
voi d renove_nenber (in Menberld id)
rai ses (NoSuchMenber);
(hj ect get _menber (in Menberld id)
rai ses (NoSuchMenber);
Menber | dLi st nenbers();
voi d destroy();
voi d updat e_nenber _| oad(
i n MenberldList ids,

406

Object Groups and Load Balancing

in doubl e curr_| oad

) raises (NoSuchMenber);

doubl e get _menber _| oad(
in Menberidid

) raises (NoSuchMenber);

voi d set_menber _ti meout (
in MenberldList ids,
inlong timout_sec

) raises (NoSuchMenber);

| ong get _nenber _ti meout (
in Menberidid

) raises (NoSuchMenber);

b

i nterface (bj ect @ oupFactory
{
(bj ect Goup create_round_robin (in Goupld id)
rai ses (Duplicate@oup);
bj ect Goup create_random (in Goupld id)
rai ses (DuplicateQoup);
hj ect Goup create_active (in Goupld id)
rai ses (Duplicate@oup);
bj ect Goup find_group (in Goupld id)
rai ses (NoSuchG oup);
QG oupList rr_groups();
Q@ ouplLi st random groups();
QG ouplLi st active_groups();
b
b
For detailed information about these interfaces, see the Orbix 2000
Programmer’s Reference.

Using Object Groups in Orbix
The I T_LoadBal anci ng module lets servers perform the following tasks:

* Create an object group and add objects to it.
* Add objects to an existing object group.

®* Remove objects from an object group.

®* Remove an object group.

407

Chapter 18 | Naming Service

408

Creating an Object Group
You create an object group and add objects to it in the following steps:

1. Get a reference to a naming context such as the initial naming context
and narrow to | T_Nam ngCont ext Ext .

2. Create an object group factory by calling og_factory() on the naming
context object. This returns a reference to an | T_LoadBal anci ng: :
(oj ect @ oupFact ory object.

3. Create an object group by calling creat e_r andon{),
create_round_robin(), or create_active() on the object group
factory. These operations return a reference to an object group of
interface | T_LoadBal anci ng: : (bj ect G oup that uses the desired
selection algorithm.

4. Add application objects to the newly created object group by calling
add_nenber () on it.

5. Bind a name to the object group by calling bi nd_obj ect _group() on the
naming context object created in step 1.

When you create the object group, you must supply a group identifier. This
identifier is a string value that is unigue among other object groups.

Similarly, when you add a member to the object group, you must supply a
reference to the object and a corresponding member identifier. This identifier
is a string value that must be unique within the object group.

In both cases, you decide the format of the identifier string. Orbix does not
interpret these identifiers.

Adding Objects to an Existing Object Group

Before you add objects to an existing object group, you must get a reference
to the corresponding | T_LoadBal anci ng: : Cbj ect @ oup object. You can do
this by using either the group identifier or the name that is bound to the
object group. This section uses the group identifier.

To add objects to an existing object group:

1. Get a reference to a naming context such as the initial naming context.
2. Narrow the reference to I T_Nam ngCont ext Ext .

Object Groups and Load Balancing

Call og_factory() on the naming context object. This returns a
reference to an Qbj ect G oupFact ory object.

Call find_group() on the object group factory, passing the identifier for
the group as a parameter. This returns a reference to the object group.

Add application objects to the object group by calling add_nenber () on
it.

Removing Objects from an Object Group

Removing an object from a group is straightforward if you know the object
group identifier and the member identifier for the object:

1.

Get a reference to a naming context such as the initial naming context
and narrow to | T_Nam ngCont ext Ext .

Call og_factory() on the naming context object. This returns a
reference to an (bj ect G oupFact ory object.

On the object group factory, call fi nd_group(), passing the identifier for
the target object group as a parameter. This operation returns a
reference to the object group.

Call renove_nenber () on the object group to remove the required object
from the group. You must specify the member identifier for the object as
a parameter to this operation.

If you already have a reference to the object group, the first three steps are
unnecessary.

Removing an Object Group

To remove an object group for which you have no reference:

1.

Call unbi nd() on the initial naming context to unbind the name
associated with the object group.

Call og_factory() on the initial naming context object. This returns a
reference to an (bj ect G oupFact ory object.

Call find_group() on the object group factory, passing the identifier for
the target object group as a parameter. This operation returns a
reference to the object group.

Call destroy() on the object group to remove it from the naming
service.

409

Chapter 18 | Naming Service

If you already have a reference to the target object group, steps 2 and 3 are
unnecessary.

Load Balancing Example

This section uses a simple stock market system to show how to use object
groups in CORBA applications. In this example, a CORBA object has access
to all current stock prices. Clients request stock prices from this CORBA
object and display those prices to the end user.

A realistic stock market application needs to make available many stock
prices, and provide many clients with price updates immediately. Given such
a high processing load, one CORBA object might be unable to satisfy client
requirements. You can solve this problem by replicating the CORBA object,
invisibly to the client, through object groups.

Figure 39 shows the architecture for the stock market system, where a single
server creates two CORBA objects from the same interface. These objects
process client requests for stock price information.

Naming Service

Q Add objects to group

Object Group

Servers

StockMarketFeed object 1

@ Create group

(2) Bind name to group (5) Resolve group name

Client /

(4) Get stock price

StockMarketFeed object 3

StockMarketFeed object 4

Figure 39: Architecture of the stock market example

410

Load Balancing Example

Defining the IDL for the Application

The IDL for the load balancing example consists of a single interface
St ockMar ket Feed, which is defined in module Qbj ect G oupDeno:

/1 1DL
nodul e Cbj ect & oupDeno
{

excepti on StockSynbol Not Found{};
interface StockMarket Feed

doubl e read_stock (in string stock_synbol)
rai ses(St ockSynbol Not f ound) ;
|
b
St ockMar ket Feed has one operation, read_st ock() . This operation returns
the current price of the stock associated with string identifier st ock_nane,
which identifies the desired stock.

Creating an Object Group and Adding Objects

After you define the IDL, you can implement the interfaces. Using object
groups has no effect on how you do this, so this section assumes that you
define class St ockMar ket FeedSer vant , which implements interface

St ockMar ket Feed.

After you implement the IDL interfaces, you develop a server program that
contains and manages implementation objects. The application can have one
or more servers that perform these tasks:

® (Creates two St ockMar ket Feed implementation objects.
® (Creates an object group in the naming service.
* Adds the implementation objects to this group.

The server's mai n() routine can be written as follows:

#incl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <i ostream h>

#i ncl ude <ony/ or b. hh>

#i ncl ude <ong/ Port abl eServer . hh>
#include <it_ts/termnation_handl er. h>

411

Chapter 18 | Naming Service

#i ncl ude <or bi x/ nam ng. hh>
#i ncl ude "stock_i.h"

static OORBA : GRB_var global _orb = CCRBA : CRB:: _nil ();
static Portabl eServer::PQA var the_poa;

/1 Needed in global scope so it's available to
term nation_handl er():

I T_LoadBal anci ng: : Chj ect G oup_var rr_og_var;

I T_Nami ng: : | T_Nam ngCont ext Ext _var it_ins_var;

CosNam ng: : Nane_var nm

char idi[100], id2[100];

static void
term nati on_handl er (1 ong si Q)

{
try
{
cout << "Renoving nenbers: " << idl << " and "
<< id2 << endl;
rr_og_var->r enove_mnenber (i dl);
rr_og_var - >r enove_nenber (i d2);
}
catch (...)
{
cerr << "Coul d not renove nenbers." << endl;
}

| T_LoadBal anci ng: : Menber | dLi st _var menbers =
rr_og_var - >nenbers();

if (menbers->length() == 0) // Last one to renmove nenbers
{
try
{
cout << "Unhbinding object group..." << endl;
i t_ins_var->unbi nd(nn;
cout << "Destroying group..." << endl;
rr_og_var->destroy();
}
catch (...)
{
cerr << "Unbind/destroy failed." << endl;
}
}

412

Load Balancing Example

cout << "Shutting down the GRB." << endl;
gl obal _or b- >shut down(0);

}
i nt
mai n(
int argc,
char *argv[]
)
{

if (argc !'= 2)

cerr << "lbsage: ./server <name>" << endl;
return 1;

}

OCRBA: : String_var server_name = OORBA :string_dup(argv[1]);

try
{
global _orb = CORBA : GRB_init(argc, argv);
}
cat ch (CORBA: : Exception &ex)
{
cerr << "Could not initialize the CRB." << endl;
cerr << "Exception info: " << ex << endl;
return 1;
}

I T_Term nat i onHandl er: : set _si gnal _handl er (
terninati on_handl er);

/1 Initialize the POA and PQA Manager:

/1

Por t abl eSer ver : : POAMVanager _var poa_nanager ;

try

{
OCRBA: : (bj ect _var poa_obj =

gl obal _orb->resol ve_initial _references("Root PQA");

the_poa = Portabl eServer:: PQOA : _narrow poa_obj);
poa_manager = the_poa- >t he_PQAManager () ;

}

cat ch (CORBA: : Exception &ex)

413

Chapter 18 | Naming Service

414

{
cerr << "QCoul d not obtain the Root PQA or the PQOAManager. "
<< endl;
cerr << "Exception info: " << ex << endl;
return 1;
}

I/l Oreate 2 StockMarket Feed obj ects <server_name>: RR Menber 1

/1 and<server _name>: RR_Menber 2.

strcpy(idl, server_nare.in());

strcat(idl, ":");

strcat (i dl, "RR Menber1");

strcpy(id2, server_nane.in());

strcat(id2,":");

strcat (i d2,"RR_Menber 2");

St ockServant FeedServant *stk_svntl =
new St ockSer vant FeedSer vant (i d1);

St ockServant FeedServant *stk_svnt2 =
new St ockSer vant FeedSer vant (i d2);

/1 Resol ve naning service and narrowto the interface with | ONA
/1 load bal anci ng extensions, and get the object group factory
11

CCRBA: : (hj ect _var ins_obj;

| T_LoadBal anci ng: : (bj ect @ oupFact ory_var ogf _var;

try

{
ins_obj =
gl obal _orb->resolve_initial_references("NaneService");
it_ins_var =
I T_Nam ng: : | T_Nam ngCont ext Ext: : _narrow(i ns_obj);
ogf _var = it_ins_var->og_factory();
}
catch (OCRBA : Exception &ex)
{
cerr << "Could not obtain or _narrow() reference to "
<< "I T_Nam ng: : | T_Nam ngCont ext Ext " << endl
<< "interface. |Is the Nanming Service runni ng?" << endl;
cerr << "Exception info: " << ex << endl;
return 1;
}

Load Balancing Example

/!l Oreate a round robin object group and bind it in the
/1 nami ng service
OCORBA: : String_var rr_id str =
QCORBA: : string_dup(" St ockFeedG oup");
try
{
rr_og_var = ogf _var->create_round_robin(rr_id str);
nm=it_ins_var->to_name("StockSvc");
i t_ins_var->bi nd_obj ect_group(nmrr_og_ var);

}

catch (...)

{
/1l OK assune other server created object group and
/1l bound it in NS
rr_og_var = ogf_var->find_group(rr_id_str);

}

/1 Add the StockMarket Feed objects to the (hject G oup:

try

{
| T_LoadBal anci ng: : Menber menber _i nf o;
menber _info.id = OGORBA :string_dup(idl);
nmenber _i nfo.obj = stk_svnt1->_this();
rr_og_var->add_rnenber (menber _i nfo);
menber _info.id = CCRBA :string_dup(id2);
nmenber _i nfo.obj = stk_svnt2->_this();
rr_og_var->add_menber (menber _i nfo);

}

cat ch (CORBA: : Exception &ex)

{
cerr << "Could not add nenbers " << idl << " ,

<< id2 << endl;

cerr << "Exception info: " << ex << endl;
return 1;

}

/l Start accepting requests

try

{

poa_manager - >acti vat e() ;

415

Chapter 18 | Naming Service

416

}

cout << "Server ready..." << endl;
gl obal _orb->run();
}
catch (CCRBA: : Exception &ex)
{
cerr << "Coul d not activate the PQAVanager,
or orb->run() failed."
<< endl ;
cerr << "Exception info: " << ex << endl;
return 1;
}
return O;

This server executes as follows:

1.

Instantiates two St ockSer vant FeedSer vant servants that implement the
St ockMar ket Feed interface.

Obtains a reference to the initial naming context and narrows it to

I T_Nami ng: : | T_Nani ngCont ext Ext .

Obtains an object group factory by calling og_f act ory() on the naming
context.

Calls create_round_robi n() on the object group factory to create a new
group with the specified identifier. cr eat e_r ound_r obi n() returns a new
object group in which objects are selected on a round-robin basis.

Calls bi nd_obj ect _group() on the naming context and binds a specified
naming service name to this group. When a client resolves this name, it
receives a reference to one of the group’s member objects, selected by
the naming service in accordance with the group selection algorithm.

The enclosing try block should allow for the possibility that the group
already exists, where bi nd_obj ect _group() throws an exception of
CosNani ng: : Nami ngCont ext : : Al r eadyBound. In this case, the cat ch
clause calls find_group() in order to obtain the desired object group.
find_group() is also useful in a distributed system, where objects must
be added to an existing object group.

Activates two St ockMar ket Feed objects in the POA and adds them as
members to the object group:

Load Balancing Example

+ The server creates an IDL struct of type | T_LoadBal anci ng: :
menber , and initializes its two members: a string that identifies the
object within the group; and a St ockMar ket Feed object reference,
created by invoking _thi s() on each servant.

+ The server adds the new member to the object group by calling
add_rrenber () .

7. Prepares to receive client requests by calling run() on the ORB.

Accessing Objects from a Client

All objects in an object group provide the same service to clients. A client that
resolves a name in the naming service does not know whether the name is
bound to an object group or a single object. The client receives a reference to
one object only. A client program resolves an object group name just as it
resolves a name bound to one object, using standard CORBA-compliant
interfaces.

For example, the stock market client’s mai n() routine might look like this:

#i ncl ude <i ostream h>

#i ncl ude <ony/ orb. hh>

#i ncl ude <or bi x/ nam ng. hh>
#i ncl ude "st ock_deno. hh"

static OORBA : ORB var global _orb = CCRBA : ORB:: _nil();

int
mai n(
int argc,
char *argv[]
)
{

if (argc '=2) {
cerr << "UWsage: ./client <stock_synbol>" << endl;
return 1,

}

GCosNani ng: : Nam ngCont ext Ext _var ins;

try {
global _orb = CORBA : CRB_init(argc, argv);

417

Chapter 18 | Naming Service

418

OCRBA: : (hj ect _var ins_obj =
gl obal _orb->resolve_initial_references("NaneService");
ins = CosNam ng: : Nam ngCont ext Ext: : _narrow(i ns_obj);
}
catch (CCRBA: : Exception &ex){
cerr << "Cannot resol ve/ narrow the NaneService IR "

<< endl ;
cerr << "Exception info: " << ex << endl;
return 1;
}
St ockDeno: : St ockMar ket Feed_var stk _ref;
try {
OCRBA: : (hj ect _var stk_obj = ins->resol ve_str("StockSvc");
stk_ref = StockDeno:: St ockMar ket Feed: : _narrow(stk_obj);
}

catch (CCRBA: : Exception &eXx) {
cerr << "Could not resol ve/narrow the stock svc IR from™
<< "the Naning Service." << endl;
cerr << "Exception info: " << ex << endl;
return 1;

}

doubl e curr_pri ce;

try {
curr_price = stk_ref->read_stock(argv[1]);

}

cat ch (StockDeno: : St ockSynbol Not Found &ex) {
cerr << "Stock synmbol not found: " << argv[1l] << endl;
cerr << "Try another stock synbol." << endl;
return 1;

}

catch (CCRBA: : Exception &eXx) {
cerr << "Exception received: " << ex << endl;
return 1;

}

cout << argv[1l] << " stock priceis
return O;

<< curr_price << endl;

Defining

Persistent State Service

The persistent state service (PSS) is a CORBA service for
building CORBA servers that access persistent data.

PSS is tightly integrated with the IDL type system and the object transaction
service (OTS). Orbix PSS implements the standard CosPersi st ent Stat e
module, and adds proprietary extensions in the I T_PSS module. PSS'’s close
integration with OTS facilitates the development of portable applications that
offer transactional access to persistent data such as a database system.

Writing a CORBA application that uses PSS is a three-step process:

* Define the data in PSDL (persistent state data language), which is an
extension of IDL, then run the IDL compiler on the PSDL files to
generate C++ code.

* Write a server program that uses PSS to access and manipulate
persistent data.

® Set PSS plug-in variables in the application’s configuration as required.

Persistent Data

When you develop an application with PSS, you describe datastore
components in the persistent state definition language—PSDL—and save
these in a file with a . psdl extension.

PSDL is a superset of IDL. Like IDL, PSDL is a declarative language, and not
a programming language. It adds new keywords but otherwise conforms to
IDL syntax conventions. A PSDL file can contain any IDL construct; and any
local IDL operation can accept parameters of PSDL types.

419

Chapter 19 | Persistent State Service

Reserved Keywords

The file CosPer si stent St at e. psdl contains all PSDL type definitions, and is
implicitly included in any PSDL specification. The following identifiers are
reserved for use as PSDL keywords (asterisks indicate keywords reserved for
use in future PSS implementations). Avoid using any of the following
keywords as user-defined identifiers:

as*

cat al og*
factory

i npl enent s
key

of

prinary
provi des*
ref

scope*

st or agehone
st or aget ype
st or es*

st rong*

Datastore Model

420

PSDL contains several constructs that you use to describe datastore
components. These include:

* storaget ype describes how data is organized in storage objects of that
type.

® storagehone describes a container for storage objects. Each storage
home is defined by a storage type and can only contain storage objects
of that type. Storage homes are themselves contained by a datastore,
which manages the data—for example a database, a set of files, or a
schema in a relational database. A datastore can contain only one
storage home of a given storage type.

Within a datastore, a storage home manages its own storage objects and the
storage objects of all derived storage homes.

For example, the following two PSDL files describe a simple datastore with a
single Account storage type and its Bank storage home:

Defining Persistent Data

/1 in bank_deno_store_base. psdl
#i ncl ude<BankDeno. i dl >

nmodul e BankDenoSt or eBase {
abstract storagetype AccountBase {
stat e BankDeno: : Accountld account i d;
stat e BankDeno: : CashAmount bal ance;

}

abstract storagehone BankBase of Account Base {
key account _id;
factory create(account id, bal ance);
h
h

/1 in bank_deno_store. psdl

#i ncl ude <BankDeno. i dl >
#i ncl ude <BankDeno$t or eBase. psdl >

nodul e BankDenoSt or e {
st or aget ype Account i npl enents BankDenoSt or eBase: : Account Base

ref (account _id);

}

st or agehone Bank of Account
i npl enent s BankDenoSt or eBase: : BankBase
{};
b

Abstract Types and Implementations

In the PSDL definitions shown previously, abstract types and their
implementations are defined separately in two files:

® BankDenoSt or eBase. psdl file defines the abstract storage type
Account Base and abstract storage home BankBase. Abstract storage
types and abstract storage homes are abstract specifications, like IDL
interfaces.

421

Chapter 19 | Persistent State Service

®* BankDenoStore. psdl defines the storage type and storage home
implementations for Account Base and BankBase in Account storage type
and Bank storage home, respectively.

A storage type implements one or more abstract storage types. Similarly, a
storage home can implement any number of abstract storage homes. By
differentiating abstract types and their implementations, it is possible to
generate application code that is independent of any PSS implementation.
Thus, it is possible to switch from one implementation to another one without
recompiling and relinking.

Given the separation between abstract types and their implementations, the
IDL compiler provides two switches for processing abstract and concrete
definitions:

®* The -psdl switch compiles abstract definitions. For example:
idl -psdl bank_deno_store_base. psdl

The IDL compiler generates a C+ + abstract base class for each
abstract storagetype and abstract storagehone that is defined in
this file.

®* The -pss_r switch generates C++ code that maps concrete PSDL
constructs to relational and relational-like database back-end drivers.
For example:

idl -pss_r bank_deno_store. psdl

The IDL compiler generates C+ + classes for each st or aget ype and
st or agehone that is defined in this file.

Note: If you maintain all PSDL code in a single file, you should compile it
only with the - pss_r switch.

Defining Storage Objects

A storage object can have both state and behavior. A storage object’s abstract
storage type defines both with state members and operations, respectively.

422

Defining Persistent Data

Syntax

The syntax for an abstract storage type definition is similar to the syntax for
an IDL interface; unlike an interface, however, an abstract storage type
definition cannot contain constants or type definitions.

You define an abstract storage type with this syntax:

abstract storagetype abstract - st or aget ype- name

[: base-abstract-storage-type[,...]
{

[operation-spec;]...

[state-nenber-spec;]...
b
For example:

abstract storagetype Account Base {
state BankDeno: : Account|d account id;
st at e BankDeno: : CashAmount bal ance;

b
The following sections discuss syntax components in greater detail.

Inheritance

As with interfaces, abstract storage types support multiple inheritance from
base abstract storage types, including diamond-shape inheritance. It is illegal
to inherit two members (state or operation) with the same name.

State Members

A storage object’s state members describe the object’s data; you can qualify a
state member with the readonl y keyword. You define a state member with
the following syntax:

[readonly] state type-spec menber-nane;

For each state member, the C++ mapping provides accessor functions that
get and set the state member’s value (see page 459).

A state member's type can be any IDL type, or an abstract storage type
reference.

423

Chapter 19 | Persistent State Service

Operations

Operations in an abstract storage type are defined in the same way as in IDL
interfaces. Parameters can be any valid IDL parameter type or abstract
storage type reference.

Inherited Operations

All abstract storagetypes implicitly inherit from CosPersi stent State: :
St or age(hj ect

nodul e CosPersistentState {

...
native StorageChj ect Base;

abstract storagetype Storage(hject {
voi d destroy_object();
bool ean obj ect _exi sts();
Pid get_pid();
ShortPid get_short_pid();
St or ageHoneBase get _st or age_hone() ;
b
h
You can invoke StorageObject operations on any incarnation of a storage
object; they are applied to the storage object itself:

destroy_object() destroys the storage object.

object_exists() returns true if the incarnation represents an actual storage
object.

get_pid() and get_short_pid() return the storage object’s pi d and short - pi d,
respectively.

get_storage_home() returns the storage home instance that manages the
target storage object instance.

424

Defining Persistent Data

Forward Declarations

As with IDL interface definitions, PSDL can contain forward declarations of
abstract storage types. The actual definition must follow later in the PSDL
specification.

Defining Storage Homes

You define an abstract storage home with an abst ract st or agehone

definition
abstract storagehone storagehone-name of abstract-storage-type
{
[key-specification]
[factory operation-nane(state-member],...]);]
b

For example, the following PSDL defines abstract storage home BankBase of
storage type Account Base:

abstract storagehone BankBase of AccountBase

{

key account _i d;

factory create(account_id, bal ance);
b
A storage home lacks state but it can have behavior, which is described by
operations that are defined in its abstract storage homes. For example, you
locate and create a storage object by calling operations on the storage home
where this object is stored.

All storage home instances implicitly derive from local interface
CosPer si stent St at e: : St or ageHoneBase:

nodul e CosPersistentState {
exception Not Found {};
native Storage(hj ect Base;

...
local interface StorageHoneBase {

St or age(hj ect Base

find_by_short_pi d(
in ShortPid short_pid

425

Chapter 19 | Persistent State Service

426

) raises (NotFound);
b
h
find by short_pid() looks for a storage object with the given short pid in

the target storage home. If the search fails, the operation raises exception
CosPer si st ent St at e: : Not Found.

Keys

An abstract storage home can define one key. A key is composed from one or
more state members that belong to the storage home’s abstract storage type,
either directly or through inheritance. This key gives the storage home a
unique identifier for the storage objects that it manages.

Two IDL types are not valid for use as key members: val uet ype and struct.

A key declaration implicitly declares a pair of finder operations; for more
information, see page 427.

Simple Keys

A simple key is composed of a single state member. You declare a simple key
as follows:

key key-nare (st ate-nenber);

For example, the PSDL shown earlier defines abstract storage home
BankBase for storage objects of abstract type Account Base. This definition
can use state member account _i d to define a simple key as follows:

key accno(account-id);

If the key’s name is the same as its state member, you can declare it in this
abbreviated form:

key account-id;

Composite Keys

A composite key is composed of multiple state members. You declare a
composite key as follows:

key key-name (state-nenber, state-menber[,...)

A composite key declaration must specify a key name. The types of all state
members must be comparable. The following types are comparable:

Defining Persistent Data

® integral types: octet, short, unsigned short, | ong, unsigned | ong,
I ong | ong, unsigned | ong | ong

* fixed types

® char, wchar, string, wstring

® sequence<oct et >

® struct with only comparable members

Finder Operations

A key declaration is equivalent to the declaration of two PSDL finder
operations that use a given key to search for a storage object among the
storage objects that are managed directly or indirectly by the target storage
home:

find_by_key-name() returns an incarnation of the abstract storage home's
abstract storage type:

abst ract - st oraget ype find_by_ key- name(paraneter-|ist)
rai ses (CosPersi stentState:: Not Found);

find_ref_by_key_name() ®returns a reference to this storage object:
ref <abstract - storage-type> find_ref_by key nane(paraneter-list);

Both operations supply a paranet er -1 i st that is composed of i n parameters
that correspond to each state member in the key declaration, listed in the
same order. If a storage object with the given key is not found,
find_by key name() raises the CosPer si stent St at e: : Not Found exception,
and find ref by key name() returns a NULL reference.

For example, given the following abstract storage type and storage home
definitions:
abstract storagetype Account Base {

state BankDeno: : Account|d account _id;
st at e BankDeno: : CashAnount bal ance;

}s

abstract storagehone Bank of AccountBase {
key accno(account _id);
...

}

The accno key declaration implicitly yields these two PSDL operations:

427

Chapter 19 | Persistent State Service

428

Account find_by_accno(in BankDeno: : Account | d)
rai ses (CosPersistent State:: Not Found);

ref <Account > find_ref by _accno(i n BankDeno: : Account | d);

Finder operations are polymorphic. For example, the fi nd_by_accno
operation can return a Checki ngAccount that is derived from Account .

Operations

Each parameter of a local operation can be of a valid IDL parameter type, or
of an abstract PSDL type.

Factory Operations

In the PSDL shown earlier, abstract storage home BankBase is defined with
the factory creat e operation. This operation provides a way to create
Account objects in a bank, given values for account _i d and bal ance.

abstract storagehone Bank of Account Base {
key accno(account _id);
factory create(account _id, bal ance);

b

Each parameter that you supply to a factory create operation must be the
name of a state member of the abstract storage home’s abstract storage type,
including inherited state members.

The definition of a factory operation is equivalent to the definition of the
following operation:

abst ract - st orage-t ype fact ory-op-name(paraneter-1list);

where paraneter-1i st is composed of i n parameters that correspond to
each state member in the factory operation declaration, listed in the same
order.

For example, given this factory declaration:

abstract storagetype Account Base {
stat e BankDeno: : Account I d account _i d;
st at e BankDeno: : CashAmount bal ance;

}s

abstract storagehone Bank of AccountBase {

Defining Persistent Data

...

factory create(account _id, bal ance);
H
The creat e factory declaration implicitly yields this operation, which uses
conventional IDL-to-C++ mapping rules:

Account creat e(
in BankDeno: : Accountld account _id,
i n BankDeno: : CashAnount bal ance

)

Inheritance

An abstract storage home can inherit from one or more abstract storage
homes, and support diamond-shape inheritance. The following constraints
apply to a base abstract storage home:

* The base abstract storage homes must already be defined.
® The base abstract storage homes must use the same abstract storage
type or base abstract storage type as the derived abstract storage home.

® An abstract storage home cannot inherit two operations with the same
name.

Forward Declarations

As with IDL interface definitions, PSDL can contain forward declarations of
abstract storage homes.

Implementing Storage Objects

A storage type implements one or more abstract storage types, and can
inherit from one other storage type. Storage type implementations are defined
as follows:

storaget ype storagetype-nane [: storagetype-nane]
i npl enents abstract - st oragetype[, abstract-storagetype]...

{
[state-nenber-spec;]...
[ref(state-nenber[, state-nenber]...)]

429

Chapter 19 | Persistent State Service

The implemented abstract storage type abst r act _st or aget ype must specify
a previously defined abstract storage type.

State Members

A storage type can define state members; these state members supplement
any state members in the abstract storage types that it implements, or that it
inherits from other implementations. You define a state member with the
following syntax:

[readonly] state type-spec menber-nane;

Reference Representation

A storage type can define a reference representation that serves as a unique
identifier for storage objects in a storage home of that storage type. A storage
type without any base storage type can define a single reference
representation, which is composed of one or more state members. For
example:

st oraget ype Account inpl enents BankDenoSt or eBase: : Account Base

ref (account _id);
b
The state members that compose a reference representation must be defined
either in:
* One of the abstract storagetypes that this storage type directly
implements
® The current storage type

Implementing Storage Homes

430

A storage home implements one or more previously defined abstract storage
homes with this syntax:

st or age- hone st or agehone- name[: st or agehone- nane]
of storagetype [inplenents abstract-storagehone[,...]]

{
}

A storage home specification must include these elements:

[primary-key-spec];

Defining Persistent Data

* A storage type that derives from the base storage home's storage type.
The storage home's storage type must implement the abstract storage
type of each of the implemented abstract storage homes.

® Either inherits an existing storage home, or implements one or more
existing abstract storage home.

Inheritance

A storage home can inherit form a previously defined storage home. The
following constraints apply:

® The storage type of the base storage home must be a base of the storage
home’s own storage type.

* Two storage homes in a storage home inheritance tree cannot have the
same storage type.

For example, the following specification is not legal:

storagetype A {/* ... */};

storagetype B: A {/* ... */};

storagehone H of A {};

storagehone H2 of B : H{};

storagehome H3 of B: H{}; // error -- Bis already storagetype
/1 of another sub-storage-home of H

Primary Key Declaration

A primary key declaration specifies a distinguished key, as implemented in
relational systems. You can define a primary key in any storage home without
a base storage home.

You can define a primary key in two ways:
® prinary key key-spec

key- spec denotes a key that is declared in one of the implemented
abstract storagehomes.

® prinmary key ref

This statement tells the PSS implementation to use the state members
of the reference representation as the primary key.

431

Chapter 19 | Persistent State Service

Accessing Storage Objects

You access a storage object through its language-specific implementation, or
storage object incamation. A storage object incarnation is bound to a storage
object in the datastore and provides direct access to the storage object’s
state. Thus, updating a storage object incarnation also updates the

corresponding storage object in the datastore.

Likewise, to use a storage home, you need a programming language object,

or storage home instance.

To access a storage object, a server first obtains a logical connection between
itself and the datastore that contains this storage home's storage object. This
logical connection, or session, can offer access to one or more datastores.

Storage object
incarnations O
o 0
o T —
Process A o O /
\K Sessions
Storage home instances \
-
—
—
—
-
P —
(0] - —
[5)
(6] .. L -
Process B ° e}

Pdr

Storage home instances

Storage
objects

/ Storage
homes

Datastore

Figure 40: A server process uses sessions to establish a logical connection with a
datastore and its contents

432

Accessing Storage Objects

Creating Transactional Sessions

PSS provides a local connector object that you use to create sessions.
Because PSS is designed for use in transactional servers, Orbix provides its
own session manager, which automatically creates transactional sessions
that can be associated with transactions. You can also manage transactional
sessions explicitly.

In either case, you create transactional sessions in these steps:

1.

Get a reference to the transaction service's current object by calling
resol ve_initial references("TransactionQurrent") on the ORB,
then narrow the returned reference to a CosTransacti ons: : Qurrent
object.

Get a reference to a connector object by calling

resol ve_initial references("PSS') on the ORB, then narrow the
returned reference to a connector object:

¢+ | T_PSS: : Connector object to use an Orbix SessionManager.

+ CosPersistent State: : Connect or to use standard PSS
transactional sessions.

Create storage object and storage home factories and register them with

a Connector object. This allows PSS to create storage object incarnations

and storage home instances in the server process, and thereby enable

access to the corresponding datastore objects.

For each PSDL storage home and storage object implementation, the
IDL compiler, using the - pss_r switch, generates a factory creation and
registration operation.For example, given a PSDL storage home
definition of BankDenoSt or e: : Bank, you can instantiate its storage home
factory as follows:

CosPersi stent St at e: : St orageHoneFact ory* bank_factory =
new | T_PSS_St or ageHoneFact or y<BankDenoSt or e: : Bank>;

After registering factories with the connector, the connector assumes
ownership of the factories, so the server code should call _renove_ref ()
on each factory object reference to avoid memory leaks.

Create transactional sessions. You can do this in two ways:

433

Chapter 19 | Persistent State Service

434

+ Create an Orbix SessionManager, which creates and manages the
desired number of sessions.

+ Create standard PSS TransactionalSession objects.

Associate sessions with transactions. How you do so depends on
whether you create sessions with a SessionManager or with standard
PSS operations:

+ You associate a SessionManager’s sessions with transactions
through I T_PSS: : TxSessi onAssoci at i on objects.

+ You associate standard transactional sessions with transactions
through the TransactionalSession object’s st art () operation.

The following example shows how a server can implement steps 1-4. This
code is valid whether you use an Orbix SessionManager or standard PSS
transactional sessions.

int

mai n(int argc, char** argv)

{

11

try
{
/l Initialise the CRB as configured in the I MR

cout << "Initializing the GRB" << endl;
global _orb = CORBA: CRB_init(argc, argv, "denos.pss.bank");

CCRBA: : (hj ect _var obj =
gl obal _orb->resolve_initial _references("Transacti onQurrent");

CosTransactions:: Qurrent_var tx_current =
I T_PSS:: Connector::_narrow obj);
assert (! GORBA :is_nil (tx_current));
CCRBA: : (hj ect _var obj =
gl obal _orb->resolve_initial _references("PSS');

| T_PSS. : connector_var connector =
I T_PSS:: Connector::_narrow obj);
assert (! GORBA :is_nil (connector));

/] Create and regi ster storage object and
/'l storage hore factories

Accessing Storage Objects

CosPersi stent State: : Storage(hj ect Factory *acct_factory =
new | T_PSS: : St or age(hj ect Fact or y<BankDenoSt or e: : Account >;

CosPersi stent Stat e: : St orageHoneFact ory *bank_factory =
new | T_PSS: : St or ageHoneFact or y<BankDeno$t or e: : Bank>;

connect or - >r egi st er _st orage_obj ect _f act ory(
BankDenoStore: : _tc_Account->id(),
acct_factory

)

connect or - >r egi st er _st orage_hone_f act or y(
BankDenoSt ore: : _tc_Bank->i d(),
bank_f act ory

)

/|l after registration, connector owns factory objects,
/1 so renove factory references from menory

acct _factory-> renove_ref();
bank_f actory-> renove ref();

/...

/1 continuation depends on whet her you use O bi x Sessi onManager
/1 or PSS Transactional Sessi ons

/...

The sections that follow describe the different ways to continue this code,
depending on whether you use a SessionManager or standard PSS
transactional sessions.

Using the SessionManager

After you create and register storage object and storage home factories, you
create a SessionManager and associate transactions with its sessions as
follows:

1.

Set a list of parameters for the SessionManager to be created, in a
CosPer si st ent St at e: : Paranet er Li st. At a minimum, the parameter
list specifies the Resour ce that sessions connect to—for example, a
Berkeley DB environment name. It can also specify the number of

435

Chapter 19 | Persistent State Service

436

sessions that are initially created for the SessionManager, and whether
to add sessions when all sessions are busy with requests.Table 24
describes all parameter settings.

Create a SessionManager by calling it_create_sessi on_nmanager () on
the Orbix connector. The SessionManager always creates at least two
transactional sessions:

+ A shared read-only session for read-only non-transactional requests.

+ A pool of read-write serializable transactional sessions for write
requests, and for any request that is executed in the context of a
distributed transaction.

Create an association object | T_PSS: : TxSessi onAssoci at i on to
associate the SessionManager and the transaction.

Use the association object to perform transactional operations on the
datastore’s storage objects.

The following code implements these steps:

/1 Oreate SessionManager with one read-only read-committed
/1 multi-threaded transactional session and one read-wite
/1l serializable single-threaded transactional session

CosPersi stent Stat e: : Paranet er Li st paraneters(2);
paranet ers. | engt h(2);
par anet ers[0] . name = CCRBA: : string_dup(“to");
paramet ers[0] . val <<= OCRBA : Any::fromstring
("bank", true);
paramet ers[1] . nane = OCRBA: :string_dup("single witer");
paranet ers[1] . val <<= CCRBA: : Any::frombool ean(true);

| T_PSS: : Sessi onManager _var sessi on_ngr =
connect or->it _creat e_sessi on_nanager (par aneters);

| T_PSS: : TxSessi onAssoci ati on associ ati on(
session_nmyr.in(),
CosPersi stent State: : READ ALY,
CosTransactions: : Coordi nator::_nil () // use the shared
/1l read-only session

)

/'l show bal ances in all accounts
/1 The query APl is proprietary; it is sinilar to JDBC

Accessing Storage Objects

IT_PSS:: Statenent _var statenent =
associ ation. get_session_nc()->it_create_statenent();

IT_PSS: :Resul t Set_var result_set = statenent->execute_query(
"sel ect ref(h) from PSDL: BankDenmoSt or e/ Bank: 1. 0 h"

)

cout << "Listing database: account id, bal ance" << endl;

BankDermoSt or e: : Account BaseRef account _ref;
CCRBA: : Any_var ref _as_any;
while (result_set->next())

{

ref _as_any = result_set->get(1);
OCRBA: : Bool ean ok = (ref_as_any >>= account _ref);
assert (ok);
cout << " "
<< account _ref->account _i d()
<< ", $" << account _ref->bal ance()
<< endl ;

}

result _set->cl ose();

associ at i on. suspend();
/1
return O;

Setting SessionManager Parameters

You supply parameters to it _create_sessi on_manager () through a
CosPersi stent St at e: : Par anet er Li st, which is defined as a sequence of
Par anet er types. Each Paraneter is a struct with nane and val members:

®* nane is a string that denotes the parameter type.
® val is an any that sets the value of nane.

437

Chapter 19 | Persistent State Service

The parameter list must specify the Resour ce that sessions connect to—for
example, an ODBC datasource name or Oracle database name. Table 24
describes all parameter settings

Table 24: SessionManager parameters

Parameter
name

Type

Description

to string

rw pool size I ong

gr ow pool bool ean

single witer bool ean

Identifies the datastore to connect to. For
example with PSS/DB, it will be an
environment name.

You must set this parameter.

Initial size of the pool of read-write
transactional sessions managed by the
session manager. The value must be
between 1 and 1000, inclusive.

The default value is 1.

If set to TRUE, specifies to create a new
session to process a new request when all
read-write transactional sessions are busy. A
value of FALSE, specifies to wait until a
read-write transactional session becomes
available.

The default value is FALSE.
Can be set to TRUE only if rw pool sizeis 1.
In this case, specifies to create a single

read-write transactional session that allows
only one writer at a time.

The default value is FALSE.

438

Accessing Storage Objects

Creating a SessionManager

You create a SessionManager by callingit_create sessi on_nmanager () on
the Orbix connector. it_create_sessi on_nanager () takes a single

Par arret er Li st argument (see page 437), and is defined in the 1 T_PSS::
Connect or interface as follows:

nmodul e 1 T_PSS {
...
local interface Connector : CosPersistentState:: Connect or
{
Sessi onManager
i t_create_sessi on_rmanager (
in CosPersistent State:: ParamneterlList paraneters
)
b

Associating a Transaction with a Session

The association object | T_PSS: : TxSessi onAssoci ati on associates a
transaction with a session that is managed by the SessionManager. You
create an association object by supplying it with a SessionManager and the
access mode. The CosPer si st ent St at e module defines two AccessMde
constants: READ ONLY and READ WRI TE

The | T_PSS: : TXSessi onAssoci at i on interface defines two constructors for a
TxSessi onAssoci at i on object:

nanespace | T_PSS {
/...
cl ass TxSessi onAssoci ation {
public:

TxSessi onAssoci at i on(
Sessi onManager _ptr sessi on_ngr,
CosPer si st ent St at e: : AccessMde access_node
) throw (GORBA: : Syst enException);

TxSessi onAssoci at i on(
Sessi onManager _ptr sessi on_nur,
CosPer si st ent St at e: : AccessMde access_node,
CosTransactions: : Coordi nat or _ptr tx_coordi nat or

439

Chapter 19 | Persistent State Service

) throw (COORBA: : Syst enExcepti on);

~TxSessi onAssoci at i on()

t hr ow(OORBA: : Syst enExcepti on) ;

...
b
The first constructor supplies only the session manager and access mode.
This constructor uses the default coordinator object that is associated with
the current transaction (CosTr ansact i ons: : Qurrent). The second
constructor lets you explicitly specify a coordinator; or to specify no
coordinator by supplying _ni | (). If you specify _nil (), the association uses
the shared transaction that is associated with the shared read-only session;
therefore, the access mode must be READ CN\LY.

A new association is initially in an active state—that is, it allows transactions
to use the session to access storage objects. You can change the associa-
tion’s state by calling suspend() or end() operations on it (see page 441).

Association Object Operations
An association object has several operations that are defined as follows:

namespace | T_PSS {
...
cl ass TxSessi onAssoci at i on{
public:
...
Transact i onal Sessi on_ptr
get _session_nc() const throw ();

CosTransacti ons: : Coor di nat or _ptr
get _tx_coordi nator_nc() const throw();

voi d
suspend() throw (CORBA: : Syst enException);

voi d
end(

QOCRBA: : Bool ean success = true
) throw (OORBA: : Syst enException);

440

Accessing Storage Objects

get_session_nc() returns the session for this association object. After you
obtain the session, you can access storage objects in the datastore that this
session connects to.

get_tx_coordinator_nc() returns the coordinator of this association’s
transaction.

suspend() suspends a session-Resour ce association. This operation can
raise two exceptions:

® PERSI ST_STCRE: there is no active association

® | NVALI D TRANSACTI ON: The given transaction does not match the
transaction of the Resour ce actively associated with this session.

end() terminates a session-Resour ce association. The end operation raises
the standard exception PERSI ST_STCRE if there is no associated Resour ce,
and 1 NVALI D TRANSACTI ON if the given transaction does not match the
transaction of the Resour ce associated with this session. If the success
parameter is FALSE, the Resour ce is rolled back immediately. Like
refresh(), end() invalidates direct references to incarnations’ data
members.

A Resour ce can be prepared or committed in one phase only when it is not
actively associated with any session. If asked to prepare or commit in one
phase when still in use, the Resour ce rolls back. A Resour ce (provided by the
PSS implementation) ends any session-Resour ce association in which it is
involved when it is prepared, committed in one phase, or rolled back.

Using an Association to Access Storage Objects

You can use an association object to access the data in storage objects. The
example shown earlier (see page 435) queries the data in all Account storage
objects in the Bank storage home. In order to obtain data from a given
storage object, you typically follow this procedure:

Use an association object to get the current session.

441

Chapter 19 | Persistent State Service

Managing Transactional Sessions

442

The previous section shows how to use the Orbix SessionManager to create

and manage transactional sessions. The Orbix SessionManager is built on top
of the CosPersi stent St at e: : Transact i onal Sessi on interface. You can use
this interface to manage transactional sessions directly.

Note: PSS also provides the CosPersi st ent St at e: : Sessi on interface to
manage basic sessions for file-like access. This interface offers only
non-transactional functionality whose usefulness is limited to simple
applications; therefore, it lies outside the scope of this discussion, except
insofar as its methods are inherited by CosPersi stent State: :

Transact i onal Sessi on.

After you create and register storage object and storage home factories, you
create a session and associate transactions with it as follows:

1. Create a TransactionalSession by calling
create_transactional _session() on a Connector object.

2. Activate the transactional session by calling start () on it. The
transactional session creates a new CosTr ansacti ons: : Resour ce, and
registers it with the transaction.

For more information about CosTransact i ons: : Resour ce objects, see
page 368.

3. Use the session-Resour ce association to perform transactional
operations on the datastore’s storage objects.

Creating a Transactional Session

Sessions are created through Connect or objects. A Connect or is a local
object that represents a given PSS implementation.

Each ORB-implementation provides a single instance of the local Connect or
interface, which you obtain through resol ve_initial references("PSS")
then narrowing the returned reference to a CosPer si st ent St at e: : Connect or
object. You use the Connect or object to create a TransactionalSession object
by calling create_transacti onal _sessi on() on it:

Accessing Storage Objects

nmodul e CosPersistentState {

}

/1

// forward decl arations
local interface Transactional Sessi on;
/Il ...

struct Paraneter {
string nane;
any val ;

b
t ypedef sequence<Par anet er> Par aret er Li st ;

local interface Connector {

11

Transact i onal Sessi on

create_transacti onal _sessi on(
in AccessMde access_node,
in IsolationLevel default_isolation_|level,
i n EndCf Associ ati onCal | back cal | back,
in Typeld catal og_type_nane,
in Pararet erlList additional _paraneters

The parameters that you supply to create_transacti onal _sessi on() define
the new session’s behavior:

The access mode for all Resour ce objects to be created by the session.
The CosPer si st ent St at e module defines two AccessMde constants:
READ ON\LY

READ WR TE

The default isolation level for all Resour ce objects to be created by the
session. The CosPer si st ent St at e module defines four I sol ati onLevel
constants:

READ_UNCOWM TTED

READ COW TTED

REPEATABLE_READ

SER ALI ZABLE

443

Chapter 19 | Persistent State Service

444

* A callback object to invoke when a session-Resour ce association ends
(see page 444).

* A ParameterList that specifies the datastore to connect to, and optionally
other session characteristics (see page 444).

Note: The cat al og_t ype_nane parameter is currently not supported. Set it
to an empty string.

End-of-Association Callbacks

When a session-Resour ce association ends, the session might not become
available immediately. For example, if the session is implemented with an
ODBC or JDBC connection, the PSS implementation needs this connection
until the Resour ce is committed or rolled back.

A session pooling mechanism might want to be notified when PSS releases a
session. You can do this by passing a EndCf Associ ati onCal | back local
object to the Connector: : create_transacti onal _sessi on operation:

nmodul e CosPersistentState {
...
local interface EndCr Associ ati onCal | back {
voi d rel eased(i n Transacti onal Sessi on session);

}
}s

ParameterList Settings

You set session parameters in a ParameterList, which is a sequence of
Par anet er types. Each Par anet er is a struct with nane and val members:

name is a string that denotes the parameter type.

val is an any that sets the value of nane.

Accessing Storage Objects

The parameter list must specify the Resour ce that sessions connect to—for
example, a Berkeley DB environment name. Table 25 describes all
parameter settings

Table 25: ParameterList settings for a TransactionalSession

Parameter Type Description
name
to string Identifies the datastore to connect to. For

example with PSS/DB, it will be an
environment name; with PSS/ODBC a
datasource name; with PSS/Oracle, an
Oracle database name.

You must set this parameter.

concurr ent bool ean If set to TRUE, the session can be used by
multiple concurrent threads.
The default value is FALSE.

single witer boolean Can be setto TRUE only if this session is the
only session that writes to this database. A
value of TRUE eliminates the risk of deadlock;

the cache can remain unchanged after a
commit.

The default value is FALSE.

Activating a Transactional Session

When you create a transactional session, it is initially in an inactive state—
that is, the session is not associated with any Resour ce. You associate the
session with a Resour ce by calling start () on it, supplying the name of a
transaction’s coordinator object (see page 447). This function associates the
session with a Resour ce, and registers the Resour ce with the coordinator’s
transaction.

445

Chapter 19 | Persistent State Service

446

A transactional session is associated with one Resour ce object (a datastore
transaction), or with no Resour ce at all. During its lifetime, a
session-Resour ce association can be in one of three states—active,
suspended, or ending—as shown in Figure 41:

destruction

creation INACTIVE

ENDING

end
start
end
start
— suspend SR
ACTIVE T SUSPENDED
- start e

Figure 41: Transactional session states

The state members of a storage object’s incarnation are accessible only when
the transactional session has an active association with a Resour ce.

Typically, a Resour ce is associated with a single session for its entire lifetime.
However, with some advanced database products, the same Resour ce can
be associated with several sessions, possibly at the same time.

The Transact i onal Sessi on interface has this definition:
nmodul e CosPersistentState {

/1

typedef short |solationLevel;

const |solationLevel READ UNCOW TTED
const |solationLevel READ COW TTED
const |solationLevel REPEATABLE READ
const |solationLevel SER ALl ZABLE =

I
whNER o

Accessing Storage Objects

interface Transactional Session : Session {
readonly attribute Isol ationLevel default_isolation_|evel;

typedef short AssociationStat us;

const Associ ationStatus NO ASSOO ATI CN
const Associ ationStatus ACTI VE =
const Associ ationStatus SUSPENDED =
const Associ ationStatus END NG =

WN PO

void start(in CosTransactions:: Coordi nator transaction);
voi d suspend(in CosTransacti ons: : Coordi nator transaction);
voi d end(

in CosTransactions: : Coordi nator transaction,

i n bool ean success

)

Associ ati onStat us get_associ ation_status();
CosTransacti ons: : Goordi nator get_transaction();
| sol ati onLevel
get _i sol ation_| evel _of _associ at ed_resource();
h
b

Managing a Transactional Session

The Transact i onal Sessi on interface provides a number of functions to
manage a transactional session.

start() activates a transactional session. If the session is new, it performs
these actions:

* Creates a new Resour ce and registers it with the given transaction.
* Associates itself with this Resour ce.

If the session is already associated with a Resour ce but is in suspended
state, start() resumes it.

suspend() suspends a session-Resour ce association. This operation can
raise two exceptions:

® PERSI ST_STCRE: there is no active association

447

Chapter 19 | Persistent State Service

448

® | NVALI D_TRANSACTI ON: The given transaction does not match the
transaction of the Resour ce actively associated with this session.

end() terminates a session-Resour ce association. If its success parameter is
FALSE, the Resour ce is rolled back immediately. Like refresh(), end()
invalidates direct references to the data members of incarnations.

This operation can raise one of the following exceptions

® PERSI ST_STCRE: There is no associated Resour ce

® | NVALI D_TRANSACTI ON: The given transaction does not match the
transaction of the Resour ce associated with this session

A Resour ce can be prepared or committed in one phase only if it is not
actively associated with any session. If asked to prepare or commit in one
phase when still in use, the Resour ce rolls back. A Resour ce ends any
session-Resour ce association in which it is involved when it is prepared,
committed in one phase, or rolled back.

Note: In XA terms, start () corresponds to xa_start () with either the
TMNCFLAGS, TMIA N or TMRESUME flag. end corresponds to xa_end() with the
TMBUCCESS or the TMFAI L flag. suspend corresponds to xa_end() with the
TVBUSPEND or TMBUSPEND | TMM GRATE flag.

get_association_status() returns the status of the association (if any) with
this session. The association status can be one of these Associ at i onSt at us
constants:

NO _ASSCO ATI ON
ACTI VE
SUSPENDED

ENDI NG

See “Activating a Transactional Session” on page 445 for more information
about a transactional session’s different states.

get_transaction() returns the coordinator of the transaction with which the
Resour ce associated with this session is registered. get _transacti on returns
a nil object reference when the session is not associated with a Resour ce.

Accessing Storage Objects

When data is accessed through a transactional session that is actively
associated with a Resour ce, a number of undesirable phenomena can occur:

* Dirty reads: A dirty read occurs when a Resour ce is used to read the
uncommitted state of a storage object. For example, suppose a storage
object is updated using Resour ce 1. The updated storage object’s state
is read using Resour ce 2 before Resour ce 1 is committed. If Resource 1
is rolled back, the data read with Resour ce 2 is considered never to have
existed.

* Nonrepeatable reads: A nonrepeatable read occurs when a Resour ce is
used to read the same data twice but different data is returned by each
read. For example, suppose Resource 1 is used to read the state of a
storage object. Resource 2 is used to update the state of this storage
object and Resour ce 2 is committed. If Resource 1 is used to reread the
storage object’s state, different data is returned.

The degree of an application’s exposure to these occurrences depends on the
isolation level of the Resour ce. The following isolation levels are defined:

Table 26: /solation levels

Isolation level Exposure risk

READ_UNCOMM TTED Dirty reads and the nonrepeatable reads
READ COW TTED Only nonrepeatable reads

SER ALI ZABLE None

Note: Isolation level REPEATABLE READ s reserved for future use.

get_isolation_level_of_associated_resource() returns the isolation level of
the Resour ce associated with this session. If no Resour ce is associated with
this session, the operation raises the standard exception PERSI ST_STCRE.

resource_isolation_level (read-only attribute) returns the isolation level of the
Resour ce objects created by this session.

449

Chapter 19 | Persistent State Service

Basic Session Management Operations

The CosPersi stent Stat e: : Transact i onal Sessi on interface inherits a
number of operations (via CosPer si st ent St at e: : Sessi on) from the
CosPer si st ent St at e: : Cat al ogBase interface. Cat al ogBase operations
provide access to a datastore’s storage homes and storage objects; it also
provides several memory-management operations:

nmodul e CosPersistentState {
i nterface Catal ogBase {
readonly attribute AccessMde access_node;

St or ageHoneBase
find_storage_hone(in string storage_home_type_id)
rai ses (Not Found);

St or age(hj ect Base
find_by_pid(in Pid the_pid) raises (NotFound);

voi d flush();
void refresh();
void free_all ();
voi d close();
b
...
I ocal interface Session : Catal ogBase {};

i nterface Transacti onal Session : Session {
...

}
}s

find_storage_home() returns a storage home instance that matches the
supplied storagehome ID. If the operation cannot find a storage home, it
raises a Not Found exception.

find_by_pid() searches for the specified storage object among the storage
homes that are provided by the target session. If successful, the operation
returns an incarnation of the specified storage object; otherwise, it raises the
exception Not Found.

450

Accessing Storage Objects

flush() writes to disk any cached modifications of storage object incarnations
that are managed by this session. This operation is useful when an
application creates a new storage object or updates a storage object, and the
modification is not written directly to disk. In this case, you can call f I ush()
to rid the cache of “dirty” data.

refresh() refreshes any cached storage object incarnations that are accessed
by this session. This operation is liable to invalidate any direct reference to a
storage object incarnation’s data member.

free_all() sets to O the reference count of all PSDL storage objects that have
been incarnated for the given session.

PSDL storage object instances are reference-counted by the application.
Freeing references can be problematic for storage objects that hold references
to other storage objects. For example, if storage object A holds a reference to
storage object B, A’s incarnation owns a reference count of B's incarnation.
When storage objects form a cyclic graph, the corresponding instances own
reference count of each other. For example, the following PSDL storage type
definition contains a reference to itself:

abstract storagetype Person {
readonly state string full_nane;
stat e ref <Person> spouse;

b

When a couple is formed, each Person incarnation maintains the other
Person’s incarnation in memory. Therefore, the cyclic graph can never be
completely released even if you correctly release all reference counts. In this
case, the application must call free_al | ().

close() terminates the session. When the session is closed, it is also flushed.
If the session is associated with one or more transactions (see below) when
cl ose() is called, these transactions are marked as roll-back only.

Getting a Storage Object Incarnation

After you have an active session, you use this session to get a storage home;
you can obtain from this storage home incarnations of its storage objects. You
can then use these incarnations to manipulate the actual storage object data.

451

Chapter 19 | Persistent State Service

To get a storage home, call fi nd_st orage_hone() on the session. You
narrow the result to the specific storage home type.

Call one of the following operations on the storage home to get the desired
storage object incarnation:

® One of the find operations that are generated for key in that storage
home. (see page 427).

¢ find_by_short_pid()

Querying Data

Orbix PSS provides simple JDBC-like queries.You use an I T_PSS: :
Cat al ogBase to create a Statement. For example:

I T_PSS:: Statement _var stnt
= catal og->it_create_statenent();

Then you execute a query that returns a result set:

[l Gets all accounts
I T PSS : Resul t Set_var result_set
= stm->execute_query("sel ect ref(h) fromPSDL: Bank: 1.0 h");
while (result_set->next())
{
CORBA: : Any_var ref_as_any = result_set->get(1);
BankDenoSt or e: : Account Ref ref;
ref _as_any >>= ref;
cout << "account _id: << ref->account _i d()
<< " balance: $" << ref->bal ance()
<< endl;

}
result_set->close(); // optional in C++
statenment->close(); // optional in C+

Orbix PSS supports the following form of query:
sel ect ref(h) fromhome_type id h

The alias must be h.

452

Accessing Storage Objects

Associating CORBA and Storage Objects

The simplest way to associate a CORBA object with a storage object is to
bind the identity of the CORBA object (its oi d, an octet sequence) with the
identity of the storage object.

For example, to make the storage objects stored in storage home Bank
remotely accessible, you can create for each account a CORBA object whose
object ID is the account number (account _i d).

To make such a common association easier to implement, each storage
object provides two external representations of its identity as octet
sequences: the pi d and the short_pi d:

®* short_pid is a unique identifier within a storage home and its derived
homes.

® pidis a unique identifier within the datastore.

Thread Safety

A storage object can be used like a struct: it is safe to read concurrently the
same storage object incarnation, but concurrent writes or concurrent read/
write are unsafe. This behavior assumes that a writer typically uses its own
transaction in a single thread; it is rare for an application to make concurrent
updates in the same transaction.

Flushing or locking a storage object is like reading this object. Discarding an
object is like updating it.

A number of CosPer si stent St at e: : Sessi on operations are not thread-safe
and should not be called concurrently. No thread should use the target
session, or any object in the target session such as a storage object
incarnation or storage home, when one of these operations is called:

Session::free_all ()
Session::it_discard_all()
Session: :refresh()

Session: : cl ose()

Transacti onal Session::start()
Transact i onal Sessi on: : suspend()
Transact i onal Sessi on: : end()

453

Chapter 19 | Persistent State Service

OTS operations are thread-safe. For example one thread can call
tx_current->rol | back() while another thread calls start (), suspend(), or
end() on a session involved in this transaction, or while a thread is using
storage objects managed by that session.

PSDL Language Mappings

454

Application code that uses PSS interacts with abstract storage types, abstract
storage homes and types defined in the CosPer si st ent St at e module. This
code is completely shielded from PSS-implementation dependencies by the
C++ language mapping for abstract storage types, abstract storage homes,
and the types defined by the CosPer si st ent St at e module.

Storage types and storage homes are mapped to concrete programming
language constructs with implementation-dependent parts such as C+ +
members.

The C++ mapping for PSDL and IDL modules is the same. The mapping for
abstract storage types and abstract storage homes is similar to the mapping
for IDL structs and abstract valuetypes; the mapping for storage types and
storage homes is similar to the mapping for IDL structs or valuetypes.

Implementation of operations in abstract storage types and abstract storage
homes are typically provided in classes derived from classes generated by the
psdl backend to the IDL compiler.

The CosPer si st ent St at e module defines factories to create instances of all
user-defined classes, and operations to register them with a given connector:

nodul e CosPersistentState {
native StorageChject Factory;
native StorageHoneFact ory;
native SessionFactory;

i nterface Connector {

St or age(hj ect Factory
regi ster_storage_object_factory(
in Typeld storage_type_nane,
in Storage(hj ect Factory factory
);

PSDL Language Mappings

St or ageHoneFact ory

regi st er _storage_hone_f act ory(
in Typeld storage_hone_type_nare,
in StorageHoneFactory factory

)

Sessi onFact ory

regi ster_sessi on_factory(
in Typeld catal og_type_nane,
in SessionFactory factory

)

1.
b
b
Each regi st er _ operation returns the factory previously registered with the
given name; it returns NULL if there is no previously registered factory.

The CosPersi st ent St at e module also defines two enumeration types:

nmodul e CosPersistentState {
enum Vi el dRef { YIELD REF };
enum For Updat e { FOR_UPDATE };
H

YieldRef defines overloaded functions that return incarnations and
references.

ForUpdate defines an overloaded accessor function that updates the state
member.

abstract storagehome

The language mappings for abstract storage homes are defined in terms of an
equivalent local interface: the mapping of an abstract storage home is the
same as the mapping of a local interface of the same name.

Inherited abstract storages homes map to inherited equivalent local
interfaces in the equivalent definition.

455

Chapter 19 | Persistent State Service

The equivalent local interface of an abstract storage home that does not
inherit from any other abstract storage home inherits from local interface
CosPer si stent St at e: : St or ageHoneBase.

abstract storagetype

456

An abstract storage type definition is mapped to a C+ + abstract base class
of the same name. The mapped C++ class inherits (with public virtual
inheritance) from the mapped classes of all the abstract storage type
inherited by this abstract storage type.

For example, given this PSDL abstract storage type definition:

abstract storagetype A {}; // inplicitly inherits
/1 CosPersistent State:: StorageChj ect
abstract storagetype B: A {};

the IDL compiler generates the following C++ class:

class A
public virtual CosPersistentState:: StorageChject {};
class ARef { /* ... *I};
class B: public virtual A {};
class BRef {/*... */};

The forward declaration of an abstract storage type is mapped to the forward
declaration of its mapped class and Ref class.

Ref Class

For each abstract storage type and concrete storage type definition, the IDL
compiler generates the declaration of a concrete C++ class with Ref
appended to its name.

A Ref class behaves like a smart pointer: it provides an oper at or->() that
returns the storage object incarnation corresponding to this reference; and
conversion operators to convert this reference to the reference of any base

type.

PSDL Language Mappings

Note: Ref types manage memory in the same way as _pt r reference types.
For functionality that is equivalent to a _var reference type, the IDL compiler
(with the - psdl switch) also generates Ref _var types (see page 459).

A pointer to a storage object incarnation can be implicitly converted into a
reference of the corresponding type, or of any base type. Each reference also
has a default constructor that builds a NULL reference, and a number of
member functions that some implementations might be able to provide
without loading the referenced object.

Each Ref class has the following public members:

® Default constructor that creates a NULL reference.

* Non-explicit constructor takes an incarnation of the target storage type.
* Copy constructor.

® Destructor.

® Assignment operator.

* Assignment operator that takes an incarnation of the target [abstract]
storage type.

® operator->() that dereferences this reference and returns the target
object. The caller is not supposed to release this incarnation.

® deref () function that behaves like operator->()

* release() function that releases this reference

® destroy_object () that destroys the target object

® get_pid() function which returns the pid of the target object.

® get_short_pid() function which returns the short-pid of the target
object.

® is_null() function that returns true only if this reference is NULL.

® get_storage_hone() function that returns the storage home of the target
object.

® For each direct or indirect base class of the abstract storage type, a
conversion operator that converts this object to the corresponding Ref .

Each reference class also provides a typedef to its target type, target type.
This is useful for programming with templates.

For example, given this abstract storage type:

abstract storagetype A {};

457

Chapter 19 | Persistent State Service

the IDL compiler generates the following reference class:

cl ass ARef
{
publi c:
typedef A _target_type;

/1 Constructors

ARef () throw ();

ARef (A* target) throw ();
ARef (const ARef& ref) throw ();
/1 Destructor

~ARef () throw ();

/1 Assi gnrment oper at or

ARef & operator=(const ARef& ref) throw ();
ARef & operat or=(T* obj) throw ();

/1 Conversi on operators
operator CosPersistent State:: StorageChj ect Ref () const throw();

/1 Cher menber functions

void release() throw ();

A* operator->() throw (CCRBA: : Syst enException);

A* deref() throw (OORBA: : Syst enException);

voi d destroy_obj ect() throw (GORBA : Syst enException);

CosPersi stent Stat e: : Pi d*
get _pid() const throw (CCRBA: : Syst enExcepti on);

CosPersi stent Stat e: : Short Pi d*
get _short_pi d() const throw (OORBA : Syst enExcepti on);

CCRBA: : Bool ean is_null () const throw ();

CosPer si stent St at e: : St or ageHoneBase_pt r
get _storage_hone() const throw (CORBA: : Syst enException);

/1 additional inplenentation-specific nenbers

458

PSDL Language Mappings

For operation parameters, Refs are mapped as follows:

PSDL C++
inref<sS SRef

i nout ref<S> SRef &
out ref<S> SRef _out
(return) ref<S SRef

Ref_var Classes

The _var class associated with a _var provides the same member functions
as the corresponding Ref class, and with the same behavior. It also provides
these members:

®* Theref() function returns a pointer to the managed reference, or O if
the managed reference is NULL.
® Constructors and assignment operators that accept Ref pointers.

State Members

Each state member is mapped to a number of overloaded public pure virtual
accessor and modifier functions, with the same name as the state member.
These functions can raise any CORBA standard exception.

A state member of a basic C++ type is mapped like a value data member.
There is no modifier function if the state member is read-only.

For example, the following PSDL definition:

/1 PSDL
abstract storagetype Person {
state string nane;

b
is mapped to this C+ + class:
Il CH+
class Person : public virtual CosPersistentState:: StorageChj ect {
publi c:
virtual const char* name() const = 0;
virtual void nane(const char* s) = 0; // copies

459

Chapter 19 | Persistent State Service

virtual void nane(char* s) = 0; /1 adopts

virtual void nane(const OCRBA :string_var & = 0;
h
A state member whose type is a reference to an abstract storage type is
mapped to two accessors and two modifier functions. One of the accessor
functions takes no parameter and returns a storage object incarnation, the
other takes a CosPer si stent Stat e: : Yi el dRef parameter and returns a
reference. One of the modifier functions takes an incarnation, the other one
takes a reference. If the state member is read-only, only the accessor
functions are generated.

For example, the following PSDL definition:
abstract storagetype Bank;
abstract storagetype Account {

state long id;
state ref<Bank> ny_bank;

b
is mapped to this C++ class:
Il CH
class Account : public virtual CosPersistentState:: StorageChject {
publi c:
virtual CCRBA :Long id() = O;
virtual void id(CORBA :Long I) = 0O;
virtual Bank* ny_bank() const= 0;
virtual BankRef ny_bank
(CosPersistentState::VYiel dRef yr) const = 0;
virtual void ny_bank(BankRef b) = 0O;
b

All other state members are mapped to two accessor functions—one
read-only, and one read-write—and one modifier function. If the state
member is read-only, only the read-only accessor is generated. For example,
the following PSDL definition:

abstract storagetype Person {
readonly state string nane;
state OCRBA : Cctet Seq phot o;

b
is mapped to this C++ class:

460

PSDL Language Mappings

[l C++
class Person : public virtual CosPersistentState:: StorageChj ect {
public:

virtual const char* name() = O;

virtual const CctetSeg& photo() const = O;

virtual CctetSeq& phot o(CosPersi stent St ate: : For Updat e fu)

=0;
virtual void photo(const CctetSeq& new one) = 0;

}

Operation Parameters

Table 27 shows the mapping for parameters of type S and ref<S> (where S
is an abstract storage type:.

Table 27: Mapping for PSDL parameters

PSDL parameter C++ parameter
in S param const S* param
i nout S param S& param

out S param S out param
(return) S (return) St

storagetype

A st or aget ype is mapped to a C++ class of the same name. This class
inherits from the mapped classes of all the abstract storage types

implemented by the storage type, and from the mapped class of its base
storage type, if any. This class also provides a public default constructor.

All state members that are implemented directly by the storage type are
implemented by the mapped class as public functions.

For example, the following PSDL definition:

abstract storagetype Dictionary {
readonly state string froml anguage;
readonly state string to_| anguage;
void insert(in string word, in string translation);

461

Chapter 19 | Persistent State Service

string translate(in string word);

b
/1 a portabl e inplenentation:

struct Entry {
string from
string to;
b
typedef sequence<Entry> EntrylLi st;

storagetype Portabl eDictionary inplenments Dctionary {
state EntryList entries;

h
is mapped to this C++ class:
Il CH
class PortableD ctionary : public virtual Dctionary /* ... */ {
publi c:
const char* froml anguage() const;
const char* to_| anguage() const;
const EntryList& entries() const;
EntryLi st & entries(CosPersistent State:: For Update fu);
void entries(const EntryList&);
Portabl eD ctionary();
...
h

For each storage type, a concrete Ref class is also generated. This Ref class
inherits from the Ref classes of all the abstract storage types that the storage
type implements, and from the Ref class of the base storage type, if any.

The IDL compiler generates Ref class declarations for a storage type exactly
as it does for an abstract storage type. For more information, see page 456.

storagehome

462

A st or agehone is mapped to a C++ class of the same name. This class
inherits from the mapped classes of all the abstract storage homes
implemented by the storage home, and from the mapped class of its base
storage home, if any. This class also provides a public default constructor.

PSDL Language Mappings

A storage home class implements all finder operations implicitly defined by
the abstract storage homes that the storage home directly implements.

The mapped C++ class provides two public non-virtual _creat e() member
functions with these signatures:

* A parameter for each storage type state member. This _create()
function returns an incarnation.

* A parameter for each storage type state member, and a
CosPersi stent State: : Vi el dRef parameter. This _creat e() function
returns a reference.

It also provides two public virtual _creat e() member functions with these
signatures:

* A parameter for each storage type's reference representation members.
This _create() function returns an incarnation

* A parameter for each storage type's reference representation members,
and a CosPersi stent State::Yi el dRef parameter. This _create()
function returns a reference.

For example, given the following definition of storage home
Por t abl eBookSt or e:

abstract storagetype Book {
readonly state string title;
state float price;
b
abstract storagehone BookStore of Book {};

st or aget ype Portabl eBook i npl enents Book {
ref(title)
b

st or agehomne Port abl eBookSt or e of Port abl eBook i npl erent s BookSt or e
{};

the IDL compiler (with the pss_r backend) generates the C+ + class
Por t abl eBook St or e:

[l C++
class Portabl eBookStore : public virtual BookStore /* ... */ {
publi c:
virtual Portabl eBook* _create(const char* title, Float price);
virtual Portabl eBook* _create();

463

Chapter 19 | Persistent State Service

virtual Portabl eBookRef _create(
const char* nane,
Fl oat price,
CosPersistent State:: Yiel dRef yr

);

virtual Portabl eBookRef _create(
const char* title,
CosPersistent State:: Yiel dRef yr

)s

...

b

Factory Native Types

Native factory types St or ageChj ect Fact ory, St or ageHoneFact ory, and
Sessi onFact ory map to C+ + classes of the same names:

namespace CosPersistentState {

tenpl ate cl ass<T>
class Factory {
public:
virtual T* create()
t hrow (Syst enException) = O;
virtual void _add ref() {}
virtual void _renove_ref() {}
virtual ~Factory() {}

h
typedef Fact ory<St or ageChj ect > St or agehj ect Fact ory;

typedef Fact ory<St or ageHomeBase> St or ageHoneFact ory;
t ypedef Fact ory<Sessi on> Sessi onFact ory;

464

Event Service

This chapter provides a detailed description of the CORBA
event service communications model and describes how
Orbix 2000 implements this model.

Orbix 2000 implements the CORBA event service which is defined as part of
the CORBAservices specification. This specification defines a model for
communications between ORB applications that supplements the direct
operation call system that client/server applications normally use.

The CORBAservices specification extends the core CORBA specification with
a set of services commonly required in ORB applications. Orbix 2000 sup-
ports [IOP for interoperable communications between CORBA implementa-
tions. Consequently, any IlIOP-compliant ORB can interact with Orbix 2000.

Event Service Basics

The CORBA event service specification defines a model of communication
that allows an application to send an event that will be received by any
number of objects. The model provides two approaches to initiating event
communication. For each of these approaches, event communication can
take two forms.

Figure 42 illustrates the standard CORBA model for communication between
distributed applications.

In this model, a client application calls an IDL operation on a specified object
in a server. The client waits for the call to complete and then receives
confirmation of the return status. For any operation call there is a single
client and a single server, and each must be available for the call to succeed.

This simple, one-to-one communication model is fundamental to the CORBA
architecture. However, some ORB applications need a more complex,
indirect communication style. The CORBA event service defines a

465

Chapter 20 | Event Service

466

Client Server

1.Client invokes operation
| | \(Target
<< Object

2.Operation returns

Figure 42: CORBA model for basic client/server communications

communication model that allows an application to send a message to
objects in other applications without any knowledge about the objects that
receive the message.

The CORBA event service introduces the concept of events to CORBA
communications. An event originates at an event supplier and is transferred
to any number of event consumers. Suppliers and consumers are completely
decoupled: a supplier has no knowledge of the number of consumers or their
identities, and consumers have no knowledge of which supplier generated a
given event.

In order to support this model, the CORBA event service introduces to
CORBA a new architectural element, called an event channel. An event
channel mediates the transfer of events between the suppliers and
consumers as follows:

1. The event channel allows consumers to register interest in events, and
stores this registration information.

2. The channel accepts incoming events from suppliers.

3. The channel forwards supplier-generated events to registered
consumers.

Suppliers and consumers connect to the event channel and not directly to
each other (Figure 43). From a supplier's perspective, the event channel
appears as a single consumer; from a consumer’s perspective, the event
channel appears as a single supplier. In this way, the event channel
decouples suppliers and consumers.

Event Service Basics

Q Consumer
Supplier@ -
. O Consumer
Supplier ‘ Event channel ‘
Q Consumer
Supplier
A
Consumer
Event propagation

>

Figure 43: Suppliers and Consumers Communicating through an Event Channel

Any number of suppliers can issue events to any number of consumers using
a single event channel. There is no correlation between the number of
suppliers and the number of consumers, and new suppliers and consumers
can be easily added to the system. In addition, any supplier or consumer can
connect to more than one event channel.

A typical example that uses an event-based communication model is that of a
spreadsheet cell. Many documents might be linked to a spreadsheet cell and
these documents need to be notified when the cell value changes. However,
the spreadsheet software should not need knowledge of each document
linked to the cell. When the cell value changes, the spreadsheet software
should be able to issue an event which is automatically forwarded to each
connected document.

CORBA defines the event service at a level above the ORB architecture.
Suppliers, consumers and event channels can be implemented as ORB
applications, while events are defined using standard IDL operation calls.
Suppliers, consumers and event channels each implement clearly defined
IDL interfaces that support the steps required to transfer events in a
distributed system.

Figure 44 illustrates an implementation of event propagation in a CORBA
system. In this example, suppliers are implemented as CORBA clients; the
event channel and consumers are implemented as CORBA servers. An event

467

Chapter 20 | Event Service

Q Consumer
. \ |
Supplier
pPp C ‘ Event channel : O Consumer
Q Consumer
1. Supplier calls operation 2. Event channel calls operation

on event channel on each consumer

Figure 44: A sample implementation of event propagation

occurs when a supplier invokes a clearly defined IDL operation on an object
in the event channel application. The event channel propagates the event by
invoking a similar operation on objects in each of the consumer servers. To
make this possible, the event channel application stores a reference to each
of the consumer objects, for example, in an internal list.

This is not the only way in which the concept of events can map to a CORBA
system. In particular, the CORBA event service identifies two approaches to
initiating the propagation of events, and these affect the implementation
architecture. “Initiating Event Communication” on page 468 addresses this
topic in detail.

“Types of Event Communication” on page 471 discusses how events can
map to IDL operation calls, and describes how you can associate data with
an event using IDL operation parameters.

Initiating Event Communication

468

CORBA specifies two approaches to initiating the transfer of events between
suppliers and consumers. These approaches are called the push model and
the pull model. In the push model, suppliers initiate the transfer of events by
sending those events to consumers. In the pull model, consumers initiate the
transfer of events by requesting those events from suppliers.

This section illustrates each approach in turn, and then describes how these
models can be mixed in a single system.

Event Service Basics

Push Model

In the push model, a supplier generates events and actively passes them to a
consumer. In this model, a consumer passively waits for events to arrive.
Conceptually, suppliers in the push model correspond to clients in normal
CORBA applications, and consumers correspond to servers.

Figure 45 illustrates a push model architecture in which push suppliers
communicate with push consumers through an event channel.

Push Consumer
Push Supplier

Push Consumer

|]

Push Supplier ‘ Event Channel |

Push Consumer

Push Supplier

RO O

Push Consumer

OO DO

Event Propagation

Figure 45: Push model suppliers and consumers communicating through an event
channel

In this architecture, a supplier initiates the transfer of an event by invoking an
IDL operation on an object in the event channel. The event channel invokes a
similar operation on an object in each consumer that has registered with the
channel.

Pull Model

In the pull model, a consumer actively requests that a supplier generate an
event. In this model, the supplier waits for a pull request to arrive. When a
pull request arrives, event data is generated by the supplier and returned to
the pulling consumer. Conceptually, consumers in the pull model correspond
to clients in normal CORBA applications and suppliers correspond to servers.

469

Chapter 20 | Event Service

470

Figure 46 illustrates a pull model architecture in which pull consumers
communicate with pull suppliers through an event channel.

Pull consumer
Pull supplier

Pull consumer

Pull supplier Event channel

Pull consumer
Pull supplier

Q)¢

Pull consumer
Event propagation

"OOO0

Figure 46: Pull model suppliers and consumers communicating through an event
channel

In this architecture, a consumer initiates the transfer of an event by invoking
an IDL operation on an object in the event channel application. The event
channel then invokes a similar operation on an object in each supplier. The
event data is returned from the supplier to the event channel and then from
the channel to the consumer which initiated the transfer.

Mixing Push and Pull Models in a Single System

Because suppliers and consumers are completely decoupled by an event
channel, the push and pull models can be mixed in a single system. For
example, suppliers might connect to an event channel using the push model,
while consumers connect using the pull model as shown in Figure 47.

In this case, both suppliers and consumers must participate in initiating
event transfer. A supplier invokes an operation on an object in the event
channel to transfer an event to the channel. A consumer then invokes another
operation on an event channel object to transfer the event data from the
channel. Unlike the case in which consumers connect using the push model,
the event channel takes no initiative in forwarding the event. The event

Event Service Basics

Pull consumer

Push supplier

Pull consumer
Push supplier Event channel

Pull consumer
Push supplier

Pull consumer
Event propagation

O
"OOO0O0

Figure 47: Push model suppliers and pull model consumers in a single system

channel stores events supplied by the push suppliers until some pull
consumer requests an event, or until a push consumer connects to the event
channel.

Types of Event Communication

The CORBA event service maps an event to a successfully completed
sequence of operation calls. The operations and the sequence of calls are
clearly defined for both push and pull models, and data about an event can
be passed as operation parameters or return values. This data is specific to
each application and is generally not interpreted by implementations of the
CORBA event service, as in Orbix 2000.

The CORBA event service specification defines that event communication can
take one of the two forms, typed or untyped.

Note: The event service implementation in Orbix 2000 supports only
untyped communication.

471

Chapter 20 | Event Service

Untyped Event Communication In untyped event communication, an event
is propagated by a series of generic push() or pul | () operation calls. The
push() operation takes a single parameter which stores the event data. The
event data parameter is of type any, which allows any IDL defined data type
to be passed between suppliers and consumers. The pul | () operation has no
parameters but transmits event data in its return value, which is also of type
any. Clearly, in both cases, the supplier and consumer applications must
agree about the contents of the any parameter and return value if this data is
to be useful.

Typed Event Communication In typed event communication, a programmer
defines application-specific IDL interfaces through which events are
propagated. Rather than using push() and pul | () operations and
transmitting data using an any, a programmer defines an interface that
suppliers and consumers use for the purpose of event communication. The
operations defined on the interface can contain parameters defined in any
suitable IDL data type. In the push model, event communication is initiated
simply by invoking operations defined on this interface. The pull model is
more complex because event communication is initiated by invoking
operations on an interface that is specially constructed from the
application-specific interface that the programmer defines.

Programming Interface for Untyped Events

472

The CORBA event service specification defines a set of interfaces that support
the push and pull models of initiating the transfer of events in both typed and
untyped format. Orbix 2000 supports only untyped events. This section gives
details of the interfaces for these models. The CORBA event service
specification defines the roles of consumer, supplier and event channel by
describing IDL interfaces that each model must support. The operations on
these interfaces allow consumers and suppliers to register with an event
channel to enable the propagation of events. The CORBA event service for
untyped events also defines a number of administration interfaces that allow
suppliers and consumers to register with an event channel to allow the
transfer of events between them.

You can find a complete listing of all interfaces relating to the CORBA event
service in the Orbix 2000 Programmer’s Reference.

Programming Interface for Untyped Events

Registration of Suppliers and Consumers with an Event Channel

A supplier connects to an event channel to indicate that it wishes to transfer
events to consumers through that channel. A consumer connects to an event
channel to register its interest in any events supplied through that channel.
When a supplier or consumer no longer wishes to send or receive events, the
application can disconnect itself from the event channel. In some cases, the
event channel might need to disconnect a supplier or consumer explicitly.

The CORBA event service defines a set of interfaces that supports untyped
event transfer using the push and pull models. These interfaces are described
in the remainder of this section.

Push Model for Untyped Events

Four IDL interfaces support connection to and disconnection from event
channels using the push model:

PushSuppl i er
PushConsurrer
Pr oxyPushConsurrer
Pr oxyPushSuppl i er

The interfaces PushSuppl i er and ProxyPushConsurer allow suppliers to
supply events to an event channel.

The interfaces PushConsumer and Pr oxyPushSuppl i er are specific to
consumers, allowing them to receive events from an event channel.

These four interfaces are defined in IDL as follows:

nmodul e CosEvent Conm {
exception D sconnected {

}

interface PushConsurrer {
void push (in any data) raises (D sconnected);
voi d di sconnect _push_consuner ();

s

interface PushSupplier {
voi d di sconnect _push_supplier();

s

473

Chapter 20 | Event Service

474

nodul e CosEvent Channel Admin {
exception A readyConnect ed {

}s

exception TypeError {
b

i nterface ProxyPushConsuner : CosEvent Conm : PushConsuner {
voi d connect _push_supplier (
i n CosEvent Conm : PushSuppl i er push_suppli er)
rai ses (Al readyConnected);

}s

i nterface ProxyPushSupplier : CosEvent Comm: PushSupplier {
voi d connect _push_consuner (
i n CosEvent Conm : PushConsurrer push_consuner)
rai ses (Al readyConnected, TypeError);

}

Connecting a Supplier A supplier initiates connection to an event channel by
obtaining a reference to an object of type Pr oxyPushConsuner in the channel.
The supplier application might wish to be notified if the event channel
terminates the connection. If so, the supplier then invokes

connect _push_suppl i er () on that object, passing a reference to an object of
type PushSuppl i er as an operation parameter. If the ProxyPushConsuner is
already connected to a PushSuppl i er, connect _push_suppl i er () will raise
the exception Al r eadyConnect ed.

Connecting a Consumer A consumer first obtains a reference to a

Pr oxyPushSuppl i er object implemented in the event channel. In order to
register its interest in events from the channel, the consumer then invokes
connect _push_consuner () on the ProxyPushSuppl i er object. The consumer
passes a reference to an object of type PushConsuner to the operation call.

If ProxyPushSuppl i er is already connected to a PushConsuner,
connect _push_consuner () will raise the exception Al r eadyConnect ed.

Programming Interface for Untyped Events

Push Supplier Event Channel Push Consumer

p |© Pr oxyPushConsuner

Push Supplier Pr oxyPushSuppl i er G

Push Consuner

O

connect _push_supplier() connect _push_consuner ()

Figure 48: Push supplier and push consumer connecting to an event channel in the
untyped model

Figure 48 illustrates how a supplier and consumer connect to an event
channel. Note that there are no dependencies between the connection of the
supplier and the connection of the consumer.

Pull Model for Untyped Events

A similar set of IDL interfaces supports connection to and disconnection from
event channels in the pull model. These interfaces are:

Pul | Suppl i er
Pul | Consurrer
Pr oxyPul | Consurrer
ProxyPul | Suppl i er

The interfaces Pul | Consumer and ProxyPul | Suppl i er allow consumers to
request events from an event channel.

The interfaces Pul | Suppl i er and Pr oxyPul | Consuner allow an event channel
to request events from suppliers.

The pull model interfaces are defined in IDL as follows:

nodul e CosEvent Conm {
exception Di sconnected {

s

interface Pull Supplier {
any pull () raises (D sconnected);
any try pull (out bool ean has_event) raises (D sconnected);
voi d di sconnect _pul | _supplier();

s

475

Chapter 20 | Event Service

476

}s

i nterface Pull Consurrer {
voi d di sconnect _pul | _consuner ();

}

nodul e CosEvent Channel Admin {

}

exception A readyConnect ed {

}

exception TypeError {
h

i nterface ProxyPul | Supplier : CosEvent Conm : Pul | Supplier {
voi d connect _pul | _consuner (
i n CosEvent Conm : Pul | Consurrer pul | _consuner)
rai ses (Al readyConnected);

}

i nterface ProxyPul | Consuner : CosEvent Conm : Pul | Consuner {
voi d connect _pul | _supplier (
i n CosEvent Conm : PushSuppl i er pul | _supplier)
rai ses (Al readyConnected, TypeError);

Connecting a Consumer In the pull model, the transfer of events is initiated
by consumers. A consumer initiates connection to an event channel by
obtaining a reference to an object of type ProxyPul | Suppl i er in the channel.
The consumer application might wish to be notified if the event channel
terminates the connection. If so, it invokes connect pul | _consumer () on
the ProxyPul | Suppl i er object, passing a reference to an object of type

Pul | Consurer as an operation parameter. If the ProxyPul | Suppl i er is
already connected to a Pul | Consuner, connect _pul | _consuner () throws
exception Al r eadyConnect ed.

Programming Interface for Untyped Events

Connecting a Supplier To connect to an event channel, a pull supplier first
obtains a reference to a ProxyPul | Consuner object implemented in the event
channel. The supplier then invokes connect _pul | _suppl i er() on the
ProxyPul | Consuner object, passing a reference to an object of type

Pul | Suppl i er as the operation parameter. If the ProxyPul | Consurrer is
already connected to a Pul | Suppl i er, connect _pul | _supplier() throws
exception Al r eadyConnect ed.

Pull Supplier Event Channel Pull Consumer

w Q ProxyPul | Consuner Pul | Consuner
@, O

Pul | Suppl i er

ProxyPul | Suppl i er C
| ‘ \

connect _pul | _supplier() connect _pul | _consurer ()

Figure 49: Pull supplier and pull consumer connecting to an event channel in the
untyped model

Figure 49 illustrates how a pull supplier and pull consumer connect to an
event channel. Note that there are no dependencies between the connection
of the supplier and the connection of the consumer.

Transfer of Untyped Events Through an Event Channel

The transfer of events from a supplier through an event channel to a
consumer follows a simple pattern. Events originate at a supplier. In the push
model, a supplier pushes events into the event channel which in turn pushes
the events to registered consumers. In the pull model, consumers take the
active role by requesting events from the event channel; the event channel, in
turn, requests events from registered suppliers. Both methods of transfer are
described for untyped events in the remainder of this section.

477

Chapter 20 | Event Service

478

Push Model

The supplier initiates event transfer by invoking push() on a

Pr oxyPushConsuner object in the event channel, passing the event data as a
parameter of type any. The event channel then invokes push() on the
PushConsuner object in each registered consumer, again passing the event
data as an operation parameter. Conceptually, this transfer is as shown in
Figure 50.

Push Supplier Event Channel Push Consumer

o U n

‘ Pr oxyPushConsumner PushConsuner

push() push()

Figure 50: Transfer of an event through an event channel to a consumer using the
untyped push model

Note that the supplier views the event channel as a single consumer and has
no knowledge of the actual consumers. Likewise, the consumer views the
event channel as a single supplier. In this way, the channel decouples the
supplier and consumer.

Pull Model

The consumer initiates event transfer in the pull model. The consumer
initiates event transfer in one of two ways as described below.

pull()

The consumer invokes pul | () on a ProxyPul | Suppli er object in the event
channel. The event channel, if it does not already have an event, invokes
pul I () onthe Pul | Supplier object in each registered supplier.

Programming Interface for Untyped Events

pul | () blocks until an event is available; the operation then returns the event
data in its return value which is of type any. Thus, the consumer application
blocks until the event channel can supply an event. The event channel, in
turn, blocks until some supplier supplies an event to the channel.

try_pull()

The consumer invokes try_pul | () on a ProxyPul | Suppl i er object in the
event channel. The event channel, in turn, invokes try_pul | () on the
Pul | Suppl i er object in each registered supplier.

If no supplier has an event available, try _pul | () sets its boolean has_event
parameter to false and returns immediately. If an event is available from
some supplier, try_pul | () sets the has_event parameter to true and returns
the event data in its return value which is of type any.

Conceptually, the transfer of an event using the pull model is as shown in
Figure 51.

Pull Supplier Event Channel Pull Consumer

> W < (
O ‘ O L

Pul I Suppl i er ProxyPul | Suppl i er

pull ()/ pul 1 ()/
try_pull() try_pull ()

Figure 51: Transfer of an event through an event channel to a consumer using the
untyped pull model

Note that, as in the push model, the channel decouples suppliers and
consumers. The consumer views the event channel as a single supplier and
has no knowledge of the actual suppliers. Likewise, the supplier views the
event channel as a single consumer.

479

Chapter 20 | Event Service

Event Channel Administration Interfaces

480

The CORBA event service specification defines a set of interfaces that support
event channel administration. These interfaces allow a supplier or consumer
to make initial contact with an event channel, and provide a set of standard-
ized operations so that a supplier can obtain a Pr oxyPushConsuner or
ProxyPul | Consuner and a consumer can obtain a ProxyPushSuppl i er or
ProxyPul | Suppl i er object reference.

Each event channel supports the Event Channel interface, which is defined as
follows:

nodul e CosEvent Channel Admin {

i nterface Event Channel {
Consuner Adnmin for_consurers ();
SupplierAdmin for_suppliers ();
voi d destroy ();
H
b
If a supplier or consumer wishes to connect to an event channel, it must first
obtain a reference to an Event Channel object in that channel. It does this by
calling resol ve_intital _references() on "EventService" and narrowing the
resulting reference.

A supplier then invokes for _suppl i ers() on the Event Channel object. This
operation returns a reference to an object of type Suppl i er Adni n, which is
defined as follows:

nodul e CosEvent Channel Admin {
interface SupplierAdmn {
Pr oxyPushConsurrer obt ai n_push_consuner ();
ProxyPul | Consurrer obt ai n_pul | _consuner ();

}

h

To obtain a reference to a ProxyPushConsurer object in the event channel,
the supplier invokes obt ai n_push_consuner () on the Suppl i er Adm n object.
At this point, the supplier is ready to connect to the channel and begin
transferring events using the push model.

Programming Interface for Untyped Events

The supplier invokes obt ai n_pul | _consurer () on the Suppl i er Adni n object
if it wishes to obtain a ProxyPul | Consuner. The supplier is then ready to
connect to the channel and to transfer events using the pull model.

Similarly, a consumer invokes f or _consuners() on an Event Channel object
in order to obtain a reference to an object of type Consuner Admi n, which is
defined as follows:

nodul e CosEvent Channel Adnin {
interface Consurer Admn {
ProxyPushSuppl i er obtai n_push_supplier ();
ProxyPul | Suppl i er obtain_pul | _supplier ();
b

b

If the consumer is using the push model, it then invokes

obt ai n_push_suppl i er () to obtain a reference to a ProxyPushSuppl i er. If
the consumer is using the pull model, it invokes obt ai n_pul | _supplier() to
obtain a reference to a ProxyPul | Suppl i er object in the event channel.

The consumer is then free to register its interest in events propagated through
the channel.

Overview of the Orbix Event Service

The Orbix event service can implement one or more conceptual event
channels. The criteria that determine the number of event channels required
by your application architecture are specific to that application. Some
applications might transfer each of several event types through a single
channel, while others might have multiple channels that act as alternative
sources of a single event type.

Figure 52 illustrates a sample architecture where suppliers and consumers
communicate through two event channels implemented in a single Orbix
server. Note that any given supplier or consumer can connect to multiple
event channels simultaneously. In addition, a supplier or consumer can
connect to event channels in multiple Orbix servers, if required.

Orbix maintains an Event Channel object, a Suppl i er Adm n object and a
Consuner Adm n object for each untyped event channel it implements. An
ORB application contacts an event channel by obtaining a reference to the

481

Chapter 20 | Event Service

Event Channel*

Push supplier

Push supplier

Push consumer

Push consumer

o

\
‘ Event channel 1
\
\

Event channel 2

|
Push consumer

S

Push supplier

Event propagation

Push consumer

buQQ

Figure 52: Sample Orbix event service architecture with two event channels

corresponding Event Channel object. The application then uses this object to
retrieve a reference to the Suppl i er Adm n or the Consuner Admi n object,
depending on whether the application is a supplier or consumer.

The Suppl i er Adm n object creates and manages Pr oxyPushConsuner objects
for a single untyped event channel. For each supplier that connects to the
channel, the Suppl i er Adm n creates a Pr oxyPushConsuner object which the
supplier can use to generate events. Similarly, the Consuner Adm n object
creates and manages a Pr oxyPushSuppl i er object for each consumer that

connects to the event channel.

Components of the Orbix Event Service

An Orbix consumer or supplier is a normal ORB application that
communicates with an Orbix server using standard IDL operation calls.

Consequently, the components of your Orbix implementation include the
complete IDL definitions for the CORBA event service.

482

Programming with the Untyped Push Model

The IDL definitions for the CORBA event service are contained in these files
in the i dl directory:

Table 28: Orbix Event Service IDL Files

IDL File Contents
CosEvent Comm i dl This file contains the CosEvent Commmod-
ule.

CosEvent Channel Admi n. i dl This file contains the
CosEvent Channel Adnmi n module.

event . idl This file contains the IT_Event module

Programming with the Untyped Push Model

From a programmer’s perspective, the event channel is the key element of a
CORBA event service application.

This section describes an ORB application that shows how you can use the
Orbix event service to develop push model suppliers and consumers that
communicate untyped events through event channels.

Overview of a Sample Application

The example described in this section consists of a push supplier and a push
consumer, each of which connects to a single event channel. The supplier
repeatedly pushes an event to the event channel and the data associated
with each event takes the form of a string. The event channel propagates
each event to the consumer, which simply displays the event data. This
application is simple, but it illustrates a series of development tasks that
apply to all Orbix event service applications.

To develop an Orbix event service application, you must implement the
suppliers and consumers as normal ORB applications that communicate with
the event channel through IDL interfaces. The Orbix event service fully
implements the event channel, which is created in the Orbix event service
server application. The IDL definitions for the CORBA event service are
supplied with Orbix.

483

Chapter 20 | Event Service

Developing an Untyped Push Supplier

484

As described in “Transfer of Untyped Events Through an Event Channel” on
page 477, a push supplier initiates the transfer of an event by pushing the
event into an event channel. The event channel then takes responsibility for
forwarding the event to each registered consumer.

This section describes how you can implement a push supplier as an Orbix
application that communicates with a single event channel in an Orbix event
service server. This application acts as a client to several IDL interfaces
implemented in the event channel and acts as a server to the interface
PushSuppl i er, which it implements.

There are three main programming steps in developing a push supplier:

1. Obtain a reference for a ProxyPushConsuner object from the event
channel.

“Obtaining a ProxyPushConsumer from an Event Channel” on page 484
explains this step in detail.

2. Invoke connect _push_supplier() on the ProxyPushConsuner object, to
connect a PushSuppl i er implementation object to the event channel.

“Connecting a PushSupplier Object to an Event Channel” on page 485
explains this step.

3. Invoke push() on the ProxyPushConsuner object to initiate the transfer
of each event.

“Pushing Events to an Event Channel” on page 486 explains this step.

Obtaining a ProxyPushConsumer from an Event Channel

A push supplier needs to obtain a reference for a Pr oxyPushConsuner object
in an event channel in order to transfer events to the channel for later
distribution to consumers. The supplier transfers events by invoking push()
on the target Pr oxyPushConsuner object.

In order to obtain a ProxyPushConsuner object reference from an event
channel, a supplier must implement the following programming steps:

1. Obtain a reference to an Event Channel .

2. Invoke for_suppliers() on the Event Channel object, in order to obtain
a Suppl i er Adm n object reference.

Programming with the Untyped Push Model

3. Invoke obt ai n_push_consuner () on the Suppl i er Adm n object. This
operation returns a ProxyPushConsumer object reference.

Il C++
CCRBA: : (hj ect _var obj Var =
orb->resol ve_initial _references("Event Service");
| T_Event:: Event Channel Factory var factory =
| T_Event: : Event Channel Fact ory: : _narrow obj Var);
i nt channel = factory->create_channel ("ny_channel", id);
CosEvent Channel Admi n: : Suppl i er Admi n_var sa =
channel - >f or _suppl i ers();
CosEvent Channel Adm n: : Pr oxyPushConsurrer _var ppc =
sa- >obt ai n_push_consurrer () ;

Connecting a PushSupplier Object to an Event Channel

When the supplier has retrieved the Event Channel object reference and used
this to obtain a ProxyPushConsuner , the supplier needs to connect an
implementation of the PushSuppl i er interface to the event channel. As
described in “Registration of Suppliers and Consumers with an Event
Channel” on page 473, this interface is defined as follows:

nodul e CosEvent Conm {

interface PushSupplier {
voi d di sconnect _push_supplier ();
S
b
The role of this interface is to allow the event channel to disconnect the
supplier by invoking di sconnect _push_suppl i er (). This can happen if the
event channel closes down.

[l C++

/1 This assunes we have a reference to "Root POA" and have acti vated
/1 this object

CCRBA: : (hj ect _var obj = poa->servant_to_reference(this);

ref = CosEvent Comm : PushSupplier::_narrow(obj);

ppc- >connect _push_suppl i er (obj) ;

Here, the supplier connects an object of this type to an event channel by
calling connect _push_suppl i er () on the ProxyPushConsuner object.

485

Chapter 20 | Event Service

Pushing Events to an Event Channel

The following code extract is a simple demonstration of initiating the transfer
of events:

Il C+
whi l e (!'pushSupplier. conpl ete())

if (orb->work_pending())

{
or b- >per f or m wor k() ;
}
CCRBA : Any a;

a <<= eventDataStri ng;
ppc->push (a);

In this example, the supplier repeatedly pushes an event to the event channel
by calling push() on a ProxyPushConsumer object. The supplier represents
the event data using a simple string, but this is not necessary in general.
push() takes a parameter of type any for the event data, so you can represent
this data using any IDL type.

Note that the supplier stops sending events only when it receives an
incoming di sconnect _push_suppl i er () operation call from the event
channel. As an alternative, the supplier could explicitly disconnect from the
event channel by invoking di sconnect _push_consuner () on the event
channel ProxyPushConsuner object.

Push Supplier Application

To see a complete example of how the above steps fit together, take a look at
the Event Service demos, in <or bi x_2000_i nst al | ati on_di r >/ demos/
events/.

Developing an Untyped Push Consumer

486

A push consumer receives events from an event channel, with no knowledge
of the suppliers from which those events originated. An event channel
propagates an event to a push consumer by invoking push() on a
PushConsuner implementation object in the consumer application. As such,

Programming with the Untyped Push Model

the main functionality of a push consumer is associated with registering a
PushConsuner object with an event channel and receiving incoming operation
calls on that object.

To develop a push consumer application, you must implement the following
steps:

1. Obtain a reference for a ProxyPushSuppl i er object from the event
channel.

“Obtaining a ProxyPushSupplier from an Event Channel” on page 487
explains this step.

2. Connect a PushConsuner implementation object to the event channel, by
invoking connect _push_consuner () on the ProxyPushSuppl i er object.
“Connecting a PushConsumer Object to an Event Channel” on page 488
explains this step.

3. Monitor incoming operation calls.

“Monitoring Incoming Operation Calls” on page 489 explains this step.

Obtaining a ProxyPushSupplier from an Event Channel

Each push consumer connected to an event channel receives every event
raised by every supplier connected to the channel. However, consumers have
no knowledge of the suppliers. Consumers simply connect to an object in the
event channel which acts as a single source of events.

This object is responsible for storing a PushConsuner object reference for
each connected consumer and invoking the push() operation on each of
these references when a supplier transmits an event. The event channel
object which stores consumer references is of type ProxyPushSuppl i er. The
first task in developing a push consumer application is to obtain a reference
to this object.

There are three stages in obtaining a ProxyPushSuppl i er object reference:

1. Obtain a reference to an Event Channel object in the event channel.

2. Invoke for_consuners() on the Event Channel object to obtain a
Consuner Adm n object reference.

3. Invoke obtain_push_supplier() on the Consuner Admi n object. This
operation returns a ProxyPushSuppl i er object reference.

487

Chapter 20 | Event Service

488

You can implement the first of these steps in exactly the manner described
for push supplier applications in “Obtaining a ProxyPushConsumer from an
Event Channel” on page 484. The remaining steps involve normal operation
invocations.

Connecting a PushConsumer Object to an Event Channel

When a consumer has obtained a reference to the Pr oxyPushSuppl i er object
in an event channel, the next step is to register a PushConsumer
implementation object with the Pr oxyPushSuppl i er. The event channel uses
the PushConsurmer object to propagate events to the consumer.

As described in “Registration of Suppliers and Consumers with an Event
Channel” on page 473, the CORBA event service specification defines the
interface PushConsurer as follows:

nodul e CosEvent Conm {
exception D sconnected {};

i nterface PushConsurer {
oneway void push (in any data) raises (D sconnected);
voi d di sconnect _push_consuner ();
b
b
When an event arrives at an event channel, the channel ProxyPushSuppl i er
object invokes push() on each connected consumer, passing the event data
as an any parameter. A consumer can raise a D sconnect ed exception in the
implementation of this call to indicate to the channel that consumer is
disconnected and the event was propagated erroneously. The
di sconnect _push_consuner () operation allows an event channel to
disconnect a consumer, for example if the channel closes down.

Il CH+
PushConsurrer _i servant (orb);
CosEvent Conm : PushConsurrer _var consumner = servant.this();
CosEvent Channel Adm n: : Consurrer Admi n_var ca =
channel - >f or _consuners();
CosEvent Channel Adm n: : ProxyPushSuppl i er_var pps =
ca->obt ai n_push_supplier();
pps- >connect _push_consuner (consuner) ;

}

Programming with the Untyped Push Model

Monitoring Incoming Operation Calls

The main role of the consumer is to receive events from the event channel in
the form of IDL operation calls. In the push event model the consumer is in
effect a server, and therefore must remain available to the event channel until
the event channel explicitly disconnects it. Consequently, the PushConsumer
must process events in a separate thread.

[l C++

Port abl eSer ver: : POAManager _var poa_nanager =
r oot _poa- >t he_PQAManager ;

poa_manager - >acti vate();

whi | e (! pushConsurrer. conpl ete());

if (orb->work_pending()) {
or b->per f ormwor k() ;

}
/1 Do other things

}

pps- >di sconnect _push_suppl i er;

If the consumer receives an invocation on di sconnect _push_consuner (),
then the implementation of this operation sets pcl npl . m di sconnect ed to 1
and breaks the consumer’s event processing loop. Consequently, the
consumer receives all events until the event channel explicitly forces it to
disconnect.

As an alternative, the consumer could explicitly disconnect itself from the
event channel when it no longer wishes to receive events. The consumer does
this by invoking di sconnect _push_suppli er () on the event channel

Pr oxyPushSuppl i er object.

Push Consumer Application

To see a complete example of how the above steps fit together, take a look at
the Event Service demos, in <or bi x_2000 i nstal | ati on_di r>/ dermos/
events/.

489

Chapter 20 | Event Service

Compiling and Running an Event Service
Application

You will need to compile the IDL definitions for the event service as well as
compile and build your application.

IDL Definitions for the Event Service

The CORBA standard IDL interfaces for CORBA event service suppliers,
consumers and event channels are defined in the files CosEvent Conm i dl
and CosEvent Channel Admin.idl in the idl/ong directory and
event.idl intheidl/orbix directory of your Orbix installation. These are
the contents of the IDL files:

Table 29: Orbix Event Service IDL Files

IDL File Contents

CosEvent Commii dl This file contains the CosEvent Coommodule.

CosEvent Channel Adm This file contains the CosEvent Channel Adni n
inidl module.

event.idl This contains the IT_Events module

Compiling an Event Service Application

490

An Orbix event service supplier or consumer application is simply a standard
ORB application that communicates with an event channel server through a
set of IDL interfaces. In addition, both suppliers and consumers implement
IDL interfaces and therefore act as ORB servers.

To compile an Orbix event service application, you should follow the
compilation steps described in the Orbix 2000 Programmer’s Guide. For
example, the following steps are required to build an Orbix application that
communicates with an event channel:

Compiling and Running an Event Service Application

1. Compile the IDL definitions accessed by your application, including
those in the files cosevent s. i dl , cosevent sadnin.idl, and event . i dl
as described in “IDL Definitions for the Event Service” on page 490.

2. Compile any IDL generated C+ + files required by your application.
Compile all other C+ + source files associated with your application.

4. Link the object files from steps 2 and 3 with the appropriate Orbix
libraries.

w

Running an Orbix Event Service Application

The Orbix event service is installed when Orbix 2000 services are installed.
The default service installed uses the ORB name "event".

Before running an Orbix event service application, you must first decide
whether you want to use the default event service or create new copies.

If you want to use new copies, you must register them with the Orbix
implementation repository. You must name your ORBs hierarchically as
children of the default ORB, such as event.event2.

Running your Application

Once you have registered the Orbix event service, you can run your supplier
and consumer applications. In the examples in “Programming with the
Untyped Push Model” on page 483 the order in which you run the consumer
and supplier applications has no effect on the system functionality. You do
not need to register the suppliers or the consumers shown here in the
implementation repository.

Lifetime of Proxy Objects

The event server creates a new proxy object when requested for one. This
object persists until:

1. Disconnect is invoked upon it.
2. The event channel is destroyed.
3. The lIOP connection is closed.

491

Chapter 20 | Event Service

492

The proxy is destroyed in all these cases. It is not possible perform another
invocation on the object after that, including push(), pul I (), try_pull (),
connect (), or di sconnect () . If an attempt is made to perform an operation
on the destroyed proxy, an | N\VALI D CBJECT REFERENCE exception is thrown.

If a Pul | Consumer has invoked pul | () upon a ProxyPul | Suppl ier, and
meanwhile di sconnect _pul | _suppl i er () is invoked upon the

ProxyPul | Suppl i er, the pul | () throws a D sconnect ed exception some time
after (depending on the pul | _prod_i nt erval configuration value).

If you attempt to connect an invalid object to a proxy object (where an
exception other than I NVALI D CBIECT REFERENCE is thrown), the proxy is not
destroyed.

Portable Interceptors

Portable interceptors provide hooks, or interception points,

which define stages within the request and reply sequence.

Services can use these interception points to query request/
reply data, and to transfer service contexts between clients

and servers.

This chapter shows an application that uses interceptors to secure a server
with a password authorization service as follows:

* A password policy is created and set on the server's POA.

* An IOR interceptor adds a tagged component to all object references
exported from that POA. This tagged component encodes data that
indicates whether a password is required.

* Aclient interceptor checks the profile of each object reference that the
client invokes on. It ascertains whether the object is password-pro-
tected; if so, it adds to the outgoing request a service context that con-
tains the password data.

* Aserver interceptor checks the service contexts of incoming requests for
password data, and compares it with the server password. The
interceptor allows requests to continue only if the client and server
passwords match.

Note: The password authorization service that is shown here is deliberately
simplistic, and intended for illustrative purposes only.

Interceptor Components

Portable interceptors require the following components:

493

Chapter 21 | Portable Interceptors

Interceptor implementations that are derived from interface
Port abl el nterceptor::Interceptor.

I0P::ServiceContext supplies the service context data that a client or server
needs to identify and access an ORB service.

Portablelnterceptor::Current (hereafter referred to as P/Current) is a table of
slots that are available to application threads and interceptors, to store and
access service context data.

10P::TaggedComponent contains information about optional features and
ORB services that an IOR interceptor can add to an outgoing object
reference. This information is added by server-side IOR interceptors, and is
accessible to client interceptors.

I0P::Codec can convert data into an octet sequence, so it can be encoded as
a service context or tagged component.

Portablelnterceptor::PolicyFactory enables creation of policy objects that are
required by ORB services.

Portablelnterceptor::ORBIlnitializer is called on ORB initialization. An ORB
initializer obtains the ORB's PICurrent, and registers portable interceptors
with the ORB. It can also register policy factories.

Interceptor Types

494

All portable interceptors are based on the I nt er cept or interface:

nodul e Port abl el nt er cept or {

I ocal interface Interceptor{

readonly attribute string nane;

b
b
An interceptor can be named or unnamed. Among an ORB'’s interceptors of
the same type, all names must be unique. Any number of unnamed, or
anonymous interceptors can be registered with an ORB.

Interceptor Components

Note: At present, Orbix provides no mechanism for administering portable
interceptors by name.

All interceptors implement one of the interceptor types that inherit from the
I nt er cept or interface:

ClientRequestinterceptor defines the interception points that client-side
interceptors can implement.

ServerRequestinterceptor defines the interception points that server-side
interceptors can implement.

IORInterceptor defines a single interception point, est abl i sh_conponent s. It
is called immediately after a POA is created, and pre-assembles the list of
tagged components to add to that POA’s object references.

Interception Points

Each interceptor type defines a set of interception points, which represent
stages in the request/reply sequence. Interception points are specific to each
interceptor type, and are discussed fully in later sections that describe these
types. Generally, in a successful request-reply sequence, the ORB calls
interception points on each interceptor.

For example, Figure 53 shows client-side interceptors A and B. Each
interceptor implements interception points send_r equest and

recei ve_repl y. As each outgoing request passes through interceptors A and
B, their send_request implementations add service context data a and b to

495

Chapter 21 | Portable Interceptors

the request before it is transported to the server. The same interceptors’
recei ve_repl y implementations evaluate the reply’s service context data
before the reply returns to the client.

Client Server

B

request

A

send_r equest
send_request| addb
add a

receive_reply

recei ve_repll

client interceptors

Figure 53: Client interceptors allow services to access outgoing requests and
incoming replies.

Interception Point Data

For each interception point, the ORB supplies an object that enables the
interceptor to evaluate the request or reply data at its current stage of flow:

®* APortablelnterceptor::|CR nfo object is supplied to an IOR
interceptor’s single interception point est abl i sh_conponent s (see
page 502).

® A Portablelnterceptor::dientRequest | nfo object is supplied to all
d i ent Request | nt er cept or interception points (see page 512).

® A Portablelnterceptor:: Server Request | nf o object is supplied to all
Server Request | nt er cept or interception points (see page 520).

Much of the information that client and server interceptors require is similar;
so di ent Request | nf o and Ser ver Request | nf o both inherit from interface
Por t abl el nt er cept or : : Request | nf 0. For more information on Request I nf o,
see page b04.

496

Interceptor Components

Service Contexts

PICurrent

Service contexts supply the information a client or server needs to identify
and access an ORB service. The IOP module defines the Ser vi ceCont ext
structure as follows:

nodul e | CP

{
...

t ypedef unsigned | ong Servi cel d;

struct ServiceContext {
Serviceld context _id;
sequence <octet> context _dat a;
b
b

A service context has two member components:

® Service-context IDs are user-defined unsigned long types. The high-order
20 bits of a service-context ID contain a 20-bit vendor service context
codeset ID, or VSCID; the low-order 12 bits contain the rest of the
service context ID. To define a set of service context IDs:

1. Obtain a unique VSCID from the OMG

2. Define the service context IDs, using the VSCID for the high-order
bits.

® Service context data is encoded and decoded by an | CP: : Codec (see
“Codec” on page 499).

PICurrent is a table of slots that different services can use to transfer their
data to request or reply service contexts. For example, in order to send a
request to a password-protected server, a client application can set the

497

Chapter 21 | Portable Interceptors

required password in PICurrent. On each client invocation, a client
interceptor’s send_r equest interception point obtains the password from
PICurrent and attaches it as service context data to the request.

Client request

client interceptor

client("vermilion") send_r equest

get password slot data /
add service context “vermilion"
v

with password
Server

Figure 54: PICurrent facilitates transfer of thread context data to a request or reply.

C

PICurrent

The Port abl el nt er cept or module defines the interface for PICurrent as
follows:

nmodul e Port abl el nt er cept or

{
...
typedef unsigned long Sotld;
exception InvalidS ot {};

local interface Qurrent : COCRBA : Qurrent {
any
get_slot(in Slotld id
) raises (InvalidSot);

voi d
set_slot(in Slotld id, in any dat a
) raises (lnvalidSlot);

}s

498

Interceptor Components

Tagged Components

Codec

Object references that support an interoperability protocol such as IIOP or
SIOP can include one or more tagged components, which supply information
about optional IIOP features and ORB services. A tagged component contains
an identifier, or tag, and component data, defined as follows:

t ypedef unsi gned | ong Conponentl d;
struct TaggedConponent {

Conponent | D t ag;

sequence<oct et > conponent _dat a,
b
An IOR interceptor can define tagged components and add these to an object
reference’s profile by calling add_i or _conponent () (see “Writing IOR
Interceptors” on page 502). A client interceptor can evaluate tagged
components in a request’s object reference by calling
get _effective_conponent () or get _effective_conponents() (see
“Evaluating Tagged Components” on page 515).

Note: The OMG is responsible for allocating and registering the tag IDs of
tagged components. Requests to allocate tag IDs can be sent to
tag_request@omg.org.

The data of service contexts and tagged components must be encoded as a
CDR encapsulation. Therefore, the IOP module defines the Codec interface,
so interceptors can encode and decode octet sequences:

| ocal interface Codec {
exception | nval i dTypeFor Encodi ng {};
exception Format M smatch {};
exception TypeM snatch {};

CCRBA: : Cct et Seq
encode(i n any data
) raises (InvalidTypeForEncodi ng);

any

499

Chapter 21 | Portable Interceptors

500

decode(in CCRBA: : Cctet Seq data
) raises (FormatM snatch);

CCRBA: : (et et Seq
encode_val ue(in any data
) raises (InvalidTypeForEncodi ng);

any
decode_val ue(
in QCRBA : Cctet Seq dat a,
in GORBA: : TypeCode tc

) raises (FormatM snatch, TypeM smatch);

b

Codec Operations

The Codec interface defines the following operations:

encode converts the supplied any into an octet sequence, based on the

encoding format effective for this Codec. The returned octet sequence
contains both the TypeCode and the data of the type.

decode decodes the given octet sequence into an any, based on the encoding
format effective for this Codec.

encode_value converts the given any into an octet sequence, based on the
encoding format effective for this Codec. Only the data from the any is
encoded.

decode_value decodes the given octet sequence into an any based on the
given TypeCode and the encoding format effective for this Codec.

Creating a Codec

The CRBInit I nfo: : codec_fact ory attribute returns a Codec factory, so you
can provide Codec objects to interceptors. This operation must be called
during ORB initialization, through the ORB initializer.

Interceptor Components

Policy Factory

An ORB service can be associated with a user-defined policy. The
Port abl el nt er cept or module provides the Pol i cyFact ory interface, which
applications can use to implement their own policy factories:

| ocal interface PolicyFactory {
OCRBA: : Pol i cy
create_policy(
in CORBA: : Pol i cyType type,
in any val ue
) raises (QORBA : PolicyError);
b
Policy factories are created during ORB initialization, and registered through
the ORB initializer (see “Creating and Registering Policy Factories” on
page 532).

ORSB Initializer

ORB initializers implement interface Port abl el nterceptor: :
Oblnitializer:

local interface CRBInitializer {
voi d
pre_init(in CRBInitInfo info);

voi d

post_init(in GRBInitInfo info);
b
As it initializes, the ORB calls the ORB initializer's pre_init () and
post _init() operations. pre_init() and post _init() both receive an
CRBI ni t I nf o argument, which enables implementations to perform these
tasks:

* Instantiate a PICurrent and allocates its slots for service data.
* Register policy factories for specified policy types.

* Create Codec objects, which enable interceptors to encode service
context data as octet sequences, and vice versa.

® Register interceptors with the ORB.

501

Chapter 21 | Portable Interceptors

Writing IOR Interceptors

IOR interceptors gives an application the opportunity to evaluate a server's
effective policies, and modify an object reference’s profiles before the server
exports it. For example, if a server is secured by a password policy, the object
references that it exports should contain information that signals to potential
clients that they must supply a password along with requests on those
objects.

The IDL interface for IOR interceptors is defined as follows:

local interface ICRnterceptor : Interceptor {
void
est abl i sh_conponents(in |RInfo info);

}s

Interception Point

IORInfo

502

An IOR interceptor has a single interception point, est abl i sh_conponent s() .
The server-side ORB calls est abl i sh_conponent s() once for each POA on all
registered IOR interceptors. A typical implementation of

est abl i sh_conponent s() assembles the list of components to include in the
profile of all object references that a POA exports.

An implementation of est abl i sh_conponent s() must not throw exceptions.
If it does, the ORB ignores the exception.

est abl i sh_conponent s() gets an | ORI nf o object, which has the following
interface:

local interface ICRInfo {

CCRBA: : Poli cy
get _effective_policy(in CORBA: :PolicyType type);

void
add_i or _conponent (i n | CP; : TaggedConponent conponent) ;

add_i or _conponent _to_profile (

Writing IOR Interceptors

i n |1 GP:: TaggedConponent conponent,
inlCP:Profileld profile_id
);
b

Note: add_i or_conponent _to_profile() is currently unimplemented.

The sample application’s I0R interceptor implements

est abl i sh_conponent s() to perform the following tasks on an object

reference’s profile:

® Get its password policy.
* Set a TAG REQU RES_PASSWRD component accordingly.

ACL_ICRInterceptorlnpl::ACL_I CRInterceptorlnpl (
| OP: : Codec_ptr codec

) I T_THRONDEQL(()) :
m codec(| CP: : Codec: : _dupl i cat e(codec))

{

}

void

ACL_I CRInterceptorlnpl::establish_component s(
Portabl el nterceptor:: IR nfo_ptr ior_info

) | T_THROWN DECL((GORBA: : Syst enExcepti on))

{
OCRBA: : Bool ean requi res_password = | T_FALSE

try {
OCRBA: : Pol i cy_var policy =
ior_info->get_effective_policy(
AccessCont rol : : PASSWORD PCLICY_ID);
AccessControl :: PasswordPol i cy_var password_pol i cy
AccessControl : : PasswordPol i cy:: _narrow(policy);
assert (! CORBA: :is_nil (password_policy));

requi res_password = password_pol i cy->requi res_password();

}
catch (const OCRBA : I NV_PCQLICY&) ({

/1 Policy wasn't set...don't add conponent

}

503

Chapter 21 | Portable Interceptors

}

CCRBA: : Any conponent _dat a_as_any;
conponent _data_as_any <<=
QCRBA: : Any: : from bool ean(requi res_password) ;

CCRBA: : Cctet Seq_var octets =
m codec- >encode_val ue(conponent _data_as_any) ;
| CP: : TaggedConponent conponent ;
conponent . tag = AccessControl Servi ce: : TAG REQU RES_PASSWRD;
conponent . conponent _dat a. r epl ace(oct et s- >l engt h(),
octets->l ength(),
oct et s->get _buffer(),
| T_FALSE);

i or _i nf o->add_i or _conponent (conponent) ;

The sample application’s implementation of est abl i sh_conponent s()
executes as follows:

1.

Gets the effective password policy object for the POA by calling
get _effective_policy() onthelCR nfo.

Gets the password policy value by calling r equi res_passwor d() on the
policy object.

Encodes the password policy value as an octet.

Instantiates a tagged component (I CP: : TaggedConponent) and initializes

it with the TAG_ REQU RES_PASSWIRD tag and encoded password policy
value.

Adds the tagged component to the object reference’s profile by calling
add_i or _conponent () .

Using Requestinfo Objects

504

Interception points for client and server interceptors receive

A i ent Request | nf o and Ser ver Request | nf o objects, respectively. These
derive from Port abl el nt er cept or : : Request | nf o, which defines operations
and attributes common to both.

Using Requestinfo Objects

Requestinfo Interface

The Request | nf o interface is defined as follows:

| ocal interface Requestlnfo {
readonly attribute unsigned | ong request _id;
readonly attribute string operation;
readonly attribute Dynam c:: ParaneterLi st argunents;
readonly attribute Dynam c:: Excepti onLi st excepti ons;
readonly attribute Dynam c:: ContextLi st contexts;
readonly attribute Dynam c:: Request Cont ext operati on_context;
readonly attribute any result;
readonly attribute bool ean response_expect ed;
readonly attribute Messagi ng:: SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Cbject forward_reference;
any get_slot (in Slotld id) raises (lnvalidSot);
I CP: : Servi ceCont ext get_request_service_context (
in|CP:Serviceld id);
I CP: : Servi ceContext get_reply_service_context (
in QP :Serviceld id);
b
A Request | nf o object provides access to much of the information that an
interceptor requires to evaluate a request and its service context data. For a
full description of all attributes and operations, see the Orbix 2000
Programmer’s Reference.

The validity of any given Request I nf o operation and attribute varies among
client and server interception points. For example, the resul t attribute is
valid only for interception points recei ve_repl y on a client interceptor; and
send_reply on a server interceptor. It is invalid for all other interception
points. Table 31 on page 513 and Table 32 on page 525 show which
Request | nf o operations and attributes are valid for a given interception
point.

Timeout Attributes
A client might specify one or more timout policies on request or reply
delivery. If portable interceptors are present in the bindings, these

interceptors must be aware of the relevant timeouts so that they can bound
any potentially blocking activities that they undertake.

505

Chapter 21 | Portable Interceptors

The current OMG specification for portable interceptors does not account for
timeout policy constraints; consequently, Orbix provides its own derivation of
the Request I nf o interface, | T_Port abl el nt er cept or : : Request | nf 0, which
adds two attributes:

nodul e | T_Port abl el nt er cept or

{
local interface Requestinfo : Portabl el nterceptor:: Request|nfo
{
readonly attribute TineBase::WcT request_end_tine;
readonly attribute TineBase::UWcT reply_end_ti re;
h
h

To access timeout constraints, interception points implementations can
narrow their 4 i ent Request I nf o or Ser ver Request | nf o objects to this
interface. The two attributes apply to different interception points, as follows:

Table 30:

Timeout attribute Relevant interception points

request _end_time send_r equest
send_pol |
recei ve_request _servi ce_contexts
recei ve_request

reply_end_tine send_reply
send_exception
send_ot her

receive_reply
recei ve_exception
recei ve_ot her

Writing Client Interceptors

506

Client interceptors implement the d i ent Request I nt er cept or interface,
which defines five interception points:

local interface dientRequestinterceptor : Interceptor {
void send_request (in dientRequestinfo ri)
rai ses (ForwardRequest);

Writing Client Interceptors

void send poll (in dientRequestinfo ri);
void receive_reply (in dientRequestinfo ri);
voi d recei ve_exception (in dientRequestinfo ri)
rai ses (Forwar dRequest);
voi d receive_other (in dientRequestinfo ri)
rai ses (ForwardRequest);
b
A client interceptor implements one or more of these operations.

In the password service example, the client interceptor provides an
implementation for send_r equest , which encodes the required password in a
service context and adds the service context to the object reference. For
implementation details, see “Client Interceptor Tasks” on page 514.

As noted earlier, the ORB initializer instantiates and registers the client
interceptor. This interceptor’'s constructor is implemented as follows:

// Qient interceptor constructor
ACL_Qientlnterceptorlnpl::ACL_Qientlnterceptorlnpl (
Portabl el nterceptor:: S otld password_sl ot,
| COP: : Codec_ptr codec
) I T_THROWDECL(()) :
m passwor d_sl ot (password_sl ot),
m codec(| CP: : Codec: : _dupl i cat e(codec))
{
}

The client interceptor takes two arguments:

* The PICurrent slot allocated by the ORB initializer to store password
data.

® An QP : Codec, which is used to encode password data for service
context data.

Interception Points
A client interceptor implements one or more interception points. During a

successful request-reply sequence, each client-side interceptor executes one
starting interception point and one ending interception point.

507

Chapter 21 | Portable Interceptors

Starting Interception Points

Depending on the nature of the request, the ORB calls one of the following
starting interception points:

send_request lets an interceptor query a synchronously invoked request, and
modify its service context data before the request is sent to the server.

send_poll lets an interceptor query an asynchronously invoked request,
where the client polls for a reply. This interception point currently applies
only to deferred synchronous operation calls (see “Invoking Deferred
Synchronous Requests” on page 346)

Ending Interception Points

Before the client receives a reply to a given request, the ORB executes one of
the following ending interception points on that reply:

receive_reply lets an interceptor query information on a reply after it is
returned from the server and before control returns to the client.

receive_exception is called when an exception occurs. It lets an interceptor
query exception data before it is thrown to the client.

receive_other lets an interceptor query information that is available when a
request results in something other than a normal reply or an exception. For
example: a request can result in a retry, as when a GIOP reply with a
LOCATI ON_FORWARD status is received; recei ve_ot her is also called on
asynchronous calls, where the client resumes control before it receives a
reply on a given request and an ending interception point is called.

Interception Point Flow

508

For each request-reply sequence, only one starting interception point and one
ending point is called on a client interceptor. Each completed starting point is
paired to an ending point. For example, if send_r equest executes to
completion without throwing an exception, the ORB calls one of its ending
interception points—r ecei ve_repl y, recei ve_excepti on, or

recei ve_ot her.

Writing Client Interceptors

If multiple interceptors are registered on a client, the interceptors are
traversed in order for outgoing requests, and in reverse order for incoming

replies.

Scenario 1: Request-reply sequence is successful

Interception points A and B are registered with the server ORB. The
interception point flow shown in Figure 55 depicts a successful reply-request

sequence, where the server returns a normal reply:

Client
A

— | send_request

- receive_reply B ;

send_r equest

& receive_reply

)

L

send_r equest

recei ve_reply

Figure 55: Client interceptors process a normal reply.

Server

509

Chapter 21 | Portable Interceptors

510

Scenario 2: Client receives LOCATION_FORWARD

If the server throws an exception or returns some other reply, such as
LQCATI ON_FORWARD, the ORB directs the reply flow to the appropriate
interception points, as shown in Figure 56:

Client
A

— send_request
) B
- recei ve_ot her
send_r equest
L recei ve_ot her N
send_r equest

- recei ve_ot her -

Figure 56: Client interceptors process a LOCATION_FORWARD reply.

Server

replies with
LOCATI ON_FORWARD

Scenario 3: Exception aborts interception flow

Any number of events can abort or shorten the interception flow. Figure 57
shows the following interception flow:

1. Interceptor B’s send_r equest throws an exception.

2. Because interceptor B’'s start point does not complete, no end point is
called on it, and interceptor C is never called. Instead, the request flow
returns to interceptor A’s recei ve_except i on end point.

Writing Client Interceptors

Client A

send_r equest

recei ve_exception B ;

send_r equest
p throws exception

Figure 57: send_request throws an exception in a client-side interceptor

Scenario 4: Interceptor changes reply

An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a
different system exception. Figure 58 shows the following interception flow:

1. The server returns a normal reply.
2. The ORB calls recei ve_reply on interceptor C.

3. Interceptor C's recei ve_repl y raises exception f oo_x, which the ORB
delivers to interceptor B's recei ve_excepti on.

4. Interceptor B’s recei ve_except i on changes exception f oo_x to
exception foo_y.

5. Interceptor A’s recei ve_except i on receives exception f oo_y and returns
it to the client.

511

Chapter 21 | Portable Interceptors

Note: Interceptors must never change the CompletionStatus of the received
exception.

Client
A

send_r equest
Server

- recei ve_exception
- B

servant returns
normal reply

send_r equest

recei ve_exception
foo_y | throws exception
foo_y ¢

send_r equest
receive_reply
foo x throws exception
- foo_x

Figure 58: Client interceptors can change the nature of the reply.

ClientRequestinfo

Each interception point gets a single A i ent Request | nf o argument, which
provides the necessary hooks to access and modify client request data:

local interface AdientRequestinfo : Requestinfo {

readonly attribute (bject target;

readonly attribute (bject effective_target;
readonly attribute | CP.: TaggedProfile effective_profile;
readonly attribute any recei ved_excepti on;

readonly attribute OORBA : Repositoryld recei ved_exception_id;

| CP: : TaggedConponent
get _effective_conponent (in | CP:.: Conponentld id);

| CP: : TaggedConponent Seq
get _effective_conponents(in | CP:.: Conponentld id);

512

Writing Client Interceptors

QCRBA: : Pol i cy
get _request _pol icy(in OCRBA : PolicyType type);

voi d
add_request _servi ce_cont ext (
in | CP: ServiceContext service_context,
i n bool ean repl ace
)s
H
Table 31 shows which A i ent Request I nf o operations and attributes are
accessible to each client interception point. In general, attempts to access an
attribute or operation that is invalid for a given interception point throw an
exception of BAD | N\v_CRDER with a standard minor code of 10.

Table 31: Client Interception Point Access to ClientRequestinfo

ClientRequestlnfo: s_req s_poll r_reply r_exep r_other
request_id y y y y y
operation y y y y y
arguments y2 y

exceptions y y y y
contexts y y y y
operation_context y y y y
result y

response_expected y y y y y
sync_scope y y y y
reply_status y y y
forward_reference yIO
get_slot y y y y y
get_request_service_context y y y y

513

Chapter 21 | Portable Interceptors

Table 31: Client Interception Point Access to ClientRequestinfo

ClientRequestinfo: s_req s_poll r_reply r_exep r_other
get_reply_service_context y y y
target y y y y y
effective_target y y y y y
effective_profile y y y y y
received_exception y
received_exception_id y
get_effective_component y y y y
get _effective_components y y y y
get request_policy y y y y

add_request_service_context y

a.When A i ent Request | nf o is passed to send_r equest , the arguments list contains an entry
for all arguments, but only in and inout arguments are available.

b.Access to f orwar d_r ef er ence is valid only if repl y_st at us is set to LOCATI ON_FCRWARD or
LOCATI ON_FCRWARD PERVANENT.

Client Interceptor Tasks

A client interceptor typically uses a 4 i ent Request | nf o to perform the
following tasks:

* Evaluate an object reference’s tagged components to determine an
outgoing request’s service requirements.

® Obtain service data from PICurrent.

* Encode service data as a service context

® Add service contexts to a request

These tasks are usually implemented in send_r equest . Interceptors have a

much wider range of potential actions available to them—for example, client
interceptors can call get _request _servi ce_context (), to evaluate the

514

Writing Client Interceptors

service contexts that preceding interceptors added to a request. Other
operations are specific to reply data or exceptions, and therefore can be
invoked only by the appropriate r ecei ve_ interception points.

This discussion confines itself to send_r equest and the tasks that it typically
performs. For a full description of other A i ent Request | nf o operations and
attributes, see the Orbix 2000 Programmer’s Reference.

In the sample application, the client interceptor provides an implementation
for send_r equest , which performs these tasks:

* Evaluates each outgoing request for this tagged component to determine
whether the request requires a password.

® Obtains service data from PlCurrent
® Encodes the required password in a service context
* Adds the service context to the object reference:

Evaluating Tagged Components

The sample application’s implementation of send_request checks each
outgoing request for tagged component TAG REQU RES PASSWIRD by calling
get _effective_conponent () on the interceptor's A i ent Request I nf o:
void
ACL_Qientlnterceptorlnpl::send_request (

Portabl el nterceptor::dientRequestinfo_ptr request
) | T_THROWN DECL((

OCRBA: : Syst enExcepti on,

Por t abl el nt er cept or : : For war dRequest

))

try {
/1 Check if the object requires a password

if (requires_password(request))
{17 ...

}
}

...

CCRBA: : Bool ean
ACL_Qientlnterceptorlnpl::requires_password(

515

Chapter 21 | Portable Interceptors

Portabl el nterceptor::dientRequestlnfo_ptr request
) | T_THRON DECL((OCRBA: : Syst enExcepti on))
{
try {
2 | CP: : TaggedComnponent _var password_requi r ed_conponent =
request - >get _ef f ecti ve_conponent (
AccessCont rol Servi ce: : TAG REQU RES_PASSWIRD

)

3 | CP: : TaggedConponent : : _conponent _dat a_seq& conponent _data =
passwor d_r equi r ed_conponent - >conponent _dat a;
CCRBA: : (et et Seq oct et s(conponent _data. | engt h(),
conponent _dat a. | engt h(),
conponent _dat a. get _buffer(),
I T_FALSE);

4 CCRBA: : Any_var password_required_as_any =
m codec- >decode_val ue(octets, CQORBA :_tc_bool ean);

CCRBA: : Bool ean password_requi red,;
5 i f (password_required_as_any >>=
QCRBA: : Any: : t o_bool ean(passwor d_requi red))
{

}

}
catch (const QOCORBA : BAD PARAME)

{

/1 Conponent does not exist; treat as not requiring a password

}

return | T_FALSE

return password_required,;

}

The interception point executes as follows:

1. Calls the subroutine requi re_password() to determine whether a
password is required.

2. get_effective _conponent () returns tagged component
TAG REQU RES_PASSWIRD from the request’s object reference.

3. conponent _data() returns the tagged component’s data as an octet
sequence.

516

Writing Client Interceptors

4. decode_val ug() is called on the interceptor’'s Codec to decode the octet
sequence into a OORBA: : Any. The call extracts the Boolean data that is
embedded in the octet sequence.

5. The Any is evaluated to determine whether the component data of
TAG REQU RES PASSWIRD is set to true.

Obtaining Service Data

After the client interceptor verifies that the request requires a password, it
calls Request I nfo: : get sl ot () to obtain the client password from the
appropriate slot:

/1 Get the specified password
CCORBA: : Any_var password =

request - >get _sl ot (m password_sl ot);
...

Encoding Service Context Data

After the client interceptor gets the password string, it must convert the string
and related data into a CDR encapsulation, so it can be embedded in a
service context that is added to the request. To perform the data conversion,
it calls encode_val ue on an | CP: : Codec:

/1 Encode the password as a service context
CCRBA : Cctet Seq_var octets =
m codec- >encode_val ue(passwor d) ;

| P : ServiceContext::_context_data _seq seq(
octets->l ength(),
octets->l ength(),
octets->get _buffer(),
| T_FALSE);

Adding Service Contexts to a Request

After initializing the service context, the client interceptor adds it to the
outgoing request by calling add_r equest _servi ce_cont ext () :

| CP:: Servi ceContext service_context;
service_context.context id =
AccessCont r ol Servi ce: : PASSWRD SERVI CE | D,

517

Chapter 21 | Portable Interceptors

servi ce_context. context_data = seq;

r equest - >add_r equest _servi ce_cont ext (
service_context, |T_TRUE);

Writing Server Interceptors

Server interceptors implement the Server Request I nt er cept or interface:

local interface ServerRequestinterceptor : Interceptor {
void
recei ve_request _servi ce_contexts(in ServerRequestInfo ri
) raises (ForwardRequest);

voi d
recei ve_request (i n ServerRequestInfo ri
) raises (ForwardRequest);

voi d
send_reply(in ServerRequestinfo ri);

void
send_exception(in ServerRequestInfo ri
) raises (ForwardRequest);

void
send_ot her (i n ServerRequestinfo ri
) raises (ForwardRequest);

}s

Interception Points

518

During a successful request-reply sequence, each server interceptor executes
one starting interception point and one intermediate interception point for
incoming requests. For outgoing replies, a server interceptor executes an
ending interception point.

Starting Interception Point

A server interceptor has a single starting interception point:

Writing Server Interceptors

receive_request_service_contexts lets interceptors get service context
information from an incoming request and transfer it to PICurrent slots. This
interception point is called before the servant manager is called. Operation
parameters are not yet available at this point.

Intermediate Interception Point

A server interceptor has a single intermediate interception point:

receive_request lets an interceptor query request information after all
information, including operation parameters, is available.

Ending Interception Points

An ending interception point is called after the target operation is invoked,
and before the reply returns to the client. The ORB executes one of the
following ending interception points, depending on the nature of the reply:

send_reply lets an interceptor query reply information and modify the reply
service context after the target operation is invoked and before the reply
returns to the client.

send_exception is called when an exception occurs. An interceptor can query
exception information and modify the reply service context before the
exception is thrown to the client.

send_other lets an interceptor query the information available when a
request results in something other than a normal reply or an exception. For
example, a request can result in a retry, as when a GIOP reply with a
LOCATI ON_FCRWARD status is received.

Interception Point Flow

For a given interceptor, the flow of execution follows one of these paths:

® receive_request_service_contexts completes execution without
throwing an exception. The ORB calls that interceptor’s intermediate and
ending interception points. If the intermediate point throws an exception,
the ending point for that interceptor is called with the exception.

519

Chapter 21 | Portable Interceptors

520

® receive_request_service_contexts throws an exception. The
interceptor’s intermediate and ending points are not called.

If multiple interceptors are registered on a server, the interceptors are
traversed in order for incoming requests, and in reverse order for outgoing
replies. If one interceptor in the chain throws an exception in either its
starting or intermediate points, no other interceptors in the chain are called;
and the appropriate ending points for that interceptor and all preceding
interceptors are called.

Scenario 1: Target object throws exception

Interceptors A and B are registered with the server ORB. Figure 59 shows the
following interception flow:

1. The interception point recei ve_request _server_cont ext s processes an
incoming request on interceptor A, then B. Neither interception point
throws an exception.

2. Intermediate interception point recei ve_repl y processes the request
first on interceptor A, then B. Neither interception point throws an
exception.

3. The ORB delivers the request to the target object. The object throws an
exception.

4. The ORB calls interception point send_except i on, first on interceptor B.,
then A, to handle the exception.

Writing Server Interceptors

5. The ORB returns the exception to the client.

A B
r_req_serv_cxts r_req_serv_cxts
. - .
C—T recei ve_r equest recei ve_request
send_exception ~— send_exception

object throws
exception O

Server

Figure 59: Server interceptors receive request and send exception thrown by target
object.

Scenario 2: Exception aborts interception flow

Any number of events can abort interception flow. Figure 60 shows the
following interception flow.

1. A request starts server-side interceptor processing, starting with
interceptor A’s recei ve_request _servi ce_cont exts. The request is
passed on to interceptor B.

2. Interceptor B's recei ve_request _servi ce_cont ext s throws an
exception. The ORB aborts interceptor flow and returns the exception to
interceptor A’s end interception point send_excepti on.

3. The exception is returned to the client.

521

Chapter 21 | Portable Interceptors

Because interceptor B’s start point does not complete execution, its
intermediate and end points are not called. Interceptor A’s intermediate point
recei ve_request also is not called.

A B

r_req_serv_cxts r_req_serv_cxts

_ throws exception
recei ve_request

send_exception

O

Server

Figure 60: receive_request_service_contexts throws an exception and interception
flow is aborted.

Scenario 3: Interceptors change reply type

An interceptor can change a normal reply to a system exception; it can also
change the exception it receives, whether user or system exception to a
different system exception. Figure 61 shows the following interception flow:
1. The target object returns a normal reply.

2. The ORB calls send_repl y on server interceptor C.

3. Interceptor C's send_repl y interception point throws exception f oo_x,
which the ORB delivers to interceptor B's send_except i on.

4. Interceptor B’s send_except i on changes exception f oo_x to exception
foo_y, which the ORB delivers to interceptor A’'s send_except i on.

522

Writing Server Interceptors

5. Interceptor A’s send_excepti on returns exception f oo_y to the client.

A

B

C

r_req_serv_cxts

C—; recei ve_r equest

send_exception

r_req_serv_cxts
recei ve_r equest
send_exception

throws exception
foo_y

r_req_serv_cxts
recei ve_r equest
send_reply

throws exception
foo_x

foo_y

Figure 61: Server interceptors can change the reply type.

object returns
normal reply O

Server

Note: Interceptors must never change the CompletionStatus of the received
exception.

ServerRequestinfo

Each interception point gets a single Ser ver Request | nf o argument, which
provides the necessary hooks to access and modify server request data:

I ocal interface ServerRequestinfo : Requestinfo {
readonly attribute any sendi ng_excepti on;
readonly attribute QORBA : (ctet Seq obj ect _id;
readonly attribute QORBA : Cctet Seq adapter_i d;
readonly attribute OORBA: : Repositoryld

target _nost_derived_interface;

QCRBA: : Pol i cy
get _server_policy(in OCRBA : PolicyType type);

523

Chapter 21 | Portable Interceptors

524

void
set _sl ot (
inSotld id,
in any dat a
) raises (IlnvalidSot);

bool ean
target _is_a(in OORBA : Repositoryld id);

void
add_repl y_servi ce_cont ext (
in ICP.: ServiceContext service_context,
i n bool ean repl ease
)s
b
Table 32 shows which Ser ver Request | nf o operations and attributes are
accessible to server interception points. In general, attempts to access an
attribute or operation that is invalid for a given interception point raise an
exception of BAD | N\V_CRDER with a standard minor code of 10.

Writing Server Interceptors

Table 32: Server Interception Point Access to ServerRequestinfo

ServerRequestinfo: r_req_

serv_cxts r_req s_reply s_excep s_other
request_id y y y y y
operation y y y y y
arguments® y y y
exceptions y y y y
contexts y y y y
operation_context y y
result y
response_expected y y y y
sync_scope y y y y y
reply_status y y y
forward_reference y
get slot y y y y
get_request_service_context y y y y y
get_reply_service context y y y
sending_exception y
get_server_policy y y y y y
set_slot y y y y y
add_reply_service_context y y y y y

a.When a Ser ver Request | nf o is passed to r ecei ve_r equest , the arguments list contains an
entry for all arguments, but only in and inout arguments are available.

525

Chapter 21 | Portable Interceptors

Server Interceptor Tasks

526

A server interceptor typically uses a Server Request I nf o to perform the
following tasks:

® Get server policies.
® Get service contexts from an incoming request and extract their data.

The sample application implements r ecei ve_r equest _server _cont ext s
only. The requisite service context data is available at this interception point,
so it is capable of executing authorizing or disqualifying incoming requests.
Also, unnecessary overhead is avoided for unauthorized requests: by
throwing an exception in recei ve_request _server_cont ext s, the starting
interception point fails to complete and all other server interception points are
bypassed.

This discussion confines itself to recei ve_request _server_cont ext s and the
tasks that it typically performs. For a description of other Ser ver Request | nf o
operations and attributes, see the Orbix 2000 Programmer’s Reference.

Getting Server Policies

The sample application’s recei ve_request _server_cont exts
implementation obtains the server's password policy in order to compare it to
the password that accompanies each request. In order to do so, it calls
get _server _policy() on the interception point’s Server Request | nf o:
voi d
ACL_Serverlnterceptorlnpl::recei ve_request_servi ce_cont exts(
Portabl el nterceptor:: Server Request I nfo_ptr request
) I T_THRON DECL((
CCRBA: : Syst enExcept i on,
Port abl el nt er cept or: : For war dRequest

))

{
/1 Determne whether password protection is required.
AccessControl : : PasswordPol i cy_var password_policy =
get _password_pol i cy(request);

1.,

AccessControl :: PasswordPolicy ptr
ACL_Serverlnterceptorlnpl::get_password_policy(
Portabl el ntercept or:: Server Request I nfo_ptr request

Writing Server Interceptors

) | T_THROWN DECL((GORBA: : Syst enExcepti on))

{
try {
QOCRBA: : Pol i cy_var policy = request->get_server_policy(
AccessControl : : PASSWRD PCLICY_ID);
return AccessControl :: PasswordPol i cy::_narrow(policy);
}
catch (const OCRBA : I NV_PCLICY&) ({
/1 Policy not specified
}
return AccessControl ::PasswordPolicy::_nil();
}
...

Getting Service Contexts

After recei ve_request _server_cont exts gets the server's password policy,
it needs to compare it to the client password that accompanies the request.
The password is encoded as a service context, which is accessed through its
identifier PASSWCRD SERVI CE | D

...
if (!CQORBA :is_nil(password policy) &
passwor d_pol i cy->r equi res_passwor d())

{
QOORBA: : String_var server_password =
passwor d_pol i cy- >passwor d() ;
if (!check_password(request, server_password))
{
t hr ow OCRBA: : NO_PERM SSI ON(Ox DEADBEEF) ;
}
}

...

CCRBA: : Bool ean
ACL_Serverlnterceptorlnpl::check_passwor d(
Portabl el nterceptor: : Server Request I nfo_ptr request,

const char* expect ed_passwor d
) | T_THROWN DECL((GORBA: : Syst enExcepti on))
{

try {

527

Chapter 21 | Portable Interceptors

/1 Get the password service context...
1 | OP: : Servi ceCont ext _var password_servi ce_context =
request - >get _r equest _servi ce_cont ext (
AccessCont r ol Servi ce: : PASSWRD SERVI CE | D

)

/1l ...convert it into string format...
2 | P : ServiceContext::_context_data seq& context_data =
passwor d_ser vi ce_cont ext - >cont ext _dat a;
3 OCRBA: : (et et Seq oct et s(context _data. | ength(),

context _data.length(),
cont ext _data. get_buffer(),
| T_FALSE);

4 CCRBA: : Any_var password_as_any =
m codec- >decode_val ue(octets, OORBA :_tc_string);
const char* password;
passwor d_as_any >>= password;

/1 ...and conpare the passwords
5 return (strcnp(password, expected_password) == 0);

}
catch (const OCRBA: : BAD PARAME)

{

/1 Service context was not specified
return | T_FALSE

}

The interception point executes as follows:

1. Calls get _request _servi ce_context () with an argument of
AccessCont rol Servi ce: : PASSWIRD SERVI CE | D. If successful, the call
returns with a service context that contains the client password.

2. context_data() returns the service context data as an octet sequence
(see “Service Contexts” on page 497).

3. Initializes an octet sequence with the context data.

4. Calls decode_val ue() on the interceptor’'s Codec to decode the octet
sequence into a OORBA: : Any. The call specifies to extract the string data
that is embedded in the octet sequence.

528

Registering Portable Interceptors

5. Extracts the Any’s string value and compares it to the server password. If
the two strings match, the request passes authorization and is allowed
to proceed; otherwise, an exception is thrown back to the client.

Registering Portable Interceptors

Portable interceptors and their components are instantiated and registered
during ORB initialization, through an ORB initializer. An ORB initializer
implements its pre_i ni t () or post _i ni t () operation, or both. The client and
server applications must register the ORB initializer before calling
ORBinit().

Implementing an ORB Initializer

The sample application’s ORB initializer implements pre_i nit () to perform
these tasks:
® Obtain PICurrent and allocate a slot for password data.

® Encapsulate PICurrent and the password slot identifier in an
AccessControl :: Qurrent object, and register this object with the ORB
as an initial reference.

* Register a password policy factory.

* Create Codec objects for the application’s interceptors, so they can
encode and decode service context data and tagged components.

® Register interceptors with the ORB.

Obtaining PICurrent

In the sample application, the client application and client interceptor use
PICurrent to exchange password data:

® The client thread places the password in the specified PICurrent slot.

® Theclient interceptor accesses the slot to obtain the client password and
add it to outgoing requests.

In the sample application, pre_i ni t () calls the following operations on
CRBI ni t I nfo:

1. allocate slot_id() allocates a slot and returns the slot’s identifer.

529

Chapter 21 | Portable Interceptors

2. resolve_initial _references("Pl Qurrent") returns PICurrent.
voi d
ACL_CRBInitializerlnpl::pre_init(
Portabl el nterceptor:: CRBInitlnfo_ptr info
) | T_THRON DECL((OCORBA: : Syst enExcepti on))
{
/!l Reserve a slot for the password current
1 Portabl el nterceptor::Sotld password_slot =
info->allocate_slot_id();

Portabl el nterceptor:: Qurrent_var pi_current;

/1 get PlQurrent

try {
2 CORBA: : (hj ect _var init_ref =
info->resolve_initial _references("PlQurrent");
pi _current = Portablelnterceptor::Qurrent:: _narrowinit_ref);
} catch
(const Portablelnterceptor::CRBInitlnfo::Invalid\Nane&) {
throw CORBA : I N Tl ALI ZK() ;

Registering an Initial Reference

After the ORB initializer obtains PICurrent and a password slot, it must make
this information available to the client thread. To do so, it instantiates an
AccessControl :: Qurrent object. This object encapsulates:

® PICurrent and its password slot
® Operations that access slot data

The AccessControl :: Qurrent object has the following IDL definition:

/1 1DL
nmodul e AccessControl {
...

local interface Qurrent : OCRBA : Qurrent {
attribute string password,;

}
}s

530

Registering Portable Interceptors

The application defines its implementation of AccessControl :: Qurrent as
follows:

#i ncl ude <ong/ Port abl el nt er cept or. hh>
#i ncl ude <or bi x/ cor ba. hh>
#i ncl ude "access_control . hh"

class ACL_CQurrent! npl
publ i c AccessControl :: Qurrent,
public | T_OCRBA : Ref Count edLocal (hj ect

{
public:
ACL_CQurrent | npl (
Portabl el nterceptor::Qurrent_ptr pi_current,
Portabl elnterceptor::Sotld passwor d_sl ot
) I T_THROWDEQL(());
char*
password() | T_THROW DECL((CORBA: : Syst enExcepti on));
voi d
passwor d(const char* the_password
) | T_THRONDECL((OCORBA: : Syst enException));
...
}

With AccessControl :: Qurrent thus defined, the ORB initializer performs
these tasks:

1. Instantiates the AccessControl :: Qurrent object.
2. Registers it as an initial reference.

try {
AccessControl :: Qurrent _var current =
new ACL_Current | npl (pi _current, password_slot);
info->register_initial_reference(
"AccessControl Qurrent", current);

}

catch (const Portabl el nterceptor:: CRBInitlnfo::DuplicateNaneg&)
{

throw CORBA : I N Tl ALI ZK() ;
}

531

Chapter 21 | Portable Interceptors

Creating and Registering Policy Factories

The sample application’s IDL defines the following password policy to
provide password protection for the server's POAs.

/1 1DL
nodul e AccessControl {
const OCRBA : Pol i cyType PASSWRD PCLI CY_| D = OxBEEF;

struct PasswordPol i cyVal ue {
bool ean requi res_passwor d;
string password;

}

| ocal interface PasswordPolicy : OCORBA : Policy {
readonly attribute bool ean requires_passwor d;
readonly attribute string password;

}

local interface Qurrent : OCRBA : Qurrent {
attribute string password,;
b
b
During ORB initialization, the ORB initializer instantiates and registers a
factory for password policy creation:

Portabl el nterceptor:: PolicyFactory var passwd_policy factory =
new ACL_Passwor dPol i cyFact oryl npl () ;
i nfo->regi ster_policy_factory(
AccessControl : : PASSWRD PCLI CY_|I D,
passwd_pol i cy_factory
)
For example, a server-side ORB initializer can register a factory to create a
password policy, to provide password protection for the server's POAs.

Creating Codec Objects

Each portable interceptor in the sample application requires a

Por t abl el nt er cept or : : Codec in order to encode and decode octet data for
service contexts or tagged components. The ORB initializer obtains a Codec
factory by calling CRBI ni t I nf o: : codec_f act ory, then creates a Codec:

532

Registering Portable Interceptors

| OP: : CodecFactory_var codec_factory = info->codec_factory();
| CP:: Encodi ng cdr_encoding = { | CP:: ENOCD NG CDR ENCAPS, 1, 2 };
| P : Codec_var cdr_codec =

codec_f act ory->creat e_codec(cdr_encodi ng) ;
When the ORB initializer instantiates portable interceptors, it supplies this
Codec to the interceptor constructors.

Registering Interceptors
The sample application relies on three interceptors:
®* An IOR interceptor that adds a TAG PASSWORD REQU RED component to

IOR'’s that are generated by the server application.

* Aclient interceptor that attaches a password as a service context to
outgoing requests.

* A server interceptor that checks a request’'s password before allowing it
to continue.

Note: The order in which the ORB initializer registers interceptors has no

effect on their runtime ordering. The order in which portable initializers are
called is determined by their order in the client and server binding lists (see
“Setting Up Orbix to Use Portable Interceptors” on page 534)

The ORB initializer instantiates and registers these interceptors as follows:

/1 Register ICRinterceptor

Portabl el nterceptor:: 1 CRnterceptor_var ior_icp =
new ACL_| ORI nt ercept or | npl (cdr_codec) ;

i nf o->add_i or _i nterceptor(ior_icp);

Il Register client interceptor

Portabl el nterceptor::dientRequestlnterceptor_var client_icp
new ACL_dientlnterceptorlnpl (password_slot, cdr_codec);

i nf o->add_cl i ent_request_interceptor(client_icp);

/!l Regi ster server interceptor

Portabl el ntercept or: : Server Request | nt erceptor _var server_icp
new ACL_Server | nterceptorlnpl (cdr_codec);

i nf o- >add_ser ver _request _i nt er cept or (server_icp);

533

Chapter 21 | Portable Interceptors

Registering an ORBInitializer

An application registers an ORB initializer by calling
register_orb_initializer, which is defined in the Port abl el nt er cept or
name space as follows:

namespace Portabl el nterceptor {
static void register_orb_initializer(
Portabl el nterceptor::CRBInitializer_ptr init);
|
Each service that implements interceptors provides an instance of an ORB
initializer. To use a service, an application follows these steps:

1. Callsregister_orb_initializer and supplies the service’s ORB
initializer.

2. Instantiates a new ORB by calling GRB i ni t () with a new ORB
identifier.

An ORB initializer is called by all new ORBs that are instantiated after its
registration.

Setting Up Orbix to Use Portable Interceptors

534

The following setup requirements apply to registering portable interceptors
with the Orbix configuration. At the appropriate scope, add:

® portable_interceptor plugin to orb_pl ugins.

® (Client interceptor names to cli ent _bi ndi ng_li st.

® Server interceptor names to server_binding_|ist.

You can only register portable interceptors for ORBs created in programs that
are linked with the shared library i t _portabl e_i nterceptor. If an
application has unnamed (anonymous) portable interceptors, add

AnonynousPort abl el nt er cept or to the client and server binding lists. All
unnamed portable interceptors insert themselves at that location in the list.

Note: The binding lists determine the order in which interceptors are called
during request processing.

Setting Up Orbix to Use Portable Interceptors

For more information about Orbix configuration, see the Orbix 2000
Administrator’s Guide.

535

Chapter 21 | Portable Interceptors

536

Appendix A
Orbix IDL Compiler Options

The IDL compiler compiles the contents of an IDL module into header and
source files for client and server processes, in the specified implementation
language. You invoke the i dI compiler with the following command syntax:

id -plugin[...] [-switch]... idl Mdule

Note: You must specify at least one plugin switch, such as - poa or - base,
unless you modify the IDL configuration file to set | sDef aul t for one or more
plugins to Yes. (see page 544). As distributed, the configuration file sets

I sDef aul t for all plugins to No.

Command Line Switches

You can qualify the i dl command with one or more of the following
switches. Multiple switches are colon-delimited.

Switch Description

- Dnarre[: val ue] Defines the preprocessor's name.

-E Runs preprocessor only, prints on st dout .
-ldir Includes dir in search path for preprocessor.
-R-v] Populates the interface repository (IFR). The -v

modifier specifies verbose mode.

- Uhane Undefines name for preprocessor.

537

Chapter Appendix A | Orbix IDL Compiler Options

538

Switch Description

-V Prints version information and exits.

-u Prints usage message and exits.

-w Suppresses warning messages.

-pl ugin Specifies to load the IDL plug-in specified by

[:-nodifier]...

plugin to generate code that is specific to a
language or ART plug-in. You must specify at
least one plugin to the idl compiler

Use one of these values for plugin:

® base: Generate C++ header and stub code.
® jbase: Generate Java stub code

® poa: Generate POA code for C++ servers.

® jpoa: Generate POA code for Java servers.

® psdl : Generate C++ code that maps to
abstract PSDL constructs.

® pss_r: Generate C++ code that maps
concrete PSDL constructs to relational and
relational-like database back-end drivers.

Each plugin switch can be qualified with one or
more colon-delimited modifiers.

Plug-in Switch Modifiers

Plug-in Switch Modifiers

The following tables describe the modifiers that you can supply to plug-in
switches such as - base or - poa.

Table 33: Modifiers for all C++ plug-in switches

Modifier

Description

- d[decl - spec]

-i path-prefix

Creates NT declspecs for dl | export and dl i nport . If you omit
decl-spec, i dl uses the stripped IDL module’s name.

For example, the following command:
id -dlT_ART APl foo.idl
yields this code:

#if ldefined(I T_ART_API)

#if defined(| T_ART_API _EXPCRT)
#define | T ART APl | T_DECLSPEC EXPCRT
#el se

#define | T ART APl | T _DECLSPEC | MPCRT
#endi f

#endi f

If you compile and link a DLL with the i dI -generated code within it,
| T_ART_API _EXPCRT must be a defined preprocessor symbol so that

| T_ART_API is set to dl | export. All methods and variables in the
generated code can be exported from the DLL and used by other
applications. If I T_ART_API _EXPCRT is not defined as a preprocessor
symbol, | T_ART_API is set to dI | i nport; methods and variables that
are defined in the generated code are imported from a DLL.

Prepends path-prefix to generated i ncl ude statements. For example, if
the IDL file contains the following statement:

#include "foo.idl"
i dl generates this statement in the header file:

#i ncl ude pat h- prefix/foo. hh

539

Chapter Appendix A | Orbix IDL Compiler Options

Table 33: Modifiers for all C++ plug-in switches

Modifier

Description

-h[suffix.]ext

-Chpat h
-Ccpat h

- XAM Cal | backs

Sets header file extensions. The default setting is . hh.
For example, the following command:

idl -base:-hh foo.idl

yields a header file with this name:

foo.h

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -base:-h_client.h foo.idl
yields the following header file name:
foo client.h

If you use the - h to modify the - base switch, also use - b to modify
the - poa switch (see Table 36).

Sets the output directory for header files.
Sets the output directory for client stub (. cxx) files.

Generates stub code that enables asynchronous method invocations
(AMI).

540

Plug-in Switch Modifiers

Table 34: Modifier for -base, -psdl, and -pss_r plugin switches

Modifier Description

-c[suffix.]ext Specifies the format for stub file names. The default name is
i dl - nane. cxx.

For example, the following command:

id -base:-cc foo.idl

yields a server skeleton file with this name:
foo.c

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

id -base:-c_client.c foo.idl
yields the following stub file name:

foo client.c

- xQBV Generates object-by-value default val uet ype implementations in files.

Table 35: Modifiers for -jbase and -jpoa switches

Modifier Description

- Ppackage Use package as the root scope to package all unspecified modules.
By default, all Java output is packaged in the IDL module names.

- Produl e=package Use package as the root scope for the specified module.

-adir Output all java code to di r. The default is the current directory.
- si Output DSI or stream-based code. The default is stream
-Gstream

-Mefl ect Specifies the POA dispatch model to use either reflection or

- Mcascade cascading i f -t hen- el se statements. The default is refl ect.
-J1.1 Specifies the JDK version. The default is 1.2.

-J1.2

541

Chapter Appendix A | Orbix IDL Compiler Options

Table 35: Modifiers for -jbase and -jpoa switches

Modifier Description
- VTRUE Generate native implementation for valuetypes. The default is FALSE.
- VFALSE
-FTRUE Generate factory implementation for valuetypes. The default is FALSE.
- FFALSE

Table 36: Modifiers for -poa switch
Modifier Description

-s[suffix.]ext

Specifies the skeleton file name. The default name is i dl - naneS. cxx
for skeleton files.

For example, the following command:

id -poa:-sc foo.idl

yields a server skeleton file with this name:
fooS. c

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

idl -poa:-s_server.h foo.idl
yields the following skeleton file name:

foo_server.c

542

Plug-in Switch Modifiers

Table 36: Modifiers for -poa switch

Modifier

Description

-b[suf fix.]ext

-m ncl - mask

-pmul tiple

-XTIE

Specifies the format of the header file names in generated #i ncl ude
statements. Use this modifier if you also use the -h modifier with the
- base plugin switch.

For example, if you specify a . h extension for - base-generated header
files, specify the same extension in - poa-generated #i ncl ude
statements, as in the following commands:

id -base:-hh foo.idl
idl -poa:-bh foo.idl

These commands generate header file f 0o. h, and include in skeleton
file f 00S. cxx a header file of the same name:

#i ncl ude "foo. h"

If the argument embeds a period (.), the string to the left of the period
is appended to the IDL file name; the string to the right of the period
specifies the file extension. For example, the following command:

id -poa:-b client.h foo.idl

yields in the generated skeleton file the following #i ncl ude statement:
#include "foo_client.h"

#i ncl ude statements with file names that match mask are ignored in

the generated skeleton header file. This lets the code generator ignore
files that it does not need. For example, the following switch:

- nmong/ orb

directs the i dl compiler to ignore this #i ncl ude statement in the IDL/
PSDL:

#i ncl ude <ong/orb.idl >

Sets the dispatch table to be 2 to the power of multiple. The default
value of multiple is 1. Larger dispatch tables can facilitate operation
dispatching, but also increase code size and memory usage.

Generates POA TIE classes.

543

Chapter Appendix A | Orbix IDL Compiler Options

IDL Configuration File

544

The IDL configuration file defines valid i dI plugin switches such as - base
and - poa and specifies how to execute them. For example, the default IDL
configuration file defines the base and poa switches, the path to their
respective libraries, and command line options to use for compiling C+ +
header and client stub code and POA code.

IDL configuration files have the following format:
I DLP ugi ns = "pl ugi n-type[, plugin-type].."

pl ugi n-type
{
Swi tch = switch- nang;
Shli bNarre = pat h;
Shl i bMaj or Ver si on = versi on
ISDefault ="{ YES| NO}";
Presettions = "-plugin-nodi fier[, -plugin-nodifier]..."

plugin-specific settings...
#
}

plugin-type can be one of the following literals:

Java
PQAJava

ol uspl us
PQACXX

I FR
PSSDLCxx
PSSRCxx

The i dl command can supply additional switch modifiers; these are
appended to the switch modifiers that are defined in the configuration file.
You can comment out any line by beginning it with the # character.

The distributed IDL configuration file looks like this:
IDL Configuration File
| DL_CPP_LQCATI ON configures the G Preprocessor for the | DL

Conpi | er
1t can be the fully qualified path with the executabl e name or

IDL Configuration File

just the executabl e nane

#| DL_CPP_LOCATI ON = "%°RCDUCT_BI N D R PATH%i dI _cpp";
#l DL_CPP_ARGUMENTS = "";

#tnp_dir ="c:\tenp";

I DLPl ugi ns = "Java, PQAJava, Oplusplus, POACxx, |FR PSSDLCxX,

PSSRCxx" ;
Cpl uspl us
{
Switch = "base";
Shli bName = "it_cxx_i be";
Shli bMyj orVersion = "1";
IsDefault = "NO';
Presetptions = "-t";
Header and St ubExtension set the generated fil es extension
The Default is .cxx and . hh
#
St ubExt ensi on = "cxx";
Header Ext ensi on = "hh";
¥
PQACKX
{
Switch = "poa";
Shli bNarme = "it_poa_cxx_i be";
Shli bMaj orVersion = "1";
|sDefault = "NO';
Presettions = "-t";
Header and St ubExt ension set the generated files extension
The Default is .cxx and . hh
#
St ubExt ensi on = "cxx";
Header Ext ensi on = "hh";
¥
I FR
{

Switch = "R';

545

Chapter Appendix A | Orbix IDL Compiler Options

546

ShlibNarre = "it_ifr_ibe";
Shli bMaj or Version = "1";
IsDefault = "NO';

Preset ptions = "";

b

PSSDLCxx

{
Switch = "psdl";
ShlibNarme = "it_pss_cxx_i be";
Shli bMyj or Version = "1";
|sDefault = "NO';
Preset ptions = "-t";
UsePSSDLG amrar = "YES';

Header and St ubExtension set the generated files

The Default is .cxx and . hh

#

St ubExt ensi on = "cxx";

Header Ext ensi on = "hh";

b

PSSRCxx

{
Switch = "pss_r";
ShlibName = "it_pss_r_cxx_i be";
Shli bMaj or Version = "1";
|sDefault = "NO';
Preset ptions = "-t";
UsePSSDLG ammar = " YES';

Header and St ubExtension set the generated files

The Default is .cxx and . hh

#

St ubExt ensi on = "cxx";

Header Ext ensi on = "hh";

b

Java Config Information

Java

{

Switch = "j base";

ext ensi on

ext ensi on

IDL Configuration File

ShlibNarre = "idl _java";
Shli bMaj or Version = "1";
IsDefault = "NO';

|
PQAJava
{
Switch = "jpoa";
Shli bNae = "j poa";
Shli bMyaj or Version = "1";
IsDefault = "NO';
b

Given this configuration, you can issue the following idl commands on the
IDL file foo. i dI :

id -base foo.idl Generates client stub and header code.
idl -poa foo.idl Generates POA code.

idl -base -poa foo.idl Generates code for both client stub and header
code and POA code.

547

Chapter Appendix A | Orbix IDL Compiler Options

548

Installed IFC Directories

Appendix B
IONA Foundation Classes Library

For each platform, IONA distributes several variants of its IONA foundation
classes (IFC) shared library, which provides a number of proprietary features,
such as a threading abstraction. For each IFC library, IONA provides checked
and unchecked variants:

® Checked variants are suitable for development and testing: extra
checking is built into the code—for example, it throws an exception
when a thread attempts to lock a mutex that it has already locked.

® Unchecked variants are suitable for deployed applications, which have
been tested for thread safety.

Each UNIX distribution provides IFC libraries that support the POSIX thread
package. The following platforms have multiple IFC libraries, which support
different thread packages:

Platform Thread package support

HPUX 32 POSIX, DCE/CMA

Solaris 32/64 POSIX, Ul

Installed IFC Directories

Each Orbix installation makes IFC variants available in directories with this
format:

Unix

Checked $I T_PRCDUCT_DI R shl i b/ nati ve-t hread- pkg/ | i bit_ifc_conpil er-spec

Unchecked $I T_PRCDUCT_DI R/ shl i b/ nati ve-t hr ead- pkg/ checked/
l'ibit_ifc_conpiler-spec

Windows

Checked % T_PRODUCT_DI R bi n\wi ndows\ it _i fc3_vc60. dl |

Unchecked % T_PRCODUCT_DI RvA bi n\ wi ndows\ checked\it _ifc3_vc60. dl |

549

Chapter Appendix B | IONA Foundation Classes Library

Further, each installation provides a default IFC directory, which contains an
unchecked variant. On UNIX platforms, the default directory contains a
symbolic link to an unchecked variant of Ul or POSIX; on Windows, it
contains a copy of the unchecked variant of the Windows IFC library:

UNIX:
$I T_PRODUCT DI R/ shl i b/ defaul t/ifc-1ib-symlink

Windows:
% T _PRODUCT DI ReAbin\it _ifc3 vc60. dl |

Selecting an IFC Library

Unix

Windows

550

Options for setting a given program’s IFC library are platform-dependent.

On UNIX systems, you can set a program’s IFC library in two ways:

®* (Recommended) When linking the program, use the linker's run path
feature, and set it to the desired IFC library directory. For example, set
the - Roption with the Sun compiler.

® Set the program’s environment variable (LD LI BRARY_PATH or
SH_I B_PATH). Keep in mind that other services such as the Locator also
might use this environment and can be affected by this setting.

Set PATH to the desired IFC library directory.

Index

A
Abstract storage home
defined 421
defining 425
factory operation 428
forward declaration 429
inheritance 429
keys 426
operations 428
Abstract storage type
defined 421
defining 422
definition syntax 423
forward declaration 425
inheritance 423
from storage object 424
operations 424
state members 423
activate()
calling on POAManager 69, 241
activate_object() 68, 203, 234, 236

activate_object_with_id() 203, 234, 236

Active object map 222
disabling 228
enabling 228
using with servant activator 250
add_ior_component() 504
addMember() 408
_add_ref() 213
AliasDef 357
allocate _slot_id() 529
Any type 303-338
extracting user-defined types 307
extracting values from 306
alias 314
array 310
Boolean 309
bounded string alias 313
Char 309
Octet 309
string 312
WChar 309
wstring 312
extraction operators 306

inserting user-defined types 305
inserting values 304
alias 313
array 310
Boolean 309
bounded string alias 313
Char 309
Octet 309
string 311
WChar 309
wstring 311
insertion operators 304
memory management 305, 307
querying type code 315
Application
running 26, 31
arguments() 345
Arithmetic operators 106
Array type
_forany 310
ArrayDef 358
Association
constructors 439
operations 440

Asynchronous method invocations 267-276

client implementation 273
implied IDL 268
reply handlers 270
Attribute
client-side C++ mapping for 163
genie-generated 52
in IDL 82
readonly 42

B

BAD_TYPECODE 314

-base flag 45

Binding
limiting forward tries 189
limiting retries 189
setting delay between tries 189
setting timeout 189

Binding iterator 392

Binding list 392

551

Index

BindingEstablishmentPolicy 188
Boolean

constant in IDL 104
Bounded strings 311

C
CannotProceed exception 391
CDR encapsulation 499
Character
constant in IDL 103
Client
asynchronous method invocations 267
building 26
developing 55, 145
dummy implementation 44
exception handling 281
generating 22, 29, 43
implementing 24, 30, 55
initializing ORB runtime 129, 163
interceptors, see Client interceptors
invoking operations 147, 163-182
quality of service policies 182
creating PolicyList 134
effective policy 133
getting policy overrides 136
object management 137, 139
ORB PolicyManager 135, 138
setting policy overrides 136
thread management 135, 138
reply handlers for asynchronous method
invocations 273
timeout policies 185
Client interceptors
aborting request 510
changing reply 511
evaluating tagged component 515
interception point flow 508
interception points 506, 507, 513
location forwarding 510
normal reply processing 509
registering 533
tasks 514
Client policies
RebindPolicy 183
SyncScopePolicy 184
timeout 185
Client proxy 58, 145
class definition 146
deallocating 149
reference counting 148

552

ClientRequestinfo 496
interface 512
ClientRequestlinterceptor 495
interface 506
Client-side C++ mapping
attributes 163
operations 163
parameter passing 164
rules 179
parameters
fixed-length array 167
fixed-length complex 166
object reference 177
_out-type 171
simple 165
string 169
variable-length array 176
variable-length complex 174
Code generation toolkit
See also Genie-generated application
idlgen utility 29
packaged genies 109
wizard 17
Codec
creating 500, 532
decoding service context 500
encoding service context 500
interface 499
operations 500
Codec factory 500
obtaining 532
codec_factory() 500, 532
Command-line arguments 64
Compiling
application 60
event service application 490
IDL 45
IDL definitions for event service 490
PSDL 422
completed() 283
component_count() 327
Configuration 9
Connector object 442
Constant definition
boolean 104
character 103
enumeration 105
fixed-point 105
floating point 103
in IDL 103

Index

integer 103
octet 104
string 103
wide character 104
wide string 104
Constant expressions
in IDL 106
Consumer
about 466
connecting to event channels 488
push model development 486
receiving events 489
ConsumerAdmin 481, 487
Contained interface 361
Description structure 365
Container interface 363
operations 368
contents() 369
CORBA object, see Object
corbaloc 162
corbaname 390
CosEventChannelAdmin 473, 475, 480
CosEventComm 473, 475
cpp_poa_genie.tcl 29, 43
cpp_poa_genie.tcl genie 127
-all option 111
-complete/-incomplete options 122
-default_poa option 117
defined 109
-dir option 126
-include option 113
interface specification 112
-refcount/-norefcount options 117
-servant option 114
-servant/-noservant options 116
-server option 118
-strategy options 120
syntax 110
-threads/-nothreads options 119
-tie option 115
-v/-s options 126
cpp_poa_op.tcl genie 127
defined 109
_create() 67
create_active() 408
create_id_assignment_policy() 233
create id_uniqueness_policy() 234
create_lifespan_policy() 231
create_operation_list 344
create_policy()

calling on client ORB 134
create_random() 408
create_reference() 264
create_reference_with_id() 264
_create_request 342
create_round_robin() 408, 416
create_transactional_session() 443
Current, in portable interceptors

See PICurrent
current_component() 327
current_member_kind() 331, 337
current_member_name() 331, 336

D
DCE UID repository ID format 373
deactivate()
calling on POAManager 242
decode() 500
decode value() 500
Default servant 223, 261-264
registering with POA 231, 264
default_POA() 238
overriding 239
Deferred synchronous request 346
def kind 352
describe() 365
describe_contents() 369
destroy() 71, 131, 352
DIl 340
See also Request object
creating request object 341
deferred synchronous request 346
invoking request 344
DIRECT _PERSISTENCE policy 232
discard_requests()
calling on POAManager 242
discriminator_kind() 333
DSI 347
dynamic implementation routine 348
Dynamic Any, see DynAny
Dynamic implementation routine 348
Dynamic invocation interface, see DIl
Dynamic skeleton interface, see DSI
DynAny 316
assignment 317
comparing 317
conversion to Any 318
copying 317
creating 318
destroying 317

553

Index

DynArray interface 334 relationship to operation calls 471
DynEnum interface 329 sample application 467
DynFixed interface 335 sample push model application 483
DynSequence interface 334 transferring through an event channel 477
DynStruct interface 330 typed 471
DynUnion interface 332 untyped 471
DynValue interface 336 Exceptions 277-291
DynValueBox interface 337 handling in clients 281
extraction operations 324 inIDL 83
factory operations 318 specification in server skeleton class 199
initializing from another 317 system 282
insertion operations 323 system codes 283
iterating over components 327 throwing in server 287
obtaining type code 318 Explicit object activation 203, 236
DynAnyFactory interface 318 policy 234
E F
encode() 500 Factory operation
encode_value() 500 in PSDL 428
EndOfAssociationCallback 444 find_group() 409, 416
enum data type 97 FixedDef 358
EnumDef 357 Fixed-point
Enumeration constant in IDL 105
constant in IDL 105 Floating point
equal() 297 constant in IDL 103
equivalent() 297 for_consumers() 480, 487
establish_components() 502 for_suppliers() 480, 484
etherealize() 255 Forward declaration
Event channel abstract storage home 429
about 466 abstract storage type 425
administration 480 in IDL 88
registering suppliers and consumers 473
transfer of events 477 G
Event handling i - _
N server 218 Genie-generated application 8, 109-127

See also cpp_poa_genie.tcl genie,
cpp_poa_op.tcl genie

compiling 126

completeness of code 122

component specification

Event service
compiling application 490
compiling IDL 490
IDL interface 472

overview 472 all 111
programming interface 472 . .
EventChannel 480, 484, 487 gr;(;{/l;dnetdcglsesseslcl)riy 114
Evegtst 166 server only 118
about 068 _create() 54
|n|t|a!t|.ng directing output 126
mixing push and pull models 470 generated attribute 52
pull model 469 interface selection 112

push model 469
pushing to an event channel 486
receiving by consumer 489

object mapping policy
servant locator 120

554

Index

use active object map only 120
use servant activator 120
overriding _default POA() 117
POA thread policy 119
reference counting 117
servant class inheritance 116
signature 126
tie-based servants 115
verbosity settings 126
get_association_status() 448
get_boxed value() 337
get boxed value as_dyn_any() 337
get_client_policy() 140
get_compact_typecode() 298
get_discriminator() 332
get_effective_component() 515
get_effective_policy() 503
_get_interface() 367
get_length() 334
get members() 331, 337
get_ members_as_dyn_any() 331, 337
get_policy() 140
get_policy overrides() 140
calling on ORB PolicyManager 136
calling on thread PolicyCurrent 136
get response() 346
get value() 335

H
hash() 152
has_no_active_member() 333
Hello World! example 16
hold_requests()

calling on POAManager 241

|

IDL 77-107
attribute in 42
attributes in 82
compiling 45
constant expressions in 106
empty interfaces 84
event service 472
exceptions 277-291
exceptions in 83
interface definition 79-88
interface repository definitions 351

object types 354

module definition 77

name scoping 77
one-way operations in 82
operation in 42, 80
parameters in 81
pragma directives 373
precedence of operators 107
prefix pragma 374
user-defined types 102
version pragma 374
IDL compiler 45
generated files 46
generating implied IDL 268
options
-base 45
-flags 45
-poa 45
output 45
populating interface repository 351
idlgen utility 43
Implicit object activation 202, 237
overriding default POA 239
policy 234

IMPLICIT_ACTIVATION policy 235, 237

Implied IDL 268
attribute mapping 269
operation mapping 269
sendc_ operation 268
sendc_get operation 269
in parameters 81
Inheritance
implementing by 51
in abstract storage home 429
in interfaces 84
in servant classes 216
storage home 431
Initial naming context
obtaining 382
Initial reference
registering 530
inout parameters 81
Integer
constant in IDL 103
Interception points 495
client flow 508
client interceptors 506, 507, 513
client-side data 496, 512
IOR data 496
IOR interceptors 502
request data 496, 504
server flow 519

555

Index

server interceptors 518, 524
server-side data 496, 523
timeout constraints 505
Interceptor interface 494
Interceptors, see Portable interceptors
Interface
client proxy for 145
components 80
defined in IDL 79-88
dynamic generation 339
empty 84
forward declaration of 88
inheritance 84
inheritance from Object interface 86
multiple inheritance 85
overriding inherited definitions 87
Interface Definition Language, see IDL
Interface repository 351-375
abstract base interfaces 353
browsing 368
Contained interface 361
Container interface 363
containment 359
destroying object 352
finding objects by ID 370
getting information from 367
object interface 367
getting object’s IDL type 358
object descriptions 365
getting 369
object types 352
named 357
unnamed 358
objects in 352
populating 351
repository IDs 372
setting prefixes 373
setting version number 374
Interface, in IDL definition 42
InterfaceDef 357
Interoperable Object Reference, see IOR
InvalidName exception 391
InvocationRetryPolicy 191
IOR 221
string format 160
usage 161
IOR interceptors 502
adding tagged components 499, 504
interception point 502
registering 533

556

IORInfo 496

interface 502
IORInterceptor 495

See also IOR interceptors

interface 502
IRObject interface 352
_is_a() 151
_is_equivalent() 152
Isolation level

specifying for session 443
item() 345
IT_ServantBaseOverrides class 240
IT_THROW_DECL macro 51

K
Key
defined in abstract storage home 426
composite 426
simple 426
primary declaration in storage home 431
kind() 296

L
Load balancing 404
example of 410
Local repository ID format 373
Logging 9
lookup() 368
lookup_id() 370
lookup_name() 368

M
member() 333
member_kind() 333
member_name() 333
Memory management
string type 30
minor() 284
Module
inIDL 77
MULTIPLE_ID policy 234

N

Name binding
creating for application object 387
creating for naming context 384
dangling 395
listing for naming context 391

Index

removing 395
Name scoping
inIDL 77
Name sequence
converting to StringName 382
defined 379
initializing 381
resolving to object 379, 388
setting from StringName 381
setting name components 381
string format 380
NameComponent
defined 379
NamedValue pseudo object type 102
Naming context
binding application object to 387
binding to another naming context 384
destroying 395
listing bindings 391
orphan 386
rebinding application object to 388
rebinding to naming context 388
Naming graph
binding application object to context 387
binding iterator 392
binding naming context to 384
building programmatically 383
defined 377
defining Name sequences 379
destroying naming context 395
federating with other naming graphs 396
iterating over naming context bindings 392
listing name bindings 391
obtaining initial naming context 382
obtaining object reference 388
rebinding application object to context 388
rebinding naming context 388
removing bindings 395
resolving name 379, 389
resolving name with corbaname 390
Naming service 377
AlreadyBound exception 388
binding iterator 392
CannotProceed exception 391
defining names 379
exceptions 391
initializing name sequence 381
InvalidName exception 391
name binding 377
naming context 377

NotEmpty exception 395
NotFound exception 391
representing names as strings 380
string conversion operations 380
Narrowing
initial references 65
object reference 58
_ptr 153
type-safe 155
_var 158
NativeDef 357
next() 328
Nil reference 149
_nil()
Nil reference 57, 63

NO_IMPLICIT_ACTIVATION policy 235, 236

_non_existent() 151

NON_RETAIN policy 228
and servant locator 250

NotFound exception 391

o)
Object
activating 68, 202
activating on demand
with servant activator 251
with servant locator 256, 260
base class 47
binding to naming context 387
client proxy for 145
creating inactive 264
deactivating
with servant activator 255
with servant locator 260
defined in CORBA 2
explicit activation 203, 236
getting interface description 367
ID assignment 67, 233
implicit activation 202, 237
mapping to servant 221
options 222
rebinding to naming context 388
removing from object groups 409
request processing policies 229
test for equivalence 152
test for existence 151
test for interface 151
Object binding
transparent rebinding 183
Object group 404

557

Index

accessing from clients 417

adding objects to 408, 411

creating 408, 411

factories 408

finding 416

group identifiers 408

member identifiers 408

member structure 417

removing 409

removing objects from 409

selection algorithms 408
Object pseudo-interface

hash() 152

inheritance from 86

is_a_() 151

_is_equivalent() 152

_non_existent() 151

operations 150
Object reference 2

adding tagged components 499, 504

creating for inactive object 264

IOR 221

lifespan 231

narrowing 58

nil 149

obtaining with create_reference() 264

obtaining with id_to_reference() 68

obtaining with _this() 237

operations 150

passing as a string 17

passing as parameter

C++ mapping in client 177
persistent 232
string conversion 159
format 160

transient 231

_var type 147
ObjectDeactivationPolicy 227, 255
object_to_string() 69, 160
obtain_pull_consumer() 480
obtain_pull_supplier() 481
obtain_push_consumer() 480, 484
obtain_push_supplier() 481, 487
Octet

constant in IDL 104
og_factory() 416
OMG IDL repository ID format 372
One-way requests

SyncScopePolicy 184
Operation

558

client-side C+ + mapping for 163
defined in abstract storage home 428
defined in abstract storage type 424
defined in IDL 80
interface repository description 365
one-way, defined in IDL 82
operation() 346
OperationDef interface 365
Operators
arithmetic 106
precedence of, in IDL 107
ORB
getting object reference to 129, 163
role of 3
-ORB flags 64
ORB initializer 494
creating and registering PolicyFactory 532
creating Codec objects 500, 532
interface 501
obtaining Codec factory 500, 532
registering initial reference 530
registering portable interceptors 529, 533
registering with application 534
tasks 501, 529
ORB PolicyManager 137
ORB runtime
destroying 130
event handling 218
initializing in client 55, 129, 163
initializing in server 63
polling for incoming requests 218
shutting down 70, 130
ORB_CTRL_MODEL policy 213, 235, 236
ORB_init() 57
calling in client 129, 163
ORB_init() function 57
calling in server 64
ORBInitinfo 501
Orphaned naming context 386
out parameters 81

_out-type parameters

C++ mapping in client 171

P

ParameterList
settings for transaction session 444
Parameters
C++ mapping in client 164
fixed-length array 167
fixed-length complex 166

Index

object reference 177
_out types 171
rules for passing 179
simple 165
string 169
variable-length array 176
variable-length complex 174
C++ mapping in server 203-213
fixed-length array 206
fixed-length complex 205
object reference 211
simple 204
string 207
variable-length array 210
variable-length complex 209
defined in IDL 42, 81
direction 81
in types 81
inout types 81
out types 81
setting for request object 342, 343, 344
perform_work() 219
PersistenceModePolicy 227
PERSISTENT policy 232
Persistent State Definition Language, see PSDL
Persistent State Service, see PSS
PICurrent 494
allocating slot 529
defined 497
interface 498
obtaining 529
Plug-in 7
POA 221-242
activating object in 67, 202
active object map 222, 228
attaching PolicyList 137, 225
creating 64, 65, 223
default servant 223, 261-264
genie-generated
active object map 120
servant activator 120
use servant locator 120
mapping object to servant through
inheritance 197-199
ObjectDeactivationPolicy 255
POAManager 65, 69, 241
registering default servant 231, 264
registering servant activator 256
registering servant locator 261
registering servant manager 230

root POA 65, 223
servant manager 223
skeleton class 196

POA manager 65, 241

states 69, 241

POA policies

attaching to new POA 137, 225

constants
DIRECT _PERSISTENCE 232
IMPLICIT_ACTIVATION 235
MULTIPLE_ID 234
NO_IMPLICIT_ACTIVATION 235
NON_RETAIN 228
ORB_CTRL_MODEL 235, 236
PERSISTENT 232
RETAIN 228
SINGLE_THREAD MODEL 235
SYSTEM_ID 233
TRANSIENT 231
UNIQUE_ID 234
USE_ACTIVE_OBJECT_MAP_ONLY 229
USE_DEFAULT_SERVANT 230
USER_ID 233
USE_SERVANT_MANAGER 230

factories for Policy objects 226

ID assignment 233

ID uniqueness 234

object activation 234, 236

object lifespan 231

ObjectDeactivationPolicy 227

ORB_CTRL_MODEL 213

PersistenceModePolicy 227

proprietary 226

request processing 229

root POA 227

servant retention 228

setting 66, 224

threading 235

WellKnownAddressingPolicy 227

Policies

creating PolicyFactory 501
getting 141

PolicyCurrent 138

interface operations 135

PolicyFactory 494

creating and registering 532
interface 501

PolicyList

attaching to POA 137, 225
creating for client 134

559

Index

creating for POA 224 defined 420
PolicyManager 138 Pseudo object types
interface operations 135 in IDL definition 102
setting ORB policies 137 PSS 419-464
poll_response 346 accessing storage objects 432
Portable interceptors 9, 493 defining data 419
client interceptors, see Client interceptors see also PSDL
components 493 querying data 452
interception points, see Interception points _ptr object reference type 147, 153-156
IOR interceptors, see IOR interceptors duplicating 153
ORB initializer, see ORB initializer narrowing 153
PICurrent, see PICurrent type-safe 155
policy factory, see PolicyFactory releasing 153
registering 529, 533 widening 153
registering with Orbix configuration 534 Pull model
server interceptors, see Server interceptors for initiating events 469
service context, see Service context PullConsumer 475
tagged component, see Tagged component PullSupplier 475
types 495 Push model
Portable Object Adapter, see POA for initiating events 469
post_init() 529 push() 486
postinvoke() 258, 260 PushConsumer 473, 488
Pragma directives, in IDL 373 developing
Prefix pragma 374 486
pre_init() 529 PushSupplier 473
preinvoke() 258, 260 developing 484
PrimitiveDef 358
Proxy, see Client proxy Q

ProxyPullConsumer 475

ProxyPullSupplier 475 Quality of service policies 182

creating PolicyList 134

ProxyPushConsumer 473 i i
retrieving from event channels 484 Zgﬁ%g%&g;ﬁjye:%' 18
ProxyPushSupplier 473 for ORB 136
retrieving from event channels 487 for thread 136
PSDL 419-431 managing
abstract storage home 425 object 139
abstract storage type 422 ORB 135
C++ mapping 454-464 thread 135
abstract storagetype 456 object management 137, 139
operation parameters 461 ORB PolicyManager 135, 138
Ref_var class 459 setting overrides
state members 459 for ORB 136
storagehome 462 for thread 136
storagetype 461 thread management 135, 138
compiling 422 Querying data 452

keywords 420
language mappings

equivalent local interfaces 455 R))
storage home 420 RebindPolicy 183
storage type receive_exception() 508

560

Index

receive_other() 508
receive_reply() 508
receive_request() 519
receive_request_service contexts() 519
RefCountServantBase 213
Reference counting 213
genie-generated 117
Reference representation 430
Ref var Classes 459
register_orb_initializer() 534
RelativeBindingExclusiveRequestTimeoutPolicy
191
RelativeBindingExclusiveRoundtripTimeoutPolic
y 191
RelativeRequestTimeoutPolicy 187
RelativeRoundtripTimeoutPolicy 186
remove_member() 409
_remove_ref() 213
Reply handlers 270
exceptional replies 273
implementing on client 273
normal replies 272
ReplyEndTimePolicy 187
_request 341
Request object
creating 341
operation parameters 342, 343, 344
return type 342
with _create_request 342
with _request 341
getting request information 346
invoking 344
obtaining results 345
RequestEndTimePolicy 188
Requestinfo 496
interface 504
resolve _initial_references()
InterfaceRepository 368
NameService 382
PICurrent 530
POA 64
PSS 433
TransactionCurrent 433
resolve_str() 381
RETAIN policy 228
and servant activator 250
return_value() 346
rewind() 328
Root POA
policies 227

run() 70
Running an application 59

S
seek() 328
send_c operation 268
sendc_get operation 269
send_deferred 346
send_exception() 519
send_other() 519
send_poll() 508
send_reply() 519
send_request() 508
sequence data type 101
SequenceDef 358
Servant
caching 257
etherealized
by servant activator 255
by servant locator 260
genie-generated
overriding default POA 117
reference counting 117
implementation class 52, 200
incarnated
by servant locator 260
incarnating multiple objects 234
inheritance from POA skeleton class 196
inheritance from ServantBase 198
instantiating 202
mapping to object 221
options 222
reference counting 213
tie-based 214
Servant activator 251-256
deactivating objects 255
etherealizing servants 255
object deactivation policy 255
registering with POA 256
required policies 230
Servant class
creating 200-201
genie-generated 114
inheritance 116
inheritance 216
interface inheritance 216
multiple inheritance 217
Servant locator 256-261
activating objects 260
caching servants 257

561

Index

deactivating objects 260
etherealizing servants 260
incarnating servants 260
registering with POA 261
required policies 230
Servant manager 223, 249-266
registering with POA 230, 250
set for POA 230
ServantBase 198
Server
building 22
compiling 220
defined in CORBA 5
dummy implementation 44
event handling 218
generating 18, 29, 43
genie-generated 118
object mapping options 120
POA thread policy 119
implementing 20, 30, 48
initialization 61
processing requests, see POA
servant reference counting 213
shutting down 70
termination handler 70, 219
throwing exceptions 287
Server interceptors 518
aborting request 521
changing reply 522
getting server policy 526
getting service contexts 527
interception point flow 519
interception points 518, 524
registering 533
tasks 526
throwing exception 520
ServerRequest pseudo-object 348
ServerRequestinfo 496
interface 523
ServerRequestinterceptor 495
interface 518
Server-side C++ mapping
fixed-length array parameters 206
fixed-length complex parameters 205
object reference parameters 211
parameter passing 203-213
POA skeleton class 196, 197-199
simple parameters 204
skeleton class
method signatures 199

562

string parameters 207
variable-length array parameters 210
variable-length complex parameters 209
Service context 494, 497
decoding data 500
encoding data 494, 500
IDs 497
Services 26, 27, 32, 33, 60
encapsulating ORB service data 497
Session
management operations 450
SessionManager 435
parameters 437
set_boxed value() 337
set_boxed value as_dyn_any() 337
set_discriminator() 332
set_length() 334
set_members() 331, 337
set_members_as_dyn_any() 331, 337
set_policy overrides() 141
calling on ORB PolicyManager 136
calling on thread PolicyCurrent 136
set_return_type 342
set_servant() 231
set_servant_manager() 230
set_to default member() 333
set_to_no_active_member() 333
set_value() 335
shutdown() 58, 71, 131
Signal handling 219
SINGLE_THREAD_MODEL policy 235
Skeleton class
dynamic generation 348
method signatures 199
naming convention 199
Skeleton code 46
Smart pointers 147
State member
in abstract storage type 423
in storage type 430
Storage home
defined 420
implementing 422, 430
inheritance 431
instance 432
primary key declaration 431
Storage object
accessing 432, 441
associating with CORBA object 453
defining 422

Index

incarnation 432
thread safety 453
Storage type
defined 420
implementing 422, 429
reference representation 430
state members 430
String
constant in IDL 103
StringDef 358
string_dup() 30, 55
StringName
converting to Name 381
using to resolve Name sequence 389
string_to_object() 57, 160
String var 31
struct data type 98
StructDef 357
Stub code 46
Supplier
about 466
connecting to event channels 485
developing push model 484
disconnecting from event channels 486
SupplierAdmin 480, 484
SyncScopePolicy 184
System exceptions 282
codes 283
throwing 291
SYSTEM_ID policy 233

T
Tagged component 494
adding to object reference 499, 504
defined 499
evaluated by client 515
target 346
tc<type> 302
TCKind enumerators 294
Termination handler
in server 219
_this() 202, 234, 237-239
overriding default POA 239
Threading 8
POA policy 235
with storage objects 453
Tie-based servants 214
compared to inheritance approach 215
creating 214
genie-generated 115

removing from memory 215
Timeout policies 185
absolute times 185
binding retries 189
delay between binding tries 189
forwards during binding 189
invocation retries 191
delay between 192
maximum 191
maximum forwards 192
maximum rebinds 191
limiting binding time 189
propagating to portable interceptors 505
reply deadline 187
request and reply time 191
excluding binding 186
request delivery 187
excluding binding 191
request delivery deadline 188
to_name() 381
to_string() 381
Transaction resource
associating with SessionManager 439
Transactional session
activating 445
creating 442
access mode 443
callback object 444
isolation level 443
ParameterList settings 444
EndOfAssociationCallback 444
managing 442, 447
TRANSIENT policy 231
TxSessionAssociation interface 439
Type code
getting from any type 315
getting from DynAny 318
Type codes 293-302
compacting 298
comparing 296
constants 301
getting TCKind of 296
operations 296
TCKind enumerators 294
type-specific operations 298
user-defined 302
Type definition
in IDL 102
type() 314
TypeCode interface 358

563

Index

TypeCode pseudo object type 102 work_pending() 218
Typed events 471 WorkQueuePolicy 242
typedef 102 WStringDef 358
TypedefDef 357

U

Union

in IDL definition 99
UnionDef 357
UNIQUE_ID policy 234
Untyped events 471
USE_ACTIVE_OBJECT_MAP_ONLY policy 229
USE_DEFAULT_SERVANT policy 230
USER_ID policy 233
USE_SERVANT_MANAGER policy 230

Vv
validate_connections() 141
value() 345
ValueBoxDef 357
ValueDef 357
_var object reference type 147, 156-159
assignment operator 157
class members 156
constructors 157
conversion operator 157
default constructor 157
destructor 157
explicit conversion operator 158
in() 158
indirection operator 157
inout() 158
narrowing 158
out() 158
widening 158
Version pragma 374

w
WellKnownAddressingPolicy 227, 232
Wide character

constant in IDL 104
Wide string

constant in IDL 104
Widening

_ptr 153

assignment 154

_var 158
Wizard

for code generation 17

564

	Preface
	Audience
	Document Conventions

	1 Introduction to Orbix 2000
	Why CORBA?
	CORBA Objects
	Object Request Broker

	CORBA Application Basics
	Servers and the Portable Object Adapter
	Orbix Plug-In Design
	Plug-Ins
	ORB Core

	Development Tools
	Code Generation Toolkit
	Multi-threading Support
	Configuration and Logging Interfaces
	Portable Interceptors

	Orbix Application Deployment
	Location Domains
	Configuration Domains

	CORBA Features and Services
	Full CORBA 2.3 Support and Interoperability
	Asynchronous Messaging and Quality of Service
	Interoperable Naming Service and Load Balancing Extensions
	Object Transaction Service
	Event Service
	SSL/TLS
	COMet
	Persistent State Service
	Dynamic Type Support: Interface Repository and DynAny

	2 Getting Started with Orbix�2000
	Prerequisites
	Setting the Orbix Environment
	Hello World Example
	Development Using the Client/Server Wizard
	Steps to Implement the Hello World! Application
	Step 1—Define the IDL Interface
	Step 2—Generate the Server
	Step 3—Complete and Build the Server Program
	Step 4—Generate the Client
	Step 5—Complete and Build the Client Program
	Step 6—Run the Demonstration

	Development from the Command Line
	Steps to Implement the Hello World! Application
	Step 1—Define the IDL Interface
	Step 2—Generate Starting Point Code.
	Step 3—Complete the Server Program
	Step 4—Complete the Client Program
	Step 5—Build and Run the Demonstration

	3 First Application
	Overview of the Development Process
	Development Without Using Code Generation
	Development Using Code Generation
	Locating CORBA Objects

	Development Steps
	Step 1—Define the IDL Interfaces
	Step 2—Generate Starting Point Code
	Dummy Implementation of Client and Server Programs
	Modifying Dummy Client and Server Programs

	Step 3—Compile the IDL Definitions
	Output from IDL Compilation
	IDL to C++ Mapping

	Step 4—Develop the Server Program
	Declare the BuildingImpl Servant Class
	Define the BuildingImpl Servant Class

	Step 5—Develop the Client Program
	Client main()
	Client Business Logic

	Step 6—Build and Run the Application
	Build the Application
	Run the Application

	Learning More About the Server
	Create a Termination Handler Object
	Initialize the ORB
	Create a POA for Transient Objects
	Create Servant Objects
	Activate CORBA Objects
	Export Object References
	Put the ORB into an Active State
	Shut Down the ORB

	Complete Source Code for server.cxx

	4 Defining Interfaces
	Modules and Name Scoping
	Nesting Restrictions

	Interfaces
	Interface Contents
	Operations
	Attributes
	Exceptions
	Empty Interfaces
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces
	Local Interfaces

	Valuetypes
	Abstract Interfaces
	IDL Data Types
	Built-in Types
	Extended Built-in Types
	Complex Data Types
	Pseudo Object Types

	Defining Data Types
	Constants
	Integer Constants
	Floating-Point Constants
	Character and String Constants
	Wide Character and String Constants
	Boolean Constants
	Octet Constants
	Fixed-Point Constants
	Enumeration Constants

	Constant Expressions
	Arithmetic Operators
	Bitwise Operators
	Precedence

	5 Developing Applications with Genies
	Starting Development Projects
	Genie Syntax
	Specifying Application Components
	Selecting Interfaces
	Including Files
	Implementing Servants
	Implementing the Server Mainline
	Implementing a Client
	Generating a Makefile
	Controlling Code Completeness
	General Options
	Compiling the Application

	Generating Signatures of Individual Operations
	Configuration Settings

	6 ORB Intialization and Shutdown
	Initializing the ORB Runtime
	Calling within main()
	Supplying an ORB Name
	C++ Mapping
	Registering Portable Interceptors

	Shutting Down the ORB

	7 Using Policies
	Creating Policy and PolicyList Objects
	Using POA Policy Factories
	Calling create_policy()

	Setting Orb and Thread Policies
	Setting Server-Side Policies
	Setting Client Policies
	Setting Policies at Different Scopes
	Managing Object Reference Policies

	Getting Policies

	8 Developing a Client
	Interfaces and Proxies
	Using Object References
	Counting References
	Nil References
	Object Reference Operations
	Using _ptr References
	Using _var References
	String Conversions

	Initializing and Shutting Down the ORB
	Invoking Operations and Attributes
	Passing Parameters in Client Invocations
	Simple Parameters
	Fixed-Length Complex Parameters
	Fixed-Length Array Parameters
	String Parameters
	_out Types
	Variable-Length Complex Parameters
	Variable-Length Array Parameters
	Object Reference Parameters
	Parameter-Passing Rules: Summary

	Setting Client Policies
	RebindPolicy
	SyncScopePolicy
	Timeout Policies

	Implementing Callback Objects

	9 Developing a Server
	POAs, Skeletons, and Servants
	Mapping Interfaces to Skeleton Classes
	Creating a Servant Class
	Implementing Operations
	Activating CORBA Objects
	Handling Output Parameters
	Simple Parameters
	Fixed-Length Complex Parameters
	Fixed-Length Array Parameters
	String Parameters
	Variable-Length Complex Parameters
	Variable-Length Array Parameters
	Object Reference Parameters

	Counting Servant References
	Delegating Servant Implementations
	Creating Tie-Based Servants
	Removing Tie Objects and Servants
	Tie Versus Inheritance

	Implementation Inheritance
	Interface Inheritance
	Multiple Inheritance
	Explicit Event Handling
	Termination Handler
	Compiling and Linking

	10 Managing Server Objects
	Mapping Objects to Servants
	Mapping Options

	Creating a POA
	Setting POA Policies
	Root POA Policies

	Using POA Policies
	Enabling the Active Object Map
	Processing Object Requests
	Setting Object Lifespan
	Assigning Object IDs
	Activating Objects with Dedicated Servants
	Activating Objects
	Setting Threading Support

	Explicit and Implicit Object Activation
	Explicit Activation
	Implicit Activation

	Managing Request Flow
	Creating a Work Queue
	ManualWorkQueue
	AutomaticWorkQueue
	Creating a POA with a WorkQueue Policy

	11 Managing Servants
	Using Servant Managers
	Servant Activators
	Servant Locators

	Using a Default Servant
	Setting a Default Servant

	Creating Inactive Objects

	12 Asynchronous Method Invocations
	Implied IDL
	Mapping Operations to Implied IDL
	Mapping Attributes to Implied IDL

	Calling Back to Reply Handlers
	Interface-to-Reply Handler Mapping
	Normal Replies
	Exceptional Replies

	Implementing a Client with Reply Handlers

	13 Exceptions
	Exception Code Mapping
	User-Defined Exceptions
	Exception Design Guidelines
	C++ Mapping for User Exceptions

	Handling Exceptions
	User Exceptions
	System Exceptions
	Evaluating System Exceptions

	Throwing Exceptions
	Exception Safety
	Throwing System Exceptions

	14 Using Type Codes
	Type Code Components
	TCKind Enumerators

	Type Code Operations
	General Type Code Operations
	Type-Specific Operations

	Type Code Constants
	Built-In Type Codes
	User-Defined Type Codes

	15 Using the Any Data Type
	Inserting Typed Values Into Any
	Memory Management of Inserted Data
	Inserting User-Defined Types

	Extracting Typed Values From Any
	Memory Management of Extracted Data
	Extracting User-Defined Types

	Inserting and Extracting Booleans, Octets, Chars�and WChars
	Inserting and Extracting Array Data
	Inserting and Extracting String Data
	Inserting Strings
	Extracting Strings

	Inserting and Extracting Alias Types
	Inserting Alias Types
	Extracting Alias Types

	Querying a CORBA::Any’s Type Code
	Using DynAny Objects
	Interface Hierarchy
	Generic Operations
	Creating a DynAny
	Inserting and Extracting DynAny Values

	16 Generating Interfaces at Runtime
	Using the DII
	Constructing a Request Object
	Invoking a Request
	Retrieving Request Results
	Getting Information about a Request Object
	Invoking Deferred Synchronous Requests

	Using the DSI
	DSI Applications
	Programming a Server to Use DSI

	17 Using the Interface Repository
	Interface Repository Data
	Abstract Base Interfaces
	Repository Object Types

	Containment in the Interface Repository
	Contained Interface
	Container Interface

	Repository Object Descriptions
	Retrieving Repository Information
	Getting a CORBA Object’s Interface
	Browsing and Listing Repository Contents
	Finding an Object Using its Repository ID

	Sample Usage
	Repository IDs and Formats
	OMG IDL Format
	DCE UUID Format
	LOCAL Format

	Controlling Repository IDs with Pragma Directives

	18 Naming Service
	Overview
	Defining Names
	Representing Names as Strings
	Initializing a Name
	Converting a Name to a StringName

	Obtaining the Initial Naming Context
	Building a Naming Graph
	Binding Naming Contexts
	Binding Object References
	Rebinding

	Using Names to Access Objects
	Setting Object Names
	Resolving Names
	Resolving Names with corbaname
	Exceptions Returned to Clients

	Listing Naming Context Bindings
	Using a Binding Iterator

	Maintaining the Naming Service
	Federating Naming Graphs
	Federation Structures

	Sample Code
	Server Code
	Client Code

	Object Groups and Load Balancing
	Load Balancing Interfaces

	Load Balancing Example
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Accessing Objects from a Client

	19 Persistent State Service
	Defining Persistent Data
	Reserved Keywords
	Datastore Model
	Abstract Types and Implementations
	Defining Storage Objects
	Syntax
	Inherited Operations
	Forward Declarations

	Defining Storage Homes
	Keys
	Operations
	Factory Operations
	Inheritance
	Forward Declarations

	Implementing Storage Objects
	Implementing Storage Homes
	Inheritance
	Primary Key Declaration

	Accessing Storage Objects
	Creating Transactional Sessions
	Using the SessionManager
	Setting SessionManager Parameters
	Creating a SessionManager
	Associating a Transaction with a Session
	Association Object Operations
	Using an Association to Access Storage Objects

	Managing Transactional Sessions
	Creating a Transactional Session
	Activating a Transactional Session
	Managing a Transactional Session
	Basic Session Management Operations

	Getting a Storage Object Incarnation
	Querying Data
	Associating CORBA and Storage Objects
	Thread Safety

	PSDL Language Mappings
	abstract storagehome
	abstract storagetype
	Ref Class

	Ref_var Classes
	State Members
	Operation Parameters
	storagetype
	storagehome
	Factory Native Types

	20 Event Service
	Event Service Basics
	Initiating Event Communication
	Types of Event Communication

	Programming Interface for Untyped Events
	Registration of Suppliers and Consumers with an Event Channel
	Transfer of Untyped Events Through an Event Channel
	Event Channel Administration Interfaces
	Overview of the Orbix Event Service
	Components of the Orbix Event Service

	Programming with the Untyped Push Model
	Overview of a Sample Application
	Developing an Untyped Push Supplier
	Developing an Untyped Push Consumer

	Compiling and Running an Event Service Application
	IDL Definitions for the Event Service
	Compiling an Event Service Application
	Running an Orbix Event Service Application

	21 Portable Interceptors
	Interceptor Components
	Interceptor Types
	Service Contexts
	PICurrent
	Tagged Components
	Codec
	Policy Factory
	ORB Initializer

	Writing IOR Interceptors
	Interception Point
	IORInfo

	Using RequestInfo Objects
	RequestInfo Interface
	Timeout Attributes

	Writing Client Interceptors
	Interception Points
	Interception Point Flow
	ClientRequestInfo
	Client Interceptor Tasks

	Writing Server Interceptors
	Interception Points
	Interception Point Flow
	ServerRequestInfo
	Server Interceptor Tasks

	Registering Portable Interceptors
	Implementing an ORB Initializer
	Registering an ORBInitializer

	Setting Up Orbix to Use Portable Interceptors

	Appendix A Orbix IDL Compiler Options
	Command Line Switches
	Plug-in Switch Modifiers
	IDL Configuration File

	Appendix B IONA Foundation Classes Library
	Installed IFC Directories
	Selecting an IFC Library
	Unix
	Windows

	Index

